Skip to main content

Ultra-precision Surfaces and Structures with Nanometer Accuracy by Ion Beam and Plasma Jet Technologies

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 411 Accesses

Synonyms

Chemical-assisted ion beam etching – CAIBE; Chemical vapor machining – CVM; Ion beam etching – IBE; Ion beam figuring – IBF; Ion beam smoothing – IBS; Plasma-assisted chemical etching – PACE; Plasma jet machining – PJM; Rapid atomic processing – RAP; Reactive ion beam etching – RIBE; Surface figuring; Surface patterning; Ultra-precision finishing; Ultra-precision machining

Definition

Ultra-precision surfaces and structures with nanometer accuracy comprise surface shapes and/or surface structures with the highest achievable processing accuracy of nanometer or even picometer rms range. Root mean square (rms) is a value calculated from differences of the surface measuring data and the desired (designed) surface shape data. Its value is a measure of how far on average the error is from zero. The ultimate accuracy of surface shapes and structures is a prerequisite for their physical functioning in many of today’s fields of science, technology, and products like electronics,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Taniguchi, N.: On the basic concept of 'nano-technology. Proceedings of the International Conference on Production Engineering, p. 18. Japan Society of Precision Engineering, Tokyo, Part II (1974)

    Google Scholar 

  2. Taniguchi, N. (ed.): Nanotechnology: Integrated Processing Systems for Ultra-Precision and Ultra-Fine Products. Oxford University Press, Oxford (1996)

    Google Scholar 

  3. Stowers, I. F., Komanduri, R., Baird, E. D.: Review of precision surface generating processes and their potential application to the fabrication of large optical components, Proc. SPIE 0966, Advances in Fabrication and Metrology for Optics and Large Optics, 62 (1989); doi:10.1117/12.948050; http://dx.doi.org/10.1117/12.948050

  4. Jacobs, S.D.: International innovations in optical finishing. Proc. SPIE 5533, 264 (2004)

    Article  Google Scholar 

  5. Allen, D.M., Shore, P., Evans, R.W., Fanara, C., O’Brien, W., Marson, S., O’Neill, W.: Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann. Manuf. Technol. 58(2), 647–662 (2009). doi:10.1016/j.cirp.2009.09.007

    Article  Google Scholar 

  6. Brinksmeier, E.: Ultraprecision machining. In: Laperrière, L.., Reinhart, G. (eds.) CIRP Encyclopedia of Production Engineering: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)

  7. Shore, P., Morantz, P.: Ultra-precision: enabling our future. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1973), 3993–4014 (2012). doi:10.1098/rsta.2011.0638

    Article  Google Scholar 

  8. Fang, F., Xu, Z.: State-of-the-Art for nanomanufacturing using ion beam technology. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)

  9. Li, W., Gu, C.: Ion beam instruments used for nanomanufacturing. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)

  10. Xu, Z., Fang, F., Zeng, G.: Focused ion beam nanofabrication technology. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)

  11. Taylor, John S., Sommargren, Gary E., Sweeney, Donald W., Hudyma, Russell M.: Fabrication and testing of optics for EUV projection lithography, Proc. SPIE 3331, Emerging Lithographic Technologies II, 580 (1998); doi:10.1117/12.309619; http://dx.doi.org/10.1117/12.309619

  12. Dinger, U., Seitz, G., Schulte, S., Eisert, F., Muenster, Ch., Burkart, S.S. et al.: Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography. In: Ali, M., Khounsary, A.M., Dinger, U., Ota, K. (eds.) Proceedings of SPIE 5193, Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications, pp. 18–28. (2004). doi:10.1117/12.511489

    Google Scholar 

  13. Hansen, H.N., Carneiro, K., Haitjema, H., De Chiffre, L.: Dimensional micro and nano metrology. CIRP Ann. Manuf. Technol. 55(2), 721–743 (2006). doi:10.1016/j.cirp.2006.10.005

    Article  Google Scholar 

  14. Leach, R. (ed.): Optical Measurement of Surface Topography. Springer, Berlin/Heidelberg. (2011). doi:10.1007/978-3-642-12012-1

    Google Scholar 

  15. Xu, C., Aissaoui, I., Jacquey, S.: Algebraic analysis of the Van Cittert iterative method of deconvolution with a general relaxation factor. J. Opt. Soc. Am. A 11(11), 2804 (1994). doi:10.1364/JOSAA.11.002804. https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution; https://en.wikipedia.org/wiki/Wiener_deconvolution

  16. Xie, X., Li, S.: Ion beam figuring technology. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)

  17. Baglin, J.E.E.: Ion beam nanoscale fabrication and lithography – a review. Appl. Surf. Sci. 258(9), 4103–4111 (2012). doi:10.1016/j.apsusc.2011.11.074

    Article  Google Scholar 

  18. Johnson, L.F., Ingersoll, K.A.: Appl. Opt. 22, 1165 (1983). doi:10.1364/AO.22.001165

    Google Scholar 

  19. Frost, F., Ziberi, B., Schindler, A., Bigl, F.: Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 91: Mater. Sci. Process. 551(2008). doi:10.1007/s00339-008-4516-0

    Google Scholar 

  20. Arnold, T., Boehm, G., Fechner, R., Meister, J., Nickel, A., Frost, F., Haensel, T., Schindler, A.: Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook. Nucl. Inst. Methods Phys. Res. Sect. A 616(2–3), 147–156 (2010). doi:10.1016/j.nima.2009.11.013

    Article  Google Scholar 

  21. Frost, F., Fechner, R., Ziberi, B., Voellner, J., Flamm, D., Schindle, A.: Large area smoothing of surfaces by ion bombardment: fundamentals and applications. J. Phys. Condens. Matter 21(22) (2009). doi:10.1088/0953-8984/21/22/224026

    Google Scholar 

  22. Yamada, I.: Historical milestones and future prospects of cluster ion beam technology. Appl. Surf. Sci. 310, 77–88 (2014). doi:10.1016/j.apsusc.2014.03.147

    Article  Google Scholar 

  23. Laermer, F., Franssila, S., Sainiemi, L., Kolari, K.: Deep reactive Ion etching. In: Handbook of Silicon Based MEMS Materials and Technologies, pp. 349–374. Elsevier (2010). http://linkinghub.elsevier.com/retrieve/pii/B9780815515944000231

  24. Vawter, G.A.: Ion beam etching of compound semiconductors. In: Shul, R.J., Pearton, S.J. (eds.) Handbook of Advanced Plasma Processing Techniques, p. 507 ff. Springer Science & Business Media (2000)

    Google Scholar 

  25. Bollinger, L.D., Zarowin, Ch.B.: Rapid, nonmechanical, damage-free figuring of optical surfaces using plasma-assisted chemical etching (PACE): part I experimental results. In: Arnold, J.B., Parks, R.E. (eds.)Proceedings of SPIE, Advances in Fabrication and Metrology for Optics and Large Optics, vol. 966, pp. 82–90. (1989). doi:10.1117/12.948052

    Google Scholar 

  26. Arnold, T., Böhm, G., Paetzelt, H.: Ultra-precision surface machining with reactive plasma jets. Contrib. Plasma Phys. 54(2), 145–154 (2014). doi:10.1002/ctpp.201310058

    Article  Google Scholar 

  27. Meister, J., Arnold, T.: New process simulation procedure for high-rate plasma jet machining. Plasma Chem. Plasma Process 31, 91–107 (2011)

    Article  Google Scholar 

  28. Arnold, Th., Böhm, G., Paetzelt, H.: Plasma jet polishing of rough fused silica surfaces. In: Conference Proceedings of the 13th International Conference of the EUSPEN V2, pp. 19–22 (2013)

    Google Scholar 

  29. Liao, W., Dai, Y., Xie, X., Zhou, L.: Combined figuring technology for high-precision optical surfaces using a deterministic ion beam material adding and removal method. Opt. Eng. 52(1), 010503 (2013). doi:10.1117/1.OE.52.1.010503

    Google Scholar 

  30. Yamamura, K., Sano, Y.: Plasma-based nanomanufacturing under atmospheric pressure. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Arnold, T., Franz, T., Frost, F., Schindler, A. (2015). Ultra-precision Surfaces and Structures with Nanometer Accuracy by Ion Beam and Plasma Jet Technologies. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100926-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100926-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics