Skip to main content

Exchange Bias Material: FeMn

  • Reference work entry
Handbook of Spintronics

Abstract

Since the exchange bias (EB) effect was discovered in the Co/CoO core-shell nanoparticles, it has been extensively studied in various ferromagnet/antiferromagnet material systems, both in experiments and in theory. Among many antiferromagnetic materials, metastable γ-FeMn emerges as the ideal material to reveal the physics mechanism behind the EB. In this chapter, the EB properties of FeMn-based bilayers are introduced by starting with the analysis of the spin configuration and structural and physical properties of bulk γ-FeMn, followed by the discussion of some basic features of the ferromagnetic/FeMn bilayers, such as the exchange field, the coercivity, the rotational hysteresis loss, and the blocking temperature as a function of the FeMn layer thickness, its crystalline microstructure, and temperature. Additionally, the thermal stability and training effect of the EB, the hysteretic effect of the angular dependent EB, and in particular the rotation of the pinning direction will be discussed in detail. The crucial role of the irreversible motion of FeMn spins will be analyzed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADEB:

Angular dependence of exchange bias

Δθ PD :

Angular change of pinning direction in the training effect

θ H :

Angle of the external magnetic field with respect to the initial pinning direction

AFM:

Antiferromagnet

t AFM :

AFM layer thickness

T B :

Blocking temperature

CW:

Clockwise

H C :

Coercivity

CCW:

Counterclockwise

t Cr :

Critical thickness of antiferromagnetic layer of the exchange bias onset

T C :

Curie temperature

n :

Cycle number of hysteresis loops in the training effect

EB:

Exchange bias

H E :

Exchange bias field

Δσ :

Exchange coupling energy

H :

External magnetic field

FM:

Ferromagnet

t FM :

Ferromagnetic layer thickness

M FM :

Ferromagnetic magnetization

GMR:

Giant magnetoresistance

m y :

Magnetic moment of ferromagnetic layer perpendicular to the external magnetic field

m x :

Magnetic moment of ferromagnetic layer parallel to the external magnetic field

MRAM:

Magnetoresistive random access memory

T :

Measurement temperature

T N :

Néel temperature

m AFM :

Net magnetic moment of the antiferromagnetic layer

θ PD :

Orientation of pinning direction

PD:

Pinning direction

W R :

Rotational hysteresis loss

References

  1. Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 105(3):904–913

    Article  ADS  Google Scholar 

  2. Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475

    Article  ADS  Google Scholar 

  3. Dieny B, Speriosu VS, Parkin SSP, Gurney BA, Wilhoit DR, Mauri D (1991) Giant magnetoresistive in soft ferromagnetic multilayers. Phys Rev B 43(1):1297–1300

    Article  ADS  Google Scholar 

  4. Meiklejohn WH (1962) Exchange anisotropy-a review. J Appl Phys 33(3):1328–1335

    Article  ADS  Google Scholar 

  5. Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192(1):203–232

    Article  ADS  Google Scholar 

  6. Miller BH, Dahlberg ED (1996) Use of the anisotropic magnetoresistance to measure exchange anisotropy in Co/CoO bilayers. Appl Phys Lett 69(25):3932–3934

    Article  ADS  Google Scholar 

  7. Ambrose T, Sommer RL, Chien CL (1997) Angular dependence of exchange coupling in ferromagnet/antiferromagnet bilayers. Phys Rev B 56(1):83–86

    Article  ADS  Google Scholar 

  8. Hoffmann A (2004) Symmetry driven irreversibilities at ferromagnetic-antiferromagnetic interfaces. Phys Rev Lett 93(9):097203

    Article  ADS  Google Scholar 

  9. Nogués J, Leighton C, Schuller IK (2000) Correlation between antiferromagnetic interface coupling and positive exchange bias. Phys Rev B 61(2):1315–1317

    Article  ADS  Google Scholar 

  10. Massanet O, Montmory R, Néel L (1965) Magnetic properties of multilayer films of FeNi-Mn-FeNiCo and of FeNi-Mn. IEEE Trans Magn 1(1):63–65

    Article  ADS  Google Scholar 

  11. Coehoorn R (2003) Giant magnetoresistance and magnetic interaction in exchange biased spin valves. In: Buschow KHJ (ed) Handbook of magnetic materials. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  12. Imakita KI, Tsunoda M, Takahashi M (2004) Giant exchange anisotropy observed in Mn-Ir/Co-Fe bilayers containing ordered Mn3Ir phase. Appl Phys Lett 85(17):3812

    Article  ADS  Google Scholar 

  13. Imakita KI, Tsunoda M (2005) Thickness dependence of exchange anisotropy of polycrystalline Mn3Ir/Co-Fe bilayers. J Appl Phys 97(10):10K106

    Article  Google Scholar 

  14. Hansen M, Ardenko K (1958) Constitution of binary alloys. McGraw-Hill, New York

    Google Scholar 

  15. Kouvel JS, Kasper JS (1963) Long-range antiferromagnetism in disordered Fe-Ni-Mn alloys. J Phys Chem Solid 24(4):529–536

    Article  ADS  Google Scholar 

  16. Umebayashi H, Ishikawa Y (1966) Antiferromagnetism of gamma Fe-Mn alloys. J Physical Soc Japan 21(7):1281–1294

    Article  ADS  Google Scholar 

  17. Ishikawa Y, Endoh Y (1968) Antiferromagnetism of γ-FeMn Alloys. J Appl Phys 39(2):1318–1319

    Article  ADS  Google Scholar 

  18. Endoh Y, Ishikawa Y (1971) Antiferromagnetism of gamma iron manganese alloys. J Physical Soc Japan 30(6):1614–1627

    Article  ADS  Google Scholar 

  19. Takahashi T, Ukai T, Mori N (1988) On the magnetic structure of noncollinear γ-Fe70Mn30. J Appl Phys 63(8):3611–3613

    Article  ADS  Google Scholar 

  20. Akbar S, Kakehashi Y, Kimura N (1998) A molecular dynamics approach to magnetic alloys with turbulent complex magnetic structures: γ-FeMn alloys. J Phys Condens Matter 10(9):2081–2105

    Article  ADS  Google Scholar 

  21. Schulthess TC, Butler WH, Stocks GM, Maat S, Mankey GJ (1999) Noncollinear magnetism in substitutionally disordered face-centered-cubic FeMn. J Appl Phys 85(8):4842–4844

    Article  ADS  Google Scholar 

  22. Spišák D, Hafner J (2000) Magnetic structures in ordered and disordered γ-FeMn alloys: ordering due to disorder. Phys Rev B 61(17):11569–11575

    Article  ADS  Google Scholar 

  23. Jiles D (1998) Introduction to magnetism and magnetic materials. Chapman & Hall, London

    Google Scholar 

  24. Ali M, Marrows CH, Hickey BJ (2003) Onset of exchange bias in ultrathin antiferromagnetic layers. Phys Rev B 67(17):172405

    Article  ADS  Google Scholar 

  25. Wang J, Wang WN, Chen X, Zhao HW, Zhao JG, Zhan WS (2000) Asymmetry of coercivity dependence on temperature in exchange-biased FeMn/Co bilayers. Appl Phys Lett 77(17):2731–2733

    Article  ADS  Google Scholar 

  26. Mauri D, Siegmann HC, Bagus PS, Kay E (1987) Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J Appl Phys 62(7):3047–3049

    Article  ADS  Google Scholar 

  27. Vonsovskii SV (1974) Magnetism, vol 2. Wiley, New York, p 946

    Google Scholar 

  28. Stearns MB (1984) 3d elements: Fe, Co, Ni. In: Wijn HPJ (ed) Magnetic properties in metals, Landolt-Börnstein, vol III, part 19a. Springer, Berlin

    Google Scholar 

  29. Gilat G, Raubenheimer LJ (1966) Accurate numerical method for calculating frequency-distribution functions in solids. Phys Rev 144(2):390–395

    Article  ADS  Google Scholar 

  30. Hempstead RD, Krongelb S, Thompson DA (1978) Unidirectional anisotropy in Nickel-Iron films by exchange coupling with antiferromagnetic films. IEEE Trans Magn 14(5):521–523

    Article  ADS  Google Scholar 

  31. Tsang C, Heiman N, Lee K (1981) Exchange induced unidirectional anisotropy at FeMn-Ni80Fe20 interfaces. J Appl Phys 52(3):2471–2473

    Article  ADS  Google Scholar 

  32. Mauri D, Kay E, Scholl D, Howard JK (1987) Novel method for determining the anisotropy constant of MnFe in a NiFe/MnFe sandwich. J Appl Phys 62(7):2929–2932

    Article  ADS  Google Scholar 

  33. Allegranza O, Chen MM (1993) Effect of substrate and antiferromagnetic film’s thickness on exchange-bias field. J Appl Phys 73(10):6218–6222

    Article  ADS  Google Scholar 

  34. Lin T, Tsang C, Fontanat RE, Howard JK (1995) Exchange-coupled Ni-Fe/Fe-Mn, Ni-Fe/Ni-Mn and NiO/Ni-Fe films for stabilization of magnetoresistive sensors. IEEE Trans Magn 31(6):2585–2590

    Article  ADS  Google Scholar 

  35. Gao TR, Shi Z, Zhou SM, Chantrell R, Asselin P, Bai XJ, Du J, Zhang ZZ (2009) Exchange bias, training effect, hysteretic behavior of angular dependence, and rotational hysteresis loss in NiFe/FeMn bilayer: effect of antiferromagnet layer thickness. J Appl Phys 105(5):053913

    Article  ADS  Google Scholar 

  36. Sang H, Du YW, Chien CL (1999) Exchange coupling in Fe50Mn50/Ni81Fe19 bilayer: dependence on antiferromagnetic layer thickness. J Appl Phys 85(8):4931–4933

    Article  ADS  Google Scholar 

  37. McCord J, Mattheis R, Elefant D (2004) Dynamic magnetic anisotropy at the onset of exchange bias: the NiFe/IrMn ferromagnet/antiferromagnet system. Phys Rev B70(09):094420

    Article  ADS  Google Scholar 

  38. Kume T, Yamato T, Kato T, Tsunashima S, Iwata S (2007) Thickness dependence of exchange anisotropy for (0 0 1) oriented Mn89Pt11/NiFe and Mn80Ir20/NiFe bilayers. J Magn Magn Mater 310(2):2298–2300

    Article  ADS  Google Scholar 

  39. Wang YG, Petford-Long AK (2004) Magnetization reversal in the pinned layer of CoFe/PtMn bilayers. J Magn Magn Mater 279(1):82–90

    Article  ADS  Google Scholar 

  40. Xi HW, Bian B, Mountfield KR, Zhuang ZL, Laughlin DE, White RM (2003) Dependence of exchange bias in Ni81Fe19/Pt x Mn1−x (0 < x <0.2) bilayers on composition and microstructure. J Magn Magn Mater 260(1–2):273–281

    Article  ADS  Google Scholar 

  41. Nam NT, Thuy NP, Tuan NA, Phuoc NN, Suzuki T (2007) Giant exchange bias in MnPd/Co bilayers. J Magn Magn Mater 315(2):82–88

    Article  ADS  Google Scholar 

  42. Toney MF, Samant MG, Lin T, Mauri D (2002) Thickness dependence of exchange bias and structure in MnPt and MnNi spin valves. Appl Phys Lett 81(24):4564–4566

    Article  ADS  Google Scholar 

  43. Jungblut R, Coehoorn R, Johnson MT, Sauer C, van der Zaag PJ, Ball AR, Rijks TGSM, aan de Stegge J, Reinders A (1995) Exchange biasing in MBE-grown Ni80Fe20/Fe50Mn50 bilayers. J Magn Magn Mater 148(1–2):300–306

    Article  ADS  Google Scholar 

  44. Tsang C, Lee K (1982) Temperature dependence of unidirectional anisotropy effects in the Permalloy-FeMn systems. J Appl Phys 53(3):2605–2607

    Article  ADS  Google Scholar 

  45. Cain WC, Meiklejohn WH, Kryder MH (1987) Effects of temperature on exchange coupled alloys of Ni80Fe20-FeMn, Ni80Fe20-αFe203, and Ni80Fe20-TbCo. J Appl Phys 61(8):4170–4172

    Article  ADS  Google Scholar 

  46. Toney MF, Tsang C, Howard JK (1991) Thermal annealing study of exchange-biased NiFe-FeMn films. J Appl Phys 70(10):6227–6229

    Article  ADS  Google Scholar 

  47. Stiles MD, Mcmichael RD (1999) Temperature dependence of exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys Rev B 60(18):12950–12956

    Article  ADS  Google Scholar 

  48. Chikazumi S (1997) Physics of ferromagnetism. Clarendon, Oxford

    Google Scholar 

  49. Huang F, Kief MT, Mankey GJ, Willis RF (1994) Magnetism in the few-monolayers limit: a surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys Rev B49(6):3962–3971

    Article  ADS  Google Scholar 

  50. Lang XY, Zheng WT, Jiang Q (2007) Dependence of the blocking temperature in exchange biased ferromagnetic/antiferromagnetic bilayers on the thickness of the antiferromagnetic layer. Nanotechnology 18(15):155701

    Article  ADS  Google Scholar 

  51. Choe G, Gupta S (1997) High exchange anisotropy and high blocking temperature in strongly textured NiFe(111) /FeMn(111) films. Appl Phys Lett 70(13):1766–1768

    Article  ADS  Google Scholar 

  52. Xi HW, White RM, Gao Z, Mao SN (2002) Antiferromagnetic thickness dependence of blocking temperature in exchange coupled polycrystalline ferromagnet/antiferromagnet bilayers. J Appl Phys 92(8):4828–4830

    Article  ADS  Google Scholar 

  53. Devasahayam AJ, Kryder MH (1999) The dependence of the antiferromagnet/ferromagnet blocking temperature on antiferromagnet thickness and deposition conditions. J Appl Phys 85(8):5519–5521

    Article  ADS  Google Scholar 

  54. Fuke HN, Saito K, Yoshikawa M, Iwasaki H, Sahashi M (1999) Influence of crystal structure and oxygen content on exchange-coupling properties of IrMn/CoFe spin-valve films. Appl Phys Lett 75(23):3680–3682

    Article  ADS  Google Scholar 

  55. van Driel J, de Boer FR, Lenssen KMH, Coehoorn R (2000) Exchange biasing by Ir19Mn81: dependence on temperature, microstructure and antiferromagnetic layer thickness. J Appl Phys 88(2):975–982

    Article  ADS  Google Scholar 

  56. Rickart M, Guedes A, Ventura J, Sousa JB, Freitas PP (2005) Blocking temperature in exchange coupled MnPt/CoFe bilayers and synthetic antiferromagnets. J Appl Phys 97(10):10K110

    Article  Google Scholar 

  57. Fecioru-Morariu M, Wrona J, Papusoi C, Güntherodt G (2008) Training and temperature effects of epitaxial and polycrystalline Ni80Fe20/Fe50Mn50 exchange biased bilayers. Phys Rev B 77(5):054441

    Article  ADS  Google Scholar 

  58. Michel RP, Chaiken A (1998) Exchange anisotropy in epitaxial and polycrystalline NiO/NiFe bilayers. Phys Rev B 58(13):8566–8573

    Article  ADS  Google Scholar 

  59. Shi Z, Qiu XP, Zhou SM, Bai XJ, Du J (2008) Anomalous training effect of perpendicular exchange bias in Pt/Co/Pt/IrMn multilayers. Appl Phys Lett 93(22):222504

    Article  ADS  Google Scholar 

  60. Nakatani R, Hoshino K, Noguchi S, Sugita Y (1994) Magnetoresistance and preferred orientation in Fe-Mn/Ni-Fe/Cu/Ni-Fe Sandwiches with various buffer layer materials. Jpn J Appl Phys 33(1A):133–137

    Article  ADS  Google Scholar 

  61. Ritchie L, Liu XY, Ingvarsson S, Xiao G, Du J, Xiao JQ (2002) Magnetic exchange bias enhancement through seed layer variation in FeMn/NiFe layered structures. J Magn Magn Mater 247(2):187–190

    Article  ADS  Google Scholar 

  62. Xu M, Lu ZQ, Tao Y, Liu CX, Cui SF, Mai ZH, Lai WY, Jia QJ, Zheng WL (2002) Relation between microstructures and magnetic properties upon annealing in Fe50Mn50/Ni80Fe20 films. J Appl Phys 92(4):2052–2057

    Article  ADS  Google Scholar 

  63. Mao M, Cerjan C, Law B, Grabner F, Vaidya S (2000) Influence of base pressure on FeMn exchange biased spin-valve films. J Appl Phys 87(9):4933–4935

    Article  ADS  Google Scholar 

  64. Li HY, Li J, Yuan SJ, Wang L, Zhou SM, Song JT (2002) Dependence of exchange coupling in Cu/FeMn/permalloy on the Cu buffer layer thickness. J Magn Magn Mater 246(1):1–5

    Article  ADS  Google Scholar 

  65. Nishioka K, Hou CH, Fujiwara H, Metzger RD (1996) Grain size effect on ferro-antiferromagnetic coupling of NiFe/FeMn systems. J Appl Phys 80(8):4528

    Article  ADS  Google Scholar 

  66. Chen MM, Tsang C, Gharsallah N (1993) Exchange bias enhancement through interdiffusion of NiFe/FeMn/Metal films. IEEE Trans Magn 29(6):4077–4079

    Article  ADS  Google Scholar 

  67. Chen KC, Wu YH, Wu KM, Wu JC, Horng L, Young SL (2007) Effect of annealing temperature on exchange coupling in NiFe/FeMn and FeMn/NiFe systems. J Appl Phys 101(09):09E516

    Google Scholar 

  68. Jimbo M, Yokochi S, Yamagishi K, Kurita J (2001) Improvement of thermal stability of exchange coupling in FeMn/NiFe films by Pt addition. J Appl Phys 89(11):7622–7624

    Article  ADS  Google Scholar 

  69. Dai B, Cai JW, Lai WY, Ge X, Zhang Z (2004) Improved pinning effect in PtMn/NiFe system by Cr addition into PtMn. Appl Phys Lett 85(22):5281–5283

    Article  ADS  Google Scholar 

  70. Samant MG, Lning J, Stöhr J, Parkin SSP (2000) Thermal stability of IrMn and MnFe exchange-biased magnetic tunnel junctions. Appl Phys Lett 76(21):3097–3099

    Article  ADS  Google Scholar 

  71. Iwasaki H, Saito AT, Tsutai O, Sahashi M (1997) Excellent reliability of CoFe-IrMn spin valves. IEEE Trans Magn 33(5):2875–2877

    Article  ADS  Google Scholar 

  72. Tondra M, Wang DX (1999) High temperature pinning properties of IrMn versus FeMn in spin valves. J Vac Sci Technol A 17(4):2220–2222

    Article  ADS  Google Scholar 

  73. Anderson GW, Huai YM, Pakala M (2000) Spin-valve thermal stability: the effect of different antiferromagnets. J Appl Phys 87(9):5726–5728

    Article  ADS  Google Scholar 

  74. Qiu XP, Yang DZ, Zhou SM, Chantrell R, O’Grady K, Nowak U, Du J, Bai XJ, Sun L (2008) Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers. Phys Rev Lett 101(14):147207

    Article  ADS  Google Scholar 

  75. Schlenker C, Paccard D (1967) Couplages Ferromagnétiques-Antiferromagnétiques: Étude Des Contractions De Cycles D’hystérésis A L’aide D’un Traceur De Cycle Très Basses Fréquences. J Phys 28(07):611–616

    Article  Google Scholar 

  76. Zhang K, Zhao T, Fujiwara H (2001) Training effect of exchange biased iron-oxide/ferromagnet systems. J Appl Phys 89(11):6910–6912

    Article  ADS  Google Scholar 

  77. Hochstrat A, Binek C, Kleeman W (2002) Training of the exchange-bias effect in NiO-Fe heterostructures. Phys Rev B 66(09):092409

    Article  ADS  Google Scholar 

  78. Binek C (2004) Training of the exchange-bias effect: a simple analytic approach. Phys Rev B 70(01):014421

    Article  ADS  Google Scholar 

  79. Pina E, Prados C, Hernando A (2004) Large training effects in magnetic relaxation and anisotropic magnetoresistance in nanocrystalline exchange-biased Ni80Fe20/CoO bilayers. Phys Rev B 69(05):052402

    Article  ADS  Google Scholar 

  80. Binek C, Polisetty S, He X, Berger A (2006) Exchange bias training effect in coupled all ferromagnetic bilayer structures. Phys Rev Lett 96(06):067201

    Article  ADS  Google Scholar 

  81. Hauet T, Borchers JA, Mangin P, Henry Y, Mangin S (2006) Training effect in an exchange bias system: the role of interfacial domain walls. Phys Rev Lett 96(6):067207

    Article  ADS  Google Scholar 

  82. Xu M, Pan J, Shen Y, Hu JG (2010) Training effect in the ferromagnetic/antiferromagnetic bilayers. Acta Phys Sin 59(10):7357–7361

    Google Scholar 

  83. Kim DY, Yoon SS, Kim CG, Tsunoda M, Takahashi M (2009) Antiferromagnet thickness dependence of the training effect in exchange-coupled CoFe/MnIr bilayers. IEEE Trans Magn 45(10):3865

    Article  ADS  Google Scholar 

  84. Xi HW, Kryder MH, White RM (1999) Study of the angular-dependent exchange coupling between a ferromagnetic and an antiferromagnetic layer. Appl Phys Lett 74(18):2687–2689

    Article  ADS  Google Scholar 

  85. Mewes T, Nembach H, Rickart M, Demokritov SO, Fassbender J, Hillebrands B (2002) Angular dependence and phase diagrams of exchange-coupled epitaxial Ni81Fe19/Fe50Mn50(001) bilayers. Phys Rev B 65(22):224423

    Article  ADS  Google Scholar 

  86. Hao SP, Sui YX, Shan R, Sun L, Zhou SM (2005) Exchange biasing in as-prepared Co/FeMn bilayers and magnetic properties of ultrathin single layer films. Thin Solid Films 485:212–217

    Article  ADS  Google Scholar 

  87. Du J, Yang DZ, Bai XJ, Wu XS, Hu A, Zhou SM, Sun L (2006) Angular dependence of positive exchange biasing in GdFe/FeMn bilayers. J Appl Phys 99(08):08C103

    Article  Google Scholar 

  88. Gao TR, Yang DZ, Zhou SM, Chantrell R, Asselin P, Du J, Wu XS (2007) Hysteretic behavior of angular dependence of exchange bias in FeNi/FeMn bilayers. Phys Rev Lett 99(05):057201

    Article  ADS  Google Scholar 

  89. Jiménez E, Camarero J, Sort J, Nogués J, Hoffmann A, Teran FJ, Perna P, García-Martín JM, Dieny B, Miranda R (2009) Highly asymmetric magnetic behavior in exchange biased systems induced by noncollinear field cooling. Appl Phys Lett 95(12):122508

    Article  ADS  Google Scholar 

  90. Chen G, Li J, Liu FZ, Zhu J, He Y, Wu J, Qiu ZQ, Wu YZ (2010) Four-fold magnetic anisotropy induced by the antiferromagnetic order in FeMn/Co/Cu(001) system. J Appl Phys 108(07):073905

    Article  ADS  Google Scholar 

  91. Radu F, Westphalen A, Theis-Bröhl K, Zabel H (2006) Quantitative description of the azimuthal dependence of the exchange bias effect. J Phys Condens Matter 18(3):L29–L36

    Article  ADS  Google Scholar 

  92. McCord J, Hamann C, Schäfer R, Schultz L, Mattheis R (2008) Nonlinear exchange coupling and magnetic domain asymmetry in ferromagnetic/IrMn thin films. Phys Rev B 78(09):094419

    Article  ADS  Google Scholar 

  93. Jimnez E, Camarero J, Sort J, Nogués J, Hoffmann A, Mikuszeit N, Garca-Martn JM, Dieny B, Miranda R (2009) Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems. Phys Rev B 80(1):014415

    Article  ADS  Google Scholar 

  94. Lommel JM, Graham CD (1962) Rotatable anisotropy in composite films. J Appl Phys 33(3):1160–1161

    Article  ADS  Google Scholar 

  95. Olamit J, Liu K (2007) Rotational hysteresis of the exchange anisotropy direction in Co/FeMn thin films. J Appl Phys 101(09):09E508

    Article  Google Scholar 

  96. Berger A, Hovorka O, Friedman G, Fullerton EE (2008) Nonlinear and hysteretic exchange bias in antiferromagnetically coupled ferromagnetic bilayers. Phys Rev B 78(22):224407

    Article  ADS  Google Scholar 

  97. Zhang J, Du J, Bai XJ, You B, Zhang W, Hu A (2009) Training effect and hysteretic behaviour of angular dependence of exchange bias in Co/IrMn bilayers. Chin Phys Lett 26(4):047501

    Article  ADS  Google Scholar 

  98. Qiu XP, Shi Z, Zhou SM, Du J, Bai XJ, Chantrell R, Sun L (2009) Asymmetric recovery effect of exchange bias in polycrystalline NiFe/FeMn bilayers. J Appl Phys 106(06):063903

    Article  ADS  Google Scholar 

  99. Fulcomer E, Charap SH (1972) Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling. J Appl Phys 43(10):4190–4199

    Article  ADS  Google Scholar 

  100. Stiles MD, McMichael RD (1999) Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys Rev B 59(5):3722–3733

    Article  ADS  Google Scholar 

  101. Geshev J, Pereira LG, Schmidt JE (2002) Rotatable anisotropy and coercivity in exchange-bias bilayers. Phys Rev B 66(13):134432

    Article  ADS  Google Scholar 

  102. Choo D, Chantrell RW, Lamberton R, Johnston A, O’Grady K (2007) A model of the magnetic properties of coupled ferromagnetic/antiferromagnetic bilayers. J Appl Phys 101(09):09E521

    Article  Google Scholar 

Further Reading

  • Berkowitz AE, Takano K (1999) Exchange anisotropy-a review. J Magn Magn Mater 200:552–570

    Article  ADS  Google Scholar 

  • Stamps RL (2000) Mechanisms for exchange bias. J Phys D Appl Phys 33(23):R247–R268

    Article  ADS  Google Scholar 

  • Kiwi M (2001) Exchange bias theory. J Magn Magn Mater 234:584–595

    Article  ADS  Google Scholar 

  • Nogués J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructures. Phys Rep Rev Sec Phys Lett 422(3):65–117

    Google Scholar 

  • Radu F, Zabel H (2008) Exchange bias effect of ferro-/antiferromagnetic heterostructures. Springer Tracts Modern Physics 227:97–184

    Article  ADS  Google Scholar 

  • Iglesias O, Labarta A, Batlle X (2008) Exchange bias phenomenology and models of core/shell nanoparticles. J Nanosci Nanotechnol 8(6):2761–2780

    Google Scholar 

  • O’Grady K, Fernandez-Outon LE, Vallejo-Fernandez G (2010) A new paradigm for exchange bias in polycrystalline thin films. J Magn Magn Mater 322:883–899

    Article  ADS  Google Scholar 

  • Giri S, Patra M, Majumdar S (2011) Exchange bias effect in alloys and compounds. J Phys Condens Matter 23(7):073201

    Article  ADS  Google Scholar 

  • Finazzi M, Duò L, Ciccacci F (2009) Magnetic properties of interfaces and multilayers based on thin antiferromagnetic oxide films. Surf Sci Rep 64(4):139–167

    Article  ADS  Google Scholar 

  • Binek C (2009) Tunable exchange bias effects. In: Liu JP, Fullerton E, Gutfleisch O, Sellmyer DJ (eds) Nanoscale magnetic materials and applications. Springer, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiming Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zhou, S., Sun, L., Du, J. (2016). Exchange Bias Material: FeMn. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_13

Download citation

Publish with us

Policies and ethics