Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Ultra-precision Surfaces and Structures with Nanometer Accuracy by Ion Beam and Plasma Jet Technologies

  • Thomas Arnold
  • Thomas Franz
  • Frank Frost
  • Axel Schindler
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100926-1

Synonyms

Definition

Ultra-precision surfaces and structures with nanometer accuracy comprise surface shapes and/or surface structures with the highest achievable processing accuracy of nanometer or even picometer rms range. Root mean square (rms) is a value calculated from differences of the surface measuring data and the desired (designed) surface shape data. Its value is a measure of how far on average the error is from zero. The ultimate accuracy of surface shapes and structures is a prerequisite for their physical functioning in many of today’s fields of science, technology, and products like electronics,...

Keywords

Sacrificial Layer Spatial Wavelength Removal Function Ultraprecision Machine Full Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. 1.
    Taniguchi, N.: On the basic concept of 'nano-technology. Proceedings of the International Conference on Production Engineering, p. 18. Japan Society of Precision Engineering, Tokyo, Part II (1974)Google Scholar
  2. 2.
    Taniguchi, N. (ed.): Nanotechnology: Integrated Processing Systems for Ultra-Precision and Ultra-Fine Products. Oxford University Press, Oxford (1996)Google Scholar
  3. 3.
    Stowers, I. F., Komanduri, R., Baird, E. D.: Review of precision surface generating processes and their potential application to the fabrication of large optical components, Proc. SPIE 0966, Advances in Fabrication and Metrology for Optics and Large Optics, 62 (1989); doi:10.1117/12.948050; http://dx.doi.org/10.1117/12.948050
  4. 4.
    Jacobs, S.D.: International innovations in optical finishing. Proc. SPIE 5533, 264 (2004)CrossRefGoogle Scholar
  5. 5.
    Allen, D.M., Shore, P., Evans, R.W., Fanara, C., O’Brien, W., Marson, S., O’Neill, W.: Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann. Manuf. Technol. 58(2), 647–662 (2009). doi:10.1016/j.cirp.2009.09.007CrossRefGoogle Scholar
  6. 6.
    Brinksmeier, E.: Ultraprecision machining. In: Laperrière, L.., Reinhart, G. (eds.) CIRP Encyclopedia of Production Engineering: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)
  7. 7.
    Shore, P., Morantz, P.: Ultra-precision: enabling our future. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1973), 3993–4014 (2012). doi:10.1098/rsta.2011.0638CrossRefGoogle Scholar
  8. 8.
    Fang, F., Xu, Z.: State-of-the-Art for nanomanufacturing using ion beam technology. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)
  9. 9.
    Li, W., Gu, C.: Ion beam instruments used for nanomanufacturing. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)
  10. 10.
    Xu, Z., Fang, F., Zeng, G.: Focused ion beam nanofabrication technology. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)
  11. 11.
    Taylor, John S., Sommargren, Gary E., Sweeney, Donald W., Hudyma, Russell M.: Fabrication and testing of optics for EUV projection lithography, Proc. SPIE 3331, Emerging Lithographic Technologies II, 580 (1998); doi:10.1117/12.309619; http://dx.doi.org/10.1117/12.309619
  12. 12.
    Dinger, U., Seitz, G., Schulte, S., Eisert, F., Muenster, Ch., Burkart, S.S. et al.: Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography. In: Ali, M., Khounsary, A.M., Dinger, U., Ota, K. (eds.) Proceedings of SPIE 5193, Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications, pp. 18–28. (2004). doi:10.1117/12.511489Google Scholar
  13. 13.
    Hansen, H.N., Carneiro, K., Haitjema, H., De Chiffre, L.: Dimensional micro and nano metrology. CIRP Ann. Manuf. Technol. 55(2), 721–743 (2006). doi:10.1016/j.cirp.2006.10.005CrossRefGoogle Scholar
  14. 14.
    Leach, R. (ed.): Optical Measurement of Surface Topography. Springer, Berlin/Heidelberg. (2011). doi:10.1007/978-3-642-12012-1Google Scholar
  15. 15.
    Xu, C., Aissaoui, I., Jacquey, S.: Algebraic analysis of the Van Cittert iterative method of deconvolution with a general relaxation factor. J. Opt. Soc. Am. A 11(11), 2804 (1994). doi:10.1364/JOSAA.11.002804. https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution; https://en.wikipedia.org/wiki/Wiener_deconvolution
  16. 16.
    Xie, X., Li, S.: Ion beam figuring technology. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)
  17. 17.
    Baglin, J.E.E.: Ion beam nanoscale fabrication and lithography – a review. Appl. Surf. Sci. 258(9), 4103–4111 (2012). doi:10.1016/j.apsusc.2011.11.074CrossRefGoogle Scholar
  18. 18.
    Johnson, L.F., Ingersoll, K.A.: Appl. Opt. 22, 1165 (1983). doi:10.1364/AO.22.001165Google Scholar
  19. 19.
    Frost, F., Ziberi, B., Schindler, A., Bigl, F.: Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 91: Mater. Sci. Process. 551(2008). doi:10.1007/s00339-008-4516-0Google Scholar
  20. 20.
    Arnold, T., Boehm, G., Fechner, R., Meister, J., Nickel, A., Frost, F., Haensel, T., Schindler, A.: Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook. Nucl. Inst. Methods Phys. Res. Sect. A 616(2–3), 147–156 (2010). doi:10.1016/j.nima.2009.11.013CrossRefGoogle Scholar
  21. 21.
    Frost, F., Fechner, R., Ziberi, B., Voellner, J., Flamm, D., Schindle, A.: Large area smoothing of surfaces by ion bombardment: fundamentals and applications. J. Phys. Condens. Matter 21(22) (2009). doi:10.1088/0953-8984/21/22/224026Google Scholar
  22. 22.
    Yamada, I.: Historical milestones and future prospects of cluster ion beam technology. Appl. Surf. Sci. 310, 77–88 (2014). doi:10.1016/j.apsusc.2014.03.147CrossRefGoogle Scholar
  23. 23.
    Laermer, F., Franssila, S., Sainiemi, L., Kolari, K.: Deep reactive Ion etching. In: Handbook of Silicon Based MEMS Materials and Technologies, pp. 349–374. Elsevier (2010). http://linkinghub.elsevier.com/retrieve/pii/B9780815515944000231
  24. 24.
    Vawter, G.A.: Ion beam etching of compound semiconductors. In: Shul, R.J., Pearton, S.J. (eds.) Handbook of Advanced Plasma Processing Techniques, p. 507 ff. Springer Science & Business Media (2000)Google Scholar
  25. 25.
    Bollinger, L.D., Zarowin, Ch.B.: Rapid, nonmechanical, damage-free figuring of optical surfaces using plasma-assisted chemical etching (PACE): part I experimental results. In: Arnold, J.B., Parks, R.E. (eds.)Proceedings of SPIE, Advances in Fabrication and Metrology for Optics and Large Optics, vol. 966, pp. 82–90. (1989). doi:10.1117/12.948052Google Scholar
  26. 26.
    Arnold, T., Böhm, G., Paetzelt, H.: Ultra-precision surface machining with reactive plasma jets. Contrib. Plasma Phys. 54(2), 145–154 (2014). doi:10.1002/ctpp.201310058CrossRefGoogle Scholar
  27. 27.
    Meister, J., Arnold, T.: New process simulation procedure for high-rate plasma jet machining. Plasma Chem. Plasma Process 31, 91–107 (2011)CrossRefGoogle Scholar
  28. 28.
    Arnold, Th., Böhm, G., Paetzelt, H.: Plasma jet polishing of rough fused silica surfaces. In: Conference Proceedings of the 13th International Conference of the EUSPEN V2, pp. 19–22 (2013)Google Scholar
  29. 29.
    Liao, W., Dai, Y., Xie, X., Zhou, L.: Combined figuring technology for high-precision optical surfaces using a deterministic ion beam material adding and removal method. Opt. Eng. 52(1), 010503 (2013). doi:10.1117/1.OE.52.1.010503Google Scholar
  30. 30.
    Yamamura, K., Sano, Y.: Plasma-based nanomanufacturing under atmospheric pressure. In: Nee, A. (ed.) Handbook of Manufacturing Engineering and Technology: SpringerReference (www.springerreference.com). Springer, Berlin/Heidelberg (2013)

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Thomas Arnold
    • 1
  • Thomas Franz
    • 2
  • Frank Frost
    • 1
  • Axel Schindler
    • 2
  1. 1.Leibniz-Institute of Surface ModificationLeipzigGermany
  2. 2.NTG Neue Technologien GmbH & Co. KGGelnhausenGermany