Skip to main content

Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures

  • Chapter
Magnetic Heterostructures

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 227))

abstract

The exchange bias effect, discovered more than fifty years ago, is a fundamental interfacial property, which occurs between ferromagnetic and antiferromagnetic materials. After intensive experimental and theoretical research over the last ten years, a much clearer picture has emerged about this effect, which is of immense technical importance for magneto-electronic device applications. In this review we start with the discussion of numerical and analytical results of those models which are based on the assumption of coherent rotation of the magnetization. The behavior of the ferromagnetic and antiferromagnetic spins during the magnetization reversal, as well as the dependence of the critical fields on characteristic parameters such as exchange stiffness, magnetic anisotropy, interface disorder etc. are analyzed in detail and the most important models for exchange bias are reviewed. Finally recent experiments in the light of the presented models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. H. Meiklejohn and C. P. Bean. New magnetig anisotropy. Phys. Rev., 102:1413, 1956.

    ADS  Google Scholar 

  2. P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, and H. Sowers. Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe-layers across Cr-interlayers. Phys. Rev. Lett., 57:2442, 1986.

    ADS  Google Scholar 

  3. N. R. Werthamer. Theory of the superconducting transition temperature and energy gap function of superposed metal films. Phys. Rev., 132:2440, 1963.

    ADS  Google Scholar 

  4. Zoran Radović, Marko Ledvij, Ljiljana Dobrosavljević-Grujić, A. I. Buzdin, and John R. Clem. Transition temperatures of superconductor-ferromagnet superlattices. Phys. Rev. B., 44:759, 1991.

    Google Scholar 

  5. D. Bürgler, S. O. Demokritov, P. Gürnberg, and M. T. Johnson. Interlayer exchange coupling in layered magnetic structures. in Handbook of Magnetic Materials K. H. J. Buschow, ed., Elsevier North-Holland, Amsterdam, 13, 2001.

    Google Scholar 

  6. F. S. Bergeret, A. F. Volkov, and K. B. Efetov. Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys., 77:1321, 2005.

    ADS  Google Scholar 

  7. A. I. Buzdin. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys., 77:935, 2005.

    ADS  Google Scholar 

  8. J. Nogues and I. K. Schuller. Exchange bias. J. Magn. Magn. Mater., 192:203, 1999.

    ADS  Google Scholar 

  9. M. Kiwi. Exchange bias theory. J. Magn. Magn. Mater., 234:584–595, 2001.

    ADS  Google Scholar 

  10. A. E. Berkowitz and K. Takano. Exchange anisotropy - a review. J. Magn. Magn. Mater., 200:552, 1999.

    ADS  Google Scholar 

  11. R. L. Stamps. Mechanisms for exchange bias. J. Phys. D:Appl. Phys., 33:R247, 2000.

    Google Scholar 

  12. T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Lüning, J. Stöhr, and R. L. White. Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy. Phys. Rev. B., 64(21):214422, Nov 2001.

    ADS  Google Scholar 

  13. H. Ohldag, T. J. Regan, J. Stöhr, A. Scholl, F. Nolting, J. Lüning, C. Stamm, S. Anders, and R. L. White. Spectroscopic identification and direct imaging of interfacial magnetic spins. Phys. Rev. Lett., 87(24):247201, Nov 2001.

    ADS  Google Scholar 

  14. F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel. Interfacial domain formation during magnetization reversal in exchange-biased CoO/Co bilayers. Phys. Rev. B., 67:134409, 2003.

    ADS  Google Scholar 

  15. H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A. T. Young, M. Carey, and J. Stohr. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett., 91(1):017203, 2003.

    ADS  Google Scholar 

  16. A. Scholl, M. Liberati, E. Arenholz, H. Ohldag, and J. Stöhr. Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett., 92:247201, 2004.

    ADS  Google Scholar 

  17. S. Roy, M. R. Fitzsimmons, S. Park, M. Dorn, O. Petracic, Igor V. Roshchin, Zhi-Pan Li, X. Batlle, R. Morales, A. Misra, X. Zhang, K. Chesnel, J. B. Kortright, S. K. Sinha, and Ivan K. Schuller. Depth profile of uncompensated spins in an exchange bias system. Phys. Rev. Lett., 95(4):047201, 2005.

    ADS  Google Scholar 

  18. W. Kuch, F. Offi L. I. Chelaru, M. Kotsugi J. Wang, and J. Kirschner. Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness. Nature Materials, 5:128–133, 2006.

    ADS  Google Scholar 

  19. F. Radu, A. Nefedov, J. Grabis, G. Nowak, A. Bergmann, and H. Zabel. Soft x-ray magnetic scattering studies on Fe/CoO exchange bias bilayers. J. Magn. Magn. Mater., 300:206, 2006.

    ADS  Google Scholar 

  20. Hendrik Ohldag, Hongtao Shi, Elke Arenholz, Joachim Stöhr, and David Lederman. Parallel versus antiparallel interfacial coupling in exchange biased Co/FeF_2. Phys. Rev. Lett., 96(2):027203, 2006.

    Google Scholar 

  21. T. Hauet, J. A. Borchers, Ph. Mangin, Y. Henry, and S. Mangin. Training effect in an exchange bias system: The role of interfacial domain walls. Phys. Rev. Lett., 96(6):067207, 2006.

    ADS  Google Scholar 

  22. C. Tusche, H. L. Meyerheim, F. U. Hillebrecht, and J. Kirschner. Evidence for a mixed Co/NiO layer at the Co/NiO(001) interface from surface x-ray diffraction. Phys. Rev. B., 73(12):125401, 2006.

    ADS  Google Scholar 

  23. V. K. Valev, M. Gruyters, A. Kirilyuk, and Th. Rasing. Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface. Phys. Rev. Lett., 96(6):067206, 2006.

    ADS  Google Scholar 

  24. E. C. Stoner and E. P. Wohlfarth. Interpretation of high coercivity in ferromagnetic materials. Nature, 160:650, 1947.

    ADS  Google Scholar 

  25. E. C. Stoner and E. P. Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(826):599–642, 1948.

    ADS  MATH  Google Scholar 

  26. W. H. Meiklejohn and C. P. Bean. New magnetig anisotropy. Phys. Rev., 105:904, 1957.

    ADS  Google Scholar 

  27. W. H. Meiklejohn. Exchange anisotropy - a review. J. Appl. Phys., 33:1328, 1962.

    ADS  Google Scholar 

  28. D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay. Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J. Appl. Phys., 62:3047, 1987.

    ADS  Google Scholar 

  29. A. P. Malozemoff. Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B., 35:3679, 1987.

    ADS  Google Scholar 

  30. A. P. Malozemoff. Mechanisms of exchange anisotropy (invited). J. Appl. Phys., 63(8):3874–3879, 1988.

    ADS  Google Scholar 

  31. A. P. Malozemoff. Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy. Phys. Rev. B., 37(13):7673–7679, 1988.

    ADS  Google Scholar 

  32. P. Miltényi, M. Gierlings, J. Keller, B. Beschoten, G. Güntherodt, U. Nowak, and K. D. Usadel. Diluted antiferromagnets in exchange bias: Proof of the domain state model. Phys. Rev. Lett., 84(18):4224–4227, 2000.

    ADS  Google Scholar 

  33. U. Nowak, A. Misra, and K. D. Usadel. Domain state model for exchange bias. J. Appl. Phys., 89(11):7269–7271, 2001.

    ADS  Google Scholar 

  34. U. Nowak, A. Misra, and K. D. Usadel. Modeling exchange bias microscopically. J. Magn. Magn. Mater., 240(1-3):243–247, 2002.

    ADS  Google Scholar 

  35. U. Nowak, K. D. Usadel, J. Keller, P. Miltényi, B. Beschoten, and G. Güntherodt. Domain state model for exchange bias. I. Theory. Phys. Rev. B., 66:014430, 2002.

    Google Scholar 

  36. B. Beckmann, U. Nowak, and K. D. Usadel. Asymmetric reversal modes in ferromagnetic/antiferromagnetic multilayers. Phys. Rev. Lett., 91:187201, 2003.

    ADS  Google Scholar 

  37. K. Binder. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys., 58(4):801–976, October 1986.

    ADS  Google Scholar 

  38. G. Scholten, K. D. Usadel, and U. Nowak. Coercivity and exchange bias of ferromagnetic/antiferromagnetic multilayers. Phys. Rev. B., 71(6):064413, 2005.

    ADS  Google Scholar 

  39. B. Beckmann, K. D. Usadel, and U. Nowak. Cooling-field dependence of asymmetric reversal modes for ferromagnetic/antiferromagnetic multilayers. Phys. Rev. B., 74(5):054431, 2006.

    ADS  Google Scholar 

  40. Joo-Von Kim and R. L. Stamps. Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects. Phys. Rev. B., 71(9):094405, 2005.

    ADS  Google Scholar 

  41. F. Radu, A. Westphalen, K. Theis-Bröhl, and H. Zabel. Quantitative description of the azimuthal dependence of the exchange bias effect. J. Phys.: Condens. Matter, 18:L29–L36, 2006.

    ADS  Google Scholar 

  42. R. Coehoorn. Exchange anisotropy, Stoner-Wolhfarth model. Lecture Notes, Eindhoven University of Technology, Eindhoven University of Technology, 2000-2001.

    Google Scholar 

  43. J. C. Slonczewski. In: Research Memorandum RM 003.111.224, IBM Research Center Poughkeepsie, unpublished, 1956.

    Google Scholar 

  44. André Thiaville. Extensions of the geometric solution of the two dimensional coherent magnetization rotation model. J. Magn. Magn. Mater., 182(1-2):5, 1998.

    Google Scholar 

  45. N. J. Gökemeijer, T. Ambrose, and C. L. Chien. Long-range exchange bias across a spacer layer. Phys. Rev. Lett., 79:4270, 1997.

    ADS  Google Scholar 

  46. Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas. Interfacial uncompensated antiferromagnetic spins: Role in unidirectional anisotropy in polycrystalline Ni81Fe19/CoO bilayers. Phys. Rev. Lett., 79(6):1130–1133, 1997.

    ADS  Google Scholar 

  47. T. Gredig, I. N. Krivorotov, P. Eames, and D. Dahlberg. Unidirectional coercivity enhancement in exchange-biased Co/CoO. Appl. Phys. Lett., 81:1270, 2002.

    ADS  Google Scholar 

  48. C. Prados, E. Pina, A. Hernando, and A. Montone. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers. J. Phys.: Condens. Matter, 14:10063, 2002.

    ADS  Google Scholar 

  49. Hongtao Shi, Zhongyuan Liu, and David Lederman. Exchange bias of polycrystalline co on single-crystalline FexZn1-xF_2 thin films. Phys. Rev. B., 72(22):224417, 2005.

    Google Scholar 

  50. Mannan Ali, Patrick Adie, Christopher H. Marrows, Denis Greig, Bryan J. Hickey, and Robert L. Stamps. Exchange bias using a spin glass. Nature Materials, 6:70, 2007.

    Google Scholar 

  51. C. Leighton, J. Nogues, H. Suhl, and I. K. Schuller. Competing interfacial exchange and Zeeman energies in exchange biased bilayers. Phys. Rev. B., 60:12837, 1999.

    ADS  Google Scholar 

  52. T. M. Hong. Simple mechanism for a positive exchange bias. Phys. Rev. B., 58:97, 1998.

    ADS  Google Scholar 

  53. B. Kagerer, C. Binek, and W. Kleemann. Freezing field dependence of the exchange bias in uniaxial FeF_2-CoPt heterosystems with perpendicular anisotropy. J. Magn. Magn. Mater., 217(1-3):139–146, 2000.

    ADS  Google Scholar 

  54. T. L. Kirk, O. Hellwig, and E. E. Fullerton. Coercivity mechanisms in positive exchange-biased Co films and Co/Pt multilayers. Phys. Rev. B., 65:224426, 2002.

    ADS  Google Scholar 

  55. M. D. Rechtin and B. L. Averbach. Long-range magnetic order in coo. Phys. Rev. B., 6:4294, 1972.

    ADS  Google Scholar 

  56. Peter Miltényi. Mikroskopischer ursprung der austauschkopplung in ferromagnetischen/antiferromagnetischen schichten. PHD Thesis, Aachen, 2000.

    Google Scholar 

  57. B. H. Miller and E. Dan Dahlberg. Use of the anisotropic magnetoresistance to measure exchange anisotropy in Co/CoO bilayers. Appl. Phys. Lett., 69:3932, 1996.

    ADS  Google Scholar 

  58. S. G. E. te Velthuis, A. Berger, G. P. Felcher, B. K. Hill, and E. Dan Dahlberg. Training effects and the microscopic magnetic structure of exchange biased Co/CoO bilayers. J. Appl. Phys., 87:5046, 2000.

    ADS  Google Scholar 

  59. U. Welp, S. G. E. te Velthuis, G. P. Felcher, T. Gredig, and E. D. Dahlberg. Domain formation in exchange biased Co/CoO bilayers. J. Appl. Phys., 93:7726, 2003.

    ADS  Google Scholar 

  60. F. Radu, M. Etzkorn, V. Leiner, T. Schmitte, A. Schreyer, K. Westerholt, and H. Zabel. Polarised neutron reflectometry study of Co/CoO exchange biased multilayers. Appl. Phys. A, 74:S1570, 2002.

    ADS  Google Scholar 

  61. M. Gruyters and D. Riegel. Strong exchange bias by a single layer of independent antiferromagnetic grains: The CoO/Co model system. Phys. Rev. B., 63:052401, 2000.

    ADS  Google Scholar 

  62. G. Nowak, A. Remhof, F. Radu, A. Nefedov, H.-W. Becker, and H. Zabel. Structural and magnetic properties of stoichiometric epitaxial CoO/Fe exchange bias bilayers. Phys. Rev. B., 75:174405, 2007.

    ADS  Google Scholar 

  63. Florin Radu. Fundamental aspects of exchange bias effect. PhD thesis, Ruhr-University Bochum, 2005.

    Google Scholar 

  64. C. Tsang, N. Heiman, and K. Lee. Exchange induced unidirectional anisotropy at FeMn-Ni80Fe20 interfaces. J. Appl. Phys, 52:2471, 1981.

    ADS  Google Scholar 

  65. H. Fujiwara, C. Hou, M. Sun, and H. S. Cho. Effect of exchange coupling of polycrystalline antiferromagnetic layers on the magnetization behavior of soft magnetic layers. IEEE Transactions on Magnetics, 35(5):3082, 1999.

    ADS  Google Scholar 

  66. J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, U. Nowak, and K. D. Usadel. Domain state model for exchange bias. ii. experiments. Phys. Rev. B., 66:014431, 2002.

    ADS  Google Scholar 

  67. Jung-Il Hong, Titus Leo, David J. Smith, and Ami E. Berkowitz. Enhancing exchange bias with diluted antiferromagnets. Phys. Rev. Lett., 96(11):117204, 2006.

    Google Scholar 

  68. C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois. Planar patterned magnetic media obtained by ion irradiation. Science, 280:1919–1922, 1998.

    ADS  Google Scholar 

  69. A. Mougin, T. Mewes, M. Jung, D. Engel, A. Ehresmann, H. Schmoranzer, J. Fassbender, and B. Hillebrands. Local manipulation and reversal of the exchange bias field by ion irradiation in FeNi/FeMn double layers. Phys. Rev. B., 63:060409, 2001.

    ADS  Google Scholar 

  70. V. Hoink, M. D. Sacher, J. Schmalhorst, G. Reiss, D. Engel, D. Junk, and A. Ehresmann. Postannealing of magnetic tunnel junctions with ion-bombardment-modified exchange bias. Appl. Phys. Lett., 86(15):152102, 2005.

    ADS  Google Scholar 

  71. S. Urazhdin and C. L. Chien. Effects of antiferromagnetic spin rotation on the anisotropy of ferromagnetic/antiferromagnetic bilayers. Phys. Rev. B., 71(22):220410, 2005.

    ADS  Google Scholar 

  72. D. Mauri, E. Kay, D. Scholl, and J. K. Howard. Novel method for determining the anisotropy constant of MnFe in a NiFe/MnFe sandwich. J. Appl. Phys., 62:2929, 1987.

    ADS  Google Scholar 

  73. J. T. Kohlhepp and W. J. M. de Jonge. Stabilization of metastable expanded face-centered-tetragonal manganese. Phys. Rev. Lett., 96(23):237201, 2006.

    ADS  Google Scholar 

  74. C. Daboo, R. J. Hicken, E. Gu, M. Gester, S. J. Gray, D. E. P. Eley, E. Ahmad, J. A. C. Bland, R. Ploessl, and J. N. Chapman. Anisotropy and orientational dependence of magnetization reversal processes in epitaxial ferromagnetic thin films. Phys. Rev. B., 51(22):15964–15973, Jun 1995.

    ADS  Google Scholar 

  75. Till Schmitte. Bragg-moke and vector-moke investigations: Magnetic reversal of patterned microstripes. PhD thesis, Ruhr-University Bochum, 2002.

    Google Scholar 

  76. Julio Camarero, Jordi Sort, Axel Hoffmann, Jose Miguel García-Martín, Bernard Dieny, Rodolfo Miranda, and Josep Nogués. Origin of the asymmetric magnetization reversal behavior in exchange-biased systems: Competing anisotropies. Phys. Rev. Lett., 95:057204, 2005.

    Google Scholar 

  77. L. Néel. Etude théorique du couplage ferro-antiferromagn´etique dans les couches minces. Ann. Phys. (Paris), 2:61, 1967.

    Google Scholar 

  78. N. C. Koon. Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces. Phys. Rev. Lett., 78:4865–4868, 1997.

    ADS  Google Scholar 

  79. T. C. Schulthess and W. H. Butler. Consequences of spin-flop coupling in exchange biased films. Phys. Rev. Lett., 81(20):4516–4519, 1998.

    ADS  Google Scholar 

  80. T. C. Schulthess and W. H. Butler. Coupling mechanisms in exchange biased films. J. Appl. Phys., 85(8):5510–5515, 1999.

    ADS  Google Scholar 

  81. R. Coehoorn, J. T. Kohlhepp, R. M. Jungblut, A. Reinders, and M. J. Dekker. Mesoscopic magnetism and the phenomenon of exchange anisotropy: MBE grown Cu(110)/Ni80Fe20/Fe50Mn50 bilayers with corrugated interfaces. Physica B: Condensed Matter, 319(1-4):141–167, 2002.

    ADS  Google Scholar 

  82. F. Radu, A. Vorobiev, J. Major, H. Humblot, K. Westerholt, and H. Zabel. Spin-resolved off-specular neutron scattering from magnetic domain walls using the polarized ^3He gas spin filter. Physica B, 335:63–67, 2003.

    ADS  Google Scholar 

  83. A. Misra, U. Nowak, and K. D. Usadel. Control of exchange bias by diluting the antiferromagnetic layer. J. Appl. Phys., 93(10):6593–6595, 2003.

    ADS  Google Scholar 

  84. A. Misra, U. Nowak, and K. D. Usadel. Structure of domains in an exchange-bias model. J. Appl. Phys., 95(3):1357–1363, 2004.

    ADS  Google Scholar 

  85. Cristian Papusoi, Jan Hauch, Marian Fecioru-Morariu, and Gernot Güntherodt. Tuning the exchange bias of soft metallic antiferromagnets by inserting nonmagnetic defects. J. Appl. Phys., 99(12):123902, 2006.

    Google Scholar 

  86. Xi Chen, Ch. Binek, A. Hochstrat, and W. Kleemann. Dilution-induced enhancement of the blocking temperature in exchange-bias heterosystems. Phys. Rev. B., 65(1):012415, Dec 2001.

    Google Scholar 

  87. T. Mewes, R. Lopusnik, J. Fassbender, B. Hillebrands, M. Jung, D. Engel, A. Ehresmann, and H. Schmoranzer. Suppression of exchange bias by ion irradiation. Appl. Phys. Lett., 76(8):1057–1059, 2000.

    ADS  Google Scholar 

  88. Hongtao Shi, David Lederman, and Eric E. Fullerton. Exchange bias in FexS Zn1-xF2/Co bilayers. J. Appl. Phys., 91(10):7763–7765, 2002.

    Google Scholar 

  89. M. Ali, C. H. Marrows, M. Al-Jawad, B. J. Hickey, A. Misra, U. Nowak, and K. D. Usadel. Antiferromagnetic layer thickness dependence of the IrMn/Co exchange-bias system. Phys. Rev. B., 68(21):214420, 2003.

    ADS  Google Scholar 

  90. M. R. Fitzsimmons, C. Leighton, A. Hoffmann, P. C. Yashar, J. Nogues, K. Liu, C. F. Majkrzak, J. A. Dura, H. Fritzsche, and I. K. Schuller. Influence of interfacial disorder and temperature on magnetization reversal in exchange-coupled bilayers. Phys. Rev. B., 64:104415, 2001.

    ADS  Google Scholar 

  91. V. S. Gornakov, Yu. P. Kabanov, O. A. Tikhomirov, V. I. Nikitenko, S. V. Urazhdin, F. Y. Yang, C. L. Chien, A. J. Shapiro, and R. D. Shull. Experimental study of the microscopic mechanisms of magnetization reversal in FeNi/FeMn exchange-biased ferromagnet/antiferromagnet polycrystalline bilayers using the magneto-optical indicator film technique. Phys. Rev. B., 73:184428, 2006.

    ADS  Google Scholar 

  92. Haiwen Xi and Robert M. White. Antiferromagnetic thickness dependence of exchange biasing. Phys. Rev. B, 61(1):80–83, Jan 2000.

    Google Scholar 

  93. R. L. Stamps. Dynamic magnetic hysteresis and anomalous viscosity in exchange bias systems. Phys. Rev. B., 61(18):12174–12180, 2000.

    ADS  Google Scholar 

  94. Joo-Von Kim, R. L. Stamps, B. V. McGrath, and R. E. Camley. Angular dependence and interfacial roughness in exchange-biased ferromagnetic/antiferromagnetic bilayers. Phys. Rev. B., 61(13):8888–8894, 2000.

    ADS  Google Scholar 

  95. Joo-Von Kim and R. L. Stamps. Defect-modified exchange bias. Appl. Phys. Lett., 79(17):2785–2787, 2001.

    ADS  Google Scholar 

  96. Joo-Von Kim and R. L. Stamps. Theory of long-wavelength spin waves in exchange biased bilayers. J. Appl. Phys., 89(11):7651–7653, 2001.

    ADS  Google Scholar 

  97. H.-B. Braun, J. Kyriakidiis, and D. Loss. Dynamic magnetic hysteresis and anomalous viscosity in exchange bias systems. Phys. Rev. B., 56:8129, 1997.

    ADS  Google Scholar 

  98. V. I. Nikitenko, V. S. Gornakov, A. J. Shapiro, R. D. Shull, K. Liu, S. M. Zhou, and C. L. Chien. Asymmetry in elementary events of magnetization reversal in a ferromagnetic/antiferromagnetic bilayer. Phys. Rev. Lett., 84:765, 2000.

    ADS  Google Scholar 

  99. C. Schlenker, S. S. P. Parkin, J. C. Scott, and K. Howard. Magnetic disorder in the exchange bias bilayered FeNi-FeMn system. J. Magn. Magn. Mater., 54-57:801, 1986.

    Google Scholar 

  100. W. Stoecklein, S. S. P. Parkin, and J. C. Scott. Ferromagnetic resonance studies of exchange-biased permalloy thin films. Phys. Rev. B, 38(10):6847–6854, Oct 1988.

    ADS  Google Scholar 

  101. R. P. Michel, A. Chaiken, C. T. Wang, and L. E. Johnson. Exchange anisotropy in epitaxial and polycrystalline NiO/NiFe bilayers. Phys. Rev. B, 58(13):8566–8573, Oct 1998.

    ADS  Google Scholar 

  102. Mark Rubinstein, Peter Lubitz, and Shu-Fan Cheng. Ferromagnetic-resonance field shift in an exchange-biased CoO/Ni80Fe20 bilayer. J. Magn. Magn. Mater., 195:299–306, 1999.

    Google Scholar 

  103. Ilya N. Krivorotov, Hongwei Yan, E. Dan Dahlberg, and Andreas Stein. Exchange bias in macroporous Co/CoO. J. Magn. Magn. Mater., 226-230:1800–1802, 2001.

    Google Scholar 

  104. H. Wang, T. Zhu, K. Zhao, W. N. Wang, C. S. Wang, Y. J. Wang, and W. S. Zhan. Surface spin glass and exchange bias in Fe3O4 nanoparticles compacted under high pressure. Phys. Rev. B., 70(9):092409, 2004.

    ADS  Google Scholar 

  105. S. A. Koch, G. Palasantzas, T. Vystavel, J. Th. M. De Hosson, C. Binns, and S. Louch. Magnetic and structural properties of Co nanocluster thin films. Phys. Rev. B., 71(8):085410, 2005.

    ADS  Google Scholar 

  106. C. Martinez-Boubeta, K. Simeonidis, M. Angelakeris, N. Pazos-Perez, M. Giersig, A. Delimitis, L. Nalbandian, V. Alexandrakis, and D. Niarchos. Critical radius for exchange bias in naturally oxidized Fe nanoparticles. Phys. Rev. B., 74(5):054430, 2006.

    ADS  Google Scholar 

  107. Li Pi, Shixiong Zhang, Shun Tan, and Yuheng Zhang. Exchange bias-like phenomenon in SrRuO3. Appl. Phys. Lett., 88:102502, 2006.

    Google Scholar 

  108. K. Westerholt, U. Geiersbach, and A. Bergmann. Exchange bias in [Co2MnGe/Au]_n, [Co2MnGe/Cr]_n and [Co2MnGe/Cu2MnAl]_n multilayers. J. Magn. Magn. Mater., 257:239, 2003.

    ADS  Google Scholar 

  109. A. Berger, A. Inomata, J. S. Jiang, J. E. Pearson, and S. D. Bader. Experimental observation of disorder-driven hysteresis-loop criticality. Phys. Rev. Lett., 85(19):4176–4179, Nov 2000.

    ADS  Google Scholar 

  110. W. A. A. Macedo, B. Sahoo, V. Kuncser, J. Eisenmenger, I. Felner, J. Nogues, K. Liu, W. Keune, and I. K. Schuller. Changes in ferromagnetic spin structure induced by exchange bias in Fe/MnF_2 films. Phys. Rev. B., 70:224414, 2004.

    ADS  Google Scholar 

  111. F. Radu, M. Etzkorn, T. Schmitte, R. Siebrecht, A. Schreyer, K. Westerholt, and H. Zabel. Asymmetric magnetization reversal on exchange bias CoO/Co bilayers. J. Magn. Magn. Mater., 240:251, 2002.

    ADS  Google Scholar 

  112. Steven Brems, Dieter Buntinx, Kristiaan Temst, Chris Van Haesendonck, Florin Radu, and Hartmut Zabel. Reversing the training effect in exchange biased CoO/Co bilayers. Phys. Rev. Lett., 95:157202, 2005.

    Google Scholar 

  113. P. Kappenberger, S. Martin, Y. Pellmont, H. J. Hug, J. B. Kortright, O. Hellwig, and Eric E. Fullerton. Direct imaging and determination of the uncompensated spin density in exchange-biased CoO/CoPt multilayers. Phys. Rev. Lett., 91:267202, 2005.

    ADS  Google Scholar 

  114. C. Sanchez-Hanke and C. C. Kao. An element-sensitive hysteresis loop study of an exchange-biased Co/NiO bilayer. J. Magn. Magn. Mater., 226-230:1803, 2001.

    Google Scholar 

  115. O. Zaharko, P. M. Oppeneer, H. Grimmer, M. Horisberger, H.-Ch. Mertins, D. Abramsohn, F. Schäfers, A. Bill, and H.-B. Braun. Exchange coupling in Fe/NiO/Co film studied by soft x-ray resonant magnetic reflectivity. Phys. Rev. B., 66(13):134406, Oct 2002.

    ADS  Google Scholar 

  116. J. Camarero, Y. Pennec, J. Vogel, S. Pizzini, M. Cartier, F. Fettar, F. Ernult, A. Tagliaferri, N. B. Brookes, and B. Dieny. Field dependent exchange coupling in NiO/Co bilayers. Phys. Rev. B., 67(2):020413, 2003.

    ADS  Google Scholar 

  117. D. Engel, H. Schmoranzer, A. Ehresmann, H. C. Mertins, D. Abramsohn, and W. Gudat. Soft x-ray resonant magnetic reflection investigations of FeMn/Co/Cu/Co spin valves modified by he-ion bombardment. J. Magn. Magn. Mater., 345:185–188, 2004.

    Google Scholar 

  118. M. Gruyters. Spin-glass-like behavior in CoO nanoparticles and the origin of exchange bias in layered CoO/ferromagnet structures. Phys. Rev. Lett., 95(7):077204, 2005.

    ADS  Google Scholar 

  119. Elena-Lorena Salabas, Anja Rumplecker, Freddy Kleitz, Florin Radu, and Ferdi Schüth. Exchange anisotropy in nanocasted Co3O4 nanowires. Nano Letters, 6(12):2977–2981, 2006.

    Google Scholar 

  120. N. J. Gökemeijer, R. L. Penn, D. R. Veblen, and C. L. Chien. Exchange coupling in epitaxial CoO/NiFe bilayers with compensated and uncompensated interfacial spin structures. Phys. Rev. B., 63:174422, 2001.

    ADS  Google Scholar 

  121. T. Ambrose, R. L. Sommer, and C. L. Chien. Angular dependence of exchange coupling in ferromagnet/antiferromagnet bilayers. Phys. Rev. B., 56:83, 1997.

    ADS  Google Scholar 

  122. J. Geshev, L. G. Pereira, and J. E. Schmidt. Angular dependence of the exchange bias obtained from magnetization and ferromagnetic resonance measurements in exchange-coupled bilayers. Phys. Rev. B., 64:184411, 2001.

    ADS  Google Scholar 

  123. T. Mewes, H. Nembach, M. Rickart, S. O. Demokritov, J. Fassbender, and B. Hillebrands. Angular dependence and phase diagrams of exchange-coupled epitaxial Ni81Fe19/Fe50Mn50(001) bilayers. Phys. Rev. B., 65(22):224423, Jun 2002.

    ADS  Google Scholar 

  124. K. Steenbeck, R. Mattheis, and M. Diegel. Antiferromagnetic energy loss and exchange coupling of IrMn/CoFe films: experiments and simulations. J. Magn. Magn. Mater., 279:317, 2004.

    ADS  Google Scholar 

  125. Yong-Goo Yoo, Mun-Cheol Paeka, Seong-Gi Min, and Seong-Cho Yu. Angular dependence of exchange coupling in NiFe/spacer/IrMn trilayer structures. J. Magn. Magn. Mater., 290-291:198, 2005.

    ADS  Google Scholar 

  126. R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge, and A. Reinders. Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown Ni80Fe20/Fe50Mn50 bilayers. J. Appl. Phys., 75:6659, 1994.

    ADS  Google Scholar 

  127. Ch. Binek, A. Hochstrat, and W. Kleemann. Exchange bias in a generalized meiklejohn-bean approach. J. Magn. Magn. Mater., 234:353, 2001.

    ADS  Google Scholar 

  128. T. Gredig, I. N. Krivorotov, and D. Dahlberg. Magnetization reversal in exchange biased Co/CoO probed with anisotropic magnetoresistance. J. Appl. Phys., 91(10):7760, 2002.

    ADS  Google Scholar 

  129. D. Lederman, C.A. Ramos, V. Jaccarino, and J.L. Cardy. Finite-size scaling in FeF2/ZnF2 superlattices. Phys. Rev. B., 48:8365, 1993.

    ADS  Google Scholar 

  130. Y. Tsuchiya, K. Kosuge, S. Yamaguchi, and N. Nakayama. Exchange anisotropy of CrN_x/FeN_y/CrN_x trilayer thin films prepared by reactive sputtering. Mater. Trans. JIM, 38:91, 1997.

    Google Scholar 

  131. M. Tsunoda, Y. Tsuchiya, M. Konoto, and M. Takahashi. Microstructure of antiferromagnetic layer affecting on magnetic exchange coupling in trilayered Ni-Fe/25 at % Ni-Mn/Ni-Fe films. J. Magn. Magn. Mater., 171:29, 1997.

    ADS  Google Scholar 

  132. Jing guo Hu, Guojun Jin, An Hu, and Yu qiang Ma. Temperature dependence of exchange bias and coercivity in ferromagnetic/antiferromagnetic bilayers. Eur. Phys. J. B, 40:265–271, 2004.

    ADS  Google Scholar 

  133. D. Paccard, C. Schlenker, O. Massenet, R. Montmory, and A. Yelon. A new property of ferromagnetic-antiferromagnetic coupling. Phys. Status Solidi, 16:301, 1966.

    Google Scholar 

  134. C. Schlenker and D. Paccard. Couplages ferromagnétiques-antiferro- magnétiques: étude des contractions de cycles d^′hystérésis a l^′aide d’un traceur de cycle trés basses fréquences. J. Phys., 28:611, 1967.

    Google Scholar 

  135. K. Zhang, T. Zhao, and F. Fujiwara. Training effect in ferro (f)/antiferromagnetic (af) exchange coupled systems: Dependence on af thickness. J. Appl. Phys., 91:6902, 2002.

    ADS  Google Scholar 

  136. K. Zhang, T. Zhao, and F. Fujiwara. Training effect of exchange biased iron-oxide/ferromagnet systems. J. Appl. Phys., 89:6910, 2001.

    ADS  Google Scholar 

  137. E. Fulcomer and S. H. Charap. Temperature and frequency dependence of exchange anisotropy effects in oxidized NiFe films. J. Appl. Phys., 43:4184, 1972.

    ADS  Google Scholar 

  138. A. Hochstrat, Ch. Binek, and W. Kleemann. Training of the exchange-bias effect in NiO/Fe heterostructures. Phys. Rev. B., 66:092409, 2002.

    ADS  Google Scholar 

  139. Christian Binek. Training of the exchange-bias effect: A simple analytic approach. Phys. Rev. B., 70:014421, 2004.

    Google Scholar 

  140. A. Hoffmann. Symmetry driven irreversibilities at ferromagnetic-antiferromagnetic interfaces. Phys. Rev. Lett., 93:097203, 2004.

    ADS  Google Scholar 

  141. J. McCord, R. Mattheis, and R. Schäfer. Kerr observations of asymmetric magnetization reversal processes in CoFe/IrMn bilayer systems. J. Appl. Phys., 93:5491, 2003.

    ADS  Google Scholar 

  142. K. Temst, E. Popova, H. Loosvelt, M. J. Van Bael, S. Brems, Y. Bruynseraede, C. Van Haesendonck, H. Fritzsche, M. Gierlings, L. H. A. Leunissen, and R. Jonckheere. The influence of finite size and shape anisotropy on exchange bias: A study of patterned Co/CoO nanostructures. J. Magn. Magn. Mater., 304:14–18, 2006.

    ADS  Google Scholar 

  143. T. Gredig, I. N. Krivorotov, and E. Dan Dahlberg. Temperature dependence of magnetization reversal and angular torque in Co/CoO. Phys. Rev. B., 74:094431, 2006.

    ADS  Google Scholar 

  144. F. Nolting, A. Scholl, J. Stöhr, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Lüning, E. E. Fullerton, M. F. Toney, M. R. Scheinfeink, and H. A. Padmore. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature, 405:767, 2000.

    ADS  Google Scholar 

  145. E. Fulcomer and S. H. Charap. Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic couplings. J. Appl. Phys., 43:4190, 1972.

    ADS  Google Scholar 

  146. Christian Binek, Xi He, and Srinivas Polisetty. Temperature dependence of the training effect in a Co/CoO exchange-bias layer. Phys. Rev. B., 72(5):054408, 2005.

    Google Scholar 

  147. S. Sahoo, S. Polisetty, Ch. Binek, and A. Berger. Dynamic enhancement of the exchange bias training effect. J. Appl. Phys., 101(5):053902, 2007.

    ADS  Google Scholar 

  148. Christian Binek. private communication.

    Google Scholar 

  149. G. Nowak. Diploma Thesis, Bochum, 2004.

    Google Scholar 

  150. M. R. Fitzsimmons, P. Yashar, C. Leighton, Ivan K. Schuller, J. Nogues, C. F. Majkrzak, and J. A. Dura. Asymmetric magnetization reversal in exchange-biased hysteresis loops. Phys. Rev. Lett., 84:3986, 2000.

    ADS  Google Scholar 

  151. J. McCord et al. unpublished.

    Google Scholar 

  152. O. Hellwig, S. Maat, J. B. Kortright, and Eric E. Fullerton. Magnetic reversal of perpendicularly-biased Co/Pt multilayers. Phys. Rev. B., 65(14):144418, 2002.

    ADS  Google Scholar 

  153. K. Temst, M.J. Van Bael, J. Swerts, H. Loosvelt, E. Popova, D. Buntinx, J. Bekaert, C. Van Haesendonck, Y. Bruynseraede, R. Jonckheere, and H. Fritzsche. Polarized neutron reflectometry on lithographically patterned thin film structures. Superlattices and Microstructures, 34:87, 2003.

    ADS  Google Scholar 

  154. E. Girgis, R. D. Portugal, M. J. Van Bael, K. Temst, and C. Van Haesendonck. Asymmetric magnetization reversal in exchange-biased NiFe/CoO submicron-sized structures. J. Appl. Phys., 97(10):103911, 2005.

    ADS  Google Scholar 

  155. M. Gierlings, M.J. Prandolini, H. Fritzsche, M. Gruyters, and D. Riegel. Change and asymmetry of magnetization reversal for a Co/CoO exchange-bias system. Phys. Rev. B., 74:092407, 2002.

    ADS  Google Scholar 

  156. W.-T. Lee, S. G. E. te Velthuis, G. P. Felcher, F. Klose, T. Gredig, and E. D. Dahlberg. Ferromagnetic domain distribution in thin films during magnetization reversal. Phys. Rev. B., 65:224417, 2002.

    ADS  Google Scholar 

  157. J. W. Freeland, V. Chakarian, Y. U. Idzerda, S. Doherty, J. G. Zhu, J.-H. Park, and C.-C. Kao. Identifying layer switching in magnetic multilayers with x-ray resonant magnetic scattering. Appl. Phys. Lett., 71(2):276–278, 1997.

    ADS  Google Scholar 

  158. J. Nogues, C. Leighton, and Ivan K. Schuller. Correlation between antiferromagnetic interface coupling and positive exchange bias. Phys. Rev. B., 61(2):1315–1317, 2000.

    ADS  Google Scholar 

  159. Z. Y. Liu. Exchange bias and vertical loop shifts in a Co(32 Å) /NiO(10 Å)/[Co(4 Å)/Pt(6 Å)]_4 multilayer. Appl. Phys. Lett., 85(21):4971–4973, 2004.

    ADS  Google Scholar 

  160. Oscar Iglesias, Amilcar Labarta, and Xavier Batlle. Exhange bias phenomenolgy and models of core/shell naopartiles. arXiv:cond-mat/0607716, 2006.

    Google Scholar 

  161. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M.D. Barób. Exchange bias in nanostructures. Physics Reports, 422(3):65, 2005.

    ADS  Google Scholar 

  162. A. Mumtaz, K. Maaz, B. Janjua, S. K. Hasanain, and Massimo F. Bertino. Exchange bias and vertical shift in CoFe2O4 nanoparticles. J. Magn. Magn. Mater., 313:266–272, 2007.

    ADS  Google Scholar 

  163. J. Nogues, D. Lederman, T. J. Moran, and Ivan K. Schuller. Positive exchange bias in FeF_2-Fe bilayers. Phys. Rev. Lett., 76:4624, 1996.

    ADS  Google Scholar 

  164. J. Stöhr. Nexafs spectroscopy, volume 25 of Springer Series in Surface Sciences. Springer, Heidelberg, 1992.

    Google Scholar 

  165. Christian Binek. Ising-type antiferromagnets. Springer Tracts in Modern Physics, 196, 2003.

    Google Scholar 

  166. Steven Brems, Dieter Buntinx, Kristiaan Temst, Chris Van Haesendonck, Florin Radu, and Hartmut Zabel. unpublished, 2005.

    Google Scholar 

  167. P. Nordblad, J. Mattsson, and W. Kleemann. Low field excess magnetisation in Fe0.7Mg0.3Cl_2. J. Magn. Magn. Mater., 140-144:1553–1554, 1995.

    Google Scholar 

  168. L. Néel. in: C. Dewitt, B. Dreyfus, P.D. de Gennes (Eds.), Low Temperature Physics. Gordon and Beach, New York, 1962.

    Google Scholar 

  169. R. H. Kodama. Magnetic nanoparticles. J. Magn. Magn. Mater., 200:359, 1999.

    ADS  Google Scholar 

  170. E.C. Passamani, C. Larica, C. Marques, A.Y. Takeuchi, J.R. Proveti, and E. Favre-Nicolin. Large vertical loop shifts in mechanically synthesized (Mn,Fe)_2O3-t nanograins. J. Magn. Magn. Mater., 314:21–20, 2007.

    ADS  Google Scholar 

  171. N. S. Gajbhiye and Sayan Bhattacharyya. Exchange bias and spin-glass-like ordering in ε-Fe_3N-CrN nanocomposites. Japanese Journal of Applied Physics, 46(3A):980–987, 2007.

    ADS  Google Scholar 

  172. M. Fraune, U. Rüdiger, G. Güntherodt, S. Cardoso, and P. Freitas. Size dependence of the exchange bias field in NiO/Ni nanostructures. Appl. Phys. Lett., 77:3815–3817, 2000.

    ADS  Google Scholar 

  173. J. Yu, A. D. Kent, and S. S. P. Parkin. Exchange biasing in polycrystalline thin film microstructures. J. Appl. Phys., 87:5049, 2000.

    ADS  Google Scholar 

  174. K. Liu, S. M. Baker, M. Tuominen, T. P. Russell, and I. K. Schuller. Tailoring exchange bias with magnetic nanostructures. Phys. Rev. B., 63:060403, 2001.

    ADS  Google Scholar 

  175. Y. Shen, Y. Wu, H. Xie, K. Li, J. Qiu, , and Z. Guo. Exchange bias of patterned NiFe/IrMn film. J. Appl. Phys., 91:8001, 2002.

    ADS  Google Scholar 

  176. Z. B. Guo, K. B. Li, G. C. Han, Z. Y. Liu, P. Luo, and Y. H. Wu. Exchange bias in patterned FeMn/NiFe bilayers. J. Magn. Magn. Mater., 251:323, 2002.

    ADS  Google Scholar 

  177. V. Baltz, J. Sort, B. Rodmacq, B. Dieny, and S. Landis. Size effects on exchange bias in sub 100 nm ferromagnetic antiferromagnetic dots deposited on prepatterned substrates. Appl. Phys. Lett., 84:4923, 2004.

    ADS  Google Scholar 

  178. Johannes Eisenmenger, Zhi-Pan Li, Waldemar A. A. Macedo, and Ivan K. Schuller. Exchange bias and asymmetric reversal in nanostructured dot arrays. Phys. Rev. Lett., 94(5):057203, 2005.

    Google Scholar 

  179. E. Girgis, R. D. Portugal, H. Loosvelt, M. J. Van Bael, I. Gordon, M. Malfait, K. Temst, C. Van Haesendonck, L. H. A. Leunissen, and R. Jonckheere. Enhanced asymmetric magnetization reversal in nanoscale Co/CoO arrays: Competition between exchange bias and magnetostatic coupling. Phys. Rev. Lett., 91:187202, 2003.

    ADS  Google Scholar 

  180. A. Hoffman, M. Grimsditch, J. E. Pearson, J. Nogues, W. A. A. Macedo, and I. K. Schuller. Tailoring the exchange bias via shape anisotropy in ferromagnetic/antiferromagnetic exchange-coupled systems. Phys. Rev. B.,67:220406, 2003.

    ADS  Google Scholar 

  181. A. Paul, E. Kentzinger, U. Rücker, D. E. Bürgler, and P. Gürnberg. Sequence, symmetry, and magnetic fluctuations of the magnetization reversal in exchange-biased multilayers. Phys. Rev. B., 70:224410, 2004.

    ADS  Google Scholar 

  182. A. Scholl, F. Nolting, J. W. Seo, H. Ohldag, J. Stöhr, S. Raoux, J.-P. Locquet, and J. Fompeyrine. Domain-size-dependent exchange bias in Co/LaFeO_3. Appl. Phys. Lett., 85:174428, 2004.

    Google Scholar 

  183. K. Temst, E. Girgis, R. D. Portugal, H. Loosvelt, E. Popova, M.J. Van Bael, C. Van Haesendonck, H. Fritzsche, M. Gierlings, L. H.A. Leunissen, and R. Jonckheere. Magnetization and polarized neutron reflectivity experiments on patterned exchange bias structures. Eur. Phys. J. B, 45:261–266, 2005.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radu, F., Zabel, H. (2008). Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures. In: Zabel, H., Bader, S.D. (eds) Magnetic Heterostructures. Springer Tracts in Modern Physics, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73462-8_3

Download citation

Publish with us

Policies and ethics