Skip to main content

Phylogenetics of Scorpions of Medical Importance

Venom Genomics and Proteomics

Abstract

This chapter assesses the phylogenetic relationships between scorpions and sodium channel-active scorpion toxins (NaScTx) of medical significance, almost entirely contained within the family Buthidae, with the exception of Hemiscorpius lepturus (Hemiscorpiidae). Within Buthidae, venom capable of severe and lethal scorpionism appears to have evolved multiple times among and within major morphological groups. Published mitochondrial sequence data from two markers (COI & 16S) were used to construct a partial maximum likelihood phylogeny for Buthidae. The resulting topology is largely congruent with results from comparative analysis of morphological data. Old-world and new-world buthids appear to be split, suggesting that some of the higher-level patterns in Buthidae can be explained by the breakup of Pangea. Provided that the venom composition should be more similar among closely related than distant species, the phylogeny can be used to predict which of the less dangerous species could also produce potent venoms. Clinical, phylogenetic, and toxinological evidence were also used to interpret the evolution and biogeography of these medically significant venomous taxa and the evolution of their toxic molecules. The existence of species-specific NaScTx repertoires in scorpions is probably the consequence of coevolution and arms races at the molecular and biochemical levels to overcome the ever-evolving structure of receptor sites (including sodium channels) in their predators and preys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas N, Rosso J, Céard B, et al. Characterization of three “Birtoxin-like” toxins from the Androctonus amoreuxi scorpion venom. Peptides. 2011;32:911–9.

    Article  CAS  PubMed  Google Scholar 

  • Amitai Y. Scorpions. In: Brent J, Wallace KL, Burkhart KK, Phillips SD, Donovan JW, editors. Critical care toxicology: diagnosis and management of the critically poisoned patient. Maryland Heights: Elsevier Mosby; 2005. p. 1213–20.

    Google Scholar 

  • Ben Khalifa R, Stankiewicz M, Pelhate M, et al. Action of babycurus-toxin 1 from the east African scorpion Babycurus centrurimorphus on the isolated cockroach giant axon. Toxicon. 1997;35:1069–80.

    Article  CAS  PubMed  Google Scholar 

  • Bergeron ZL, Bingham J. Scorpion toxins specific for potassium (K+) channels: a historical overview of peptide bioengineering. Toxins (Basel). 2012;4:1082–119.

    Article  CAS  Google Scholar 

  • Bergman NJ. Clinical description of Parabuthus transvaalicus scorpionism in Zimbabwe. Toxicon. 1997;35:759–71.

    Article  CAS  PubMed  Google Scholar 

  • Borchani L, Sassi A, Shahbazzadeh D, et al. Heminecrolysin, the first hemolytic dermonecrotic toxin purified from scorpion venom. Toxicon. 2011;58:130–9.

    Article  CAS  PubMed  Google Scholar 

  • Borchani L, Sassi A, Ben Gharsa H, et al. The pathological effects of Heminecrolysin, a dermonecrotic toxin from Hemiscorpius lepturus scorpion venom are mediated through its lysophospholipase D activity. Toxicon. 2013;68:30–9.

    Article  CAS  PubMed  Google Scholar 

  • Borges A. Scorpionism and dangerous scorpions in Central America and the Caribbean area. In: Rodriguez de la Vega R, Schwartz EF, Possani LD, editors. Handbook of toxinology: scorpion venoms. Berlin: Springer; 2014.

    Google Scholar 

  • Borges A, De Sousa L. Escorpionismo en Venezuela: Una aproximación molecular, inmunológica y epidemiológica para su estudio. Rev Fac Farm (Caracas). 2006;69:15–27.

    Google Scholar 

  • Borges A, Alfonzo MJ, García CC, Winand NJ, Leipold E, Heinemann SH. Isolation, molecular cloning and functional characterization of a novel beta-toxin from the Venezuelan scorpion, Tityus zulianus. Toxicon. 2004;43:671–84.

    Article  CAS  PubMed  Google Scholar 

  • Borges A, Bermingham E, Herrera N, Alfonzo MJ, Sanjur OI. Molecular systematics of the neotropical scorpion genus Tityus (Buthidae): the historical biogeography and venom antigenic diversity of toxic Venezuelan species. Toxicon. 2010a;55:436–54.

    Article  CAS  PubMed  Google Scholar 

  • Borges A, Rojas-Runjaic FJM, Diez N, Faks JG, Op den Camp HJM, De Sousa L. Envenomation by the scorpion Tityus breweri in the Guayana Shield, Venezuela: report of a case, efficacy and reactivity of antivenom, and proposal for a toxinological partitioning of the Venezuelan scorpion fauna. Wilderness Environ Med. 2010b;21:282–90.

    Article  PubMed  Google Scholar 

  • Borges A, Miranda RJ, Pascale JM. Scorpionism in Central America, with special reference to the case of Panama. J Venom Anim Toxins Incl Trop Dis. 2012;18:130–43.

    Article  Google Scholar 

  • Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2012;28:219–29.

    Article  PubMed  Google Scholar 

  • Chávez-Haro AL, Ortiz E. Scorpionism and dangerous species around the world: Mexico. In: Schwartz EF, Rodríguez de la Vega RC, Possani LD, editors. Handbook of toxinology – scorpion venoms. Berlin: Springer; 2014.

    Google Scholar 

  • Chippaux JP, Goyffon M. Epidemiology of scorpionism: a global appraisal. Acta Trop. 2008;107:71–9.

    Article  PubMed  Google Scholar 

  • Coronas F, Diego-García E, Restano-Cassulini R, de Roodt AR, Possani LD. Biochemical and physiological characterization of a new Na+−channel specific peptide from the venom of the Argentinean scorpion Tityus trivittatus. Peptides. 2014. doi:10.1016/j.peptides.2014.05.002.

    Google Scholar 

  • de Roodt AR. Comments on environmental and sanitary aspects of the scorpionism by Tityus trivittatus in Buenos Aires City, Argentina. Toxins. 2014;6:1434–52.

    Article  PubMed Central  PubMed  Google Scholar 

  • de Roodt A, Lago N, Salomón O, et al. A new venomous scorpion responsible for severe envenomation in Argentina: Tityus confluens. Toxicon. 2009;53:1–8.

    Article  PubMed  Google Scholar 

  • De Sousa L, Boadas J, Kiriakos D, et al. Scorpionism due to Tityus neoespartanus (Scorpiones, Buthidae) in Margarita Island, northeastern Venezuela. Rev Soc Bras Med Trop. 2007;40:681–5.

    Article  PubMed  Google Scholar 

  • Dong K, Du Y, Rinkevich F, et al. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol. 2014;50:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Dyason K, Brandt W, Prendini L, et al. Determination of species-specific components in the venom of Parabuthus scorpions from southern Africa using matrix-assisted desorption time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2002;16:768–73.

    Article  CAS  PubMed  Google Scholar 

  • Fet V, Soleglad ME. High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius. 2003;11:1–175.

    Google Scholar 

  • Fet V, Soleglad M, Lowe G. A new trichobothrial character for the high-level systematics of Buthoidea (Scorpiones: Buthida). Euscorpius. 2005;23:1–40.

    Google Scholar 

  • Gilles N, Chen H, Wilson H, et al. Scorpion alpha and alpha-like toxins differentially interact with sodium channels in mammalian CNS and periphery. Eur J Neurosci. 2000;12:2823–32.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Ilan N, Zilberberg N, et al. An ‘Old World’ scorpion β-toxin that recognizes both insect and mammalian sodium channels: a possible link towards diversification of β-toxins. Eur J Biochem. 2003;270:2663–70.

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Vargas JA, Mourao CBF, Quintero-Hernández V, Possani LD, Schwartz EF. Identification and phylogenetic analysis of Tityus pachyurus and Tityus obscurus novel putative Na+ channel scorpion toxins. PLoS One. 2012;7:e30478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevitz M, Gordon D, Barzilai MG et al. Molecular Description of Scorpion Toxin Interaction with Voltage-Gated sodium Channels. In: Gopalakrishnakone P, Ferroni Schwartz E, Possani LD, Rodriguez de la Vega RV, editors. Handnook of Toxinology – Scorpion Venoms. Berlin: Springer; 2014.

    Google Scholar 

  • He Y, Zhao R, Di Z, et al. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J Proteomics. 2013;89:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Inceoglu B, Lango J, Wu J, Hawkins P, Southern J, Hammock BD. Isolation and characterization of a novel type of neurotoxic peptide from the venom of the South African scorpion Parabuthus transvaalicus (Buthidae). Eur J Biochem. 2001;268:5407–13.

    Article  CAS  PubMed  Google Scholar 

  • Jalali A, Pipelzadeh MH, Sayedian R, Rowan EG. A review of epidemiological, clinical and in vitro physiological studies of envenomation by the scorpion Hemiscorpius lepturus (Hemiscorpiidae) in Iran. Toxicon. 2010;55:173–9.

    Article  CAS  PubMed  Google Scholar 

  • Kamenz C, Prendini L. An atlas of book lung ultrastructure in the order Scorpiones (Arachnida). Bull Am Mus Nat Hist. 2008;316:1–259.

    Article  Google Scholar 

  • Leipold E, Hansel A, Borges A, Heinemann SH. Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol Pharmacol. 2006;70:340–7.

    CAS  PubMed  Google Scholar 

  • Leipold E, De Bie H, Zorn S, et al. μO-conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2. Channels. 2007;1:e1–9.

    Article  Google Scholar 

  • Loret E, Hammock B. Structure and neurotoxicity of venoms. In: Brownell P, Polis G, editors. Scorpion biology and research. Oxford: Oxford University Press; 2001. p. 204–20.

    Google Scholar 

  • Lourenço WR. The biogeography of scorpions. Revue Suisse de Zoologie. 1996;hors. série:437–48.

    Google Scholar 

  • Lourenço WR. Additions á la faune de scorpions néotropicaux (Arachnida). Rev Suisse Zool. 1997;104:587–604.

    Google Scholar 

  • Lourenço WR. Synopsis of the Colombian species of Tityus Koch (Chelicerata, Scorpiones, Buthidae), with descriptions of three new species. J Nat Hist. 2000;34:449–61.

    Article  Google Scholar 

  • Ma Y, He Y, Zhao R, Wu Y, Li W, Cao Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics. 2012;75:1563–76.

    Article  CAS  PubMed  Google Scholar 

  • Monod L, Lourenço WR. Hemiscorpiidae (Scorpiones) from Iran, with descriptions of two new species and notes on biogeography and phylogenetic relationships. Rev Suisse Zool. 2005;112:869–941.

    Google Scholar 

  • Müller G, Modler H, Wium C, Veale D, van Zyl J. Parabuthus granulatus identified as the most venomous scorpion in South Africa: motivation for the development of a new antivenom. Clin Toxicol. 2011;49:226.

    Google Scholar 

  • Murgia AR, Batista CV, Prestipino G, Possani LD. Amino acid sequence and function of a new alpha-toxin from the Amazonian scorpion Tityus cambridgei. Toxicon. 2004;43:737–40.

    Article  CAS  PubMed  Google Scholar 

  • Nenilin AB, Fet V. Zoogeographical analysis of the world scorpion fauna (Arachnida, Scorpiones). Arthropoda Selecta. 1992;1:3–31.

    Google Scholar 

  • Olivera BM. Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem. 2006;281:31173–7.

    Article  CAS  PubMed  Google Scholar 

  • Otero R, Navío E, Céspedes FA, et al. Scorpion envenoming in two regions of Colombia: clinical, epidemiological and therapeutic aspects. Trans R Soc Trop Med Hyg. 2004;98:742–50.

    Article  CAS  PubMed  Google Scholar 

  • Pardal PP, Ishikawa EA, Vieira JL, et al. Clinical aspects of envenomation caused by Tityus obscurus (Gervais, 1843) in two distinct regions of Para state, Brazilian Amazon basin: a prospective case series. J Venom Anim Toxins Incl Trop Dis. 2014;20:3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Peigneur S, Sevcik C, Tytgat J, Castillo C, D’Suze G. Subtype specificity interaction of bactridines with mammalian, insect and bacterial sodium channels under voltage clamp conditions. FEBS J. 2012;279:4025–38.

    Article  CAS  PubMed  Google Scholar 

  • Prendini L, Wheeler WC. Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing. Cladistics. 2005;21:446–94.

    Article  Google Scholar 

  • Prendini L, Volschenk ES, Maaliki S, Gromov AV. A living fossil from central Asia: The morphology of Pseudochactas Ovchinnikovi Gromov, 1998 (Scorpiones: Pseudochactidae), with comments on its phylogenetic position. Zool Anz. 2006;245:211–248

    Google Scholar 

  • Pucca MB, Neves Oliveira F, Schwartz EF, Arantes EC, Lira-da-Silva RM. Scorpionism and dangerous species of Brazil. In: Gopalakrishnakone P, Ferroni Schwartz E, Possani LD, Rodriguez de la Vega RV, editors. Handbook of Toxinology – Scorpion Venoms. Berlin: Springer; 2014.

    Google Scholar 

  • Rodríguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon. 2005;46:831–44.

    Article  PubMed  Google Scholar 

  • Rodríguez de la Vega RC, Vidal N, Possani LD. Scorpion peptides. In: Abba K, editor. Handbook of biologically active peptides. 2nd ed. Boston: Academic; 2013. p. 423–9.

    Chapter  Google Scholar 

  • Rowe AH, Xiao Y, Rowe MP, Cummins TR, Zakon HH. Voltage-gated sodium channel in grasshopper mice defends against bark scorpion toxin. Science. 2013;342:441–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiming Z, Yibao M, Yawen H, et al. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components. BMC Genomics. 2010;11:452.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma PP, Wheeler WC. Cross-bracing uncalibrated nodes in molecular dating improves congruence of fossil and molecular age estimates. Front Zool. 2014;11:57.

    Article  Google Scholar 

  • Skolnik AB, Ewald MB. Pediatric scorpion envenomation in the United States: morbidity, mortality, and therapeutic innovations. Pediatr Emerg Care. 2013;29:98–103.

    Article  PubMed  Google Scholar 

  • Soleglad ME, Fet V. High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius. 2003;11:1–175.

    Google Scholar 

  • Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.

    Article  CAS  PubMed  Google Scholar 

  • Strong PN, Mukherje S, Shah N, Chowdhary A, Jeyaseelan K. The Indian red scorpion. In: Schwartz EF, Rodríguez de la Vega RC, Possani LD, editors. Handbook of toxinology – scorpion venom. Berlin: Springer; 2014.

    Google Scholar 

  • Sunagar K, Undheim E, Chan A, et al. Evolution stings: the origin and diversification of scorpion toxin peptide scaffolds. Toxins (Basel). 2013;5:2456–87.

    Article  CAS  Google Scholar 

  • Valdez-Cruz NA, Batista CVF, Zamudio FZ, Bosmans F, Tytgat J, Possani LD. Phaiodotoxin, a novel structural class of insect-toxin isolated from the venom of the Mexican scorpion Anuroctonus phaiodactylus. Eur J Biochem. 2004;271:4753–61.

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos F, Lanchote VL, Bendhack LM, Giglio JR, Sampaio SV, Arantes EC. Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp Biochem Physiol C. 2005;141:85–92.

    Article  Google Scholar 

  • Volschenk ES, Mattoni CI, Prendini L. Comparative anatomy of the mesosomal organs of scorpions (Chelicerata, Scorpiones), with implications for the phylogeny of the order. Zool J Linn Soc. 2008;154:651–75.

    Article  Google Scholar 

  • Zhu S, Gao B. Molecular characterization of a new scorpion venom lipolysis activating peptide: evidence for disulfide bridge-mediated functional switch of peptides. FEBS Lett. 2006a;580:6825–36.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Gao B. Molecular characterization of a possible progenitor sodium channel toxin from the Old World scorpion Mesobuthus martensii. FEBS Lett. 2006b;580:5979–87.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Bosmans F, Tytgat J. Adaptive evolution of scorpion sodium channel toxins. J Mol Evol. 2004;8:145–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adolfo Borges or Matthew R. Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Borges, A., Graham, M.R. (2014). Phylogenetics of Scorpions of Medical Importance. In: Gopalakrishnakone, P., Calvete, J. (eds) Venom Genomics and Proteomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6649-5_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6649-5_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6649-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Phylogenetics of Scorpions of Medical Importance
    Published:
    24 December 2014

    DOI: https://doi.org/10.1007/978-94-007-6649-5_36-2

  2. Original

    Phylogenetics of Scorpions of Medical Importance
    Published:
    20 November 2014

    DOI: https://doi.org/10.1007/978-94-007-6649-5_36-1