Skip to main content

Geometric patterns in two and three dimensions comprise one of the key characteristics of arts and architecture of the Islamic world in many cultural traditions from the central Islamic lands of the Middle East to Spain, India, Indonesia, and sub-Saharan Africa (Bloom & Blair, 2009; Broug, 2013; Ettinghausen, Grabar, & Jenkins-Madina, 2001; Gerdes, 1999; Hillenbrand, 1994, 2009). Although geometry is present, either by conscious human choice in design or as an inherent feature of architectural production in all cultures, it seems to have assumed a much higher significance in Islamic centers of civilization (Grabar, 1992). Often attributed to a proscription against figural images, this interpretation is not borne out historically with reference to palace wall painting, ceramics, ivory, woodwork, and book illustration rich with pictorial narrative. There are, indeed, other more rational explanations for the emphasis on geometric figures (Allen, 1988; Freedberg, 1989; Belting, 2011) as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abas, S. J., Salman, A. S., Moustafa, A., & Atiyah, M. (1995). Symmetries of Islamic geometrical patterns. Singapore: World Scientific.

    Google Scholar 

  • Ajlouni, R., & Justa, P. (2011). Reconstruction of eroded and visually complicated archaeological geometric patterns: Minaret Choli, Iraq. Prague. Accessed January 1, 2014, from http://cipa2011.cz/proceedings/index.htm.

  • Akkach, S. (2005). Cosmology and architecture in premodern Islam: An architectural reading of mystical ideas. Albany, NY: State University of New York.

    Google Scholar 

  • Al Ajlouni, R. A. (2012). The global long-range order of quasi-periodic patterns in Islamic architecture. Acta Crystallographica, 68(2), 235–243.

    Article  Google Scholar 

  • Al-Assad, M. (1995). The muqarnas: A geometric analysis. In G. Necipoglu (Ed.), The Topkapı scroll: Geometry and ornament in Islamic architecture (pp. 349–359). Santa Monica, CA: Getty Center for the History of Art and the Humanities.

    Google Scholar 

  • Allen, T. (1988). Aniconism and figural representation in Islamic art. In T. Allen (Ed.), Five essays on Islamic art (pp. 17–37). Sebastapol, CA: Solipsist.

    Google Scholar 

  • Allen, T. (2004). Islamic art and the argument from academic geometry. Occidental, CA: Solipsist.

    Google Scholar 

  • Ardalan, N., & Bakhtiar, L. (1973). The sense of unity: The sufi tradition in persian architecture. Chicago/London: University of Chicago Press.

    Google Scholar 

  • Ashkan, M., & Ahmad, Y. (2012). Significance of conical and polyhedral domes in Persia and surrounding areas: morphology, typologies and geometric characteristics. Nexus Network Journal, 14(2), 275–290.

    Article  Google Scholar 

  • Baklanov, N. B. (1947). Gereh: geometričeskii ornament Srednei Azii y metodi ego postroenii. [The girikh: A geometric ornament in Central Asia, and methods of its construction]. Sovetskaya Arhetologia, 9, 101–120.

    Google Scholar 

  • Behrens-Abouseif, D. (1999). Beauty in Arab culture. Princeton: Markus Wiener.

    Google Scholar 

  • Belting, H. (2011). Florence and Baghdad: Renaissance art and Arab science (D. L. Schneider, Trans.). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Berggren, J. L. (2008). Episodes in the mathematics of medieval Islam. New York: Springer.

    Google Scholar 

  • Bier, C. (1994). Ornament and Islamic art: A review article. Middle East Studies Association Bulletin, 28, 28–30.

    Google Scholar 

  • Bier, C. (1997). Symmetry and pattern: The art of Oriental carpets. Accessed December 31, 2013, from http://mathforum.org/geometry/rugs/.

  • Bier, C. (2002). Geometry and the interpretation of meaning: Two monuments in Iran. In R. Sarhangi (Ed.), Bridges: Mathematical connections in art, music, and science (pp. 67–78). Winfield, KS: Southwestern College.

    Google Scholar 

  • Bier, C. (2006). Number, shape, and the nature of space: An inquiry into the meaning of geometry in Islamic art. In J. B. White (Ed.), How should we talk about religion? Perspectives, contexts, particularities (pp. 246–277). Notre Dame, IN: University of Notre Dame.

    Google Scholar 

  • Bier, C. (2008). Art and mithāl: Reading geometry as visual commentary. Iranian Studies, 41(4), 491–509.

    Article  Google Scholar 

  • Bier, C. (2009). Number, shape, and the nature of space: Thinking through Islamic art. In E. Robson, J. Stedall, E. Robson, & J. Stedall (Eds.), Oxford handbook for the history of mathematics (pp. 827–851). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Bier, C. (2011). Taking sides but who’s counting? The decagonal tomb tower at Maragha. In R. Sarhangi & C. Sequin (Eds.), Bridges Conference (mathematical connections in art, music, science) (pp. 497–500). Phoenix, AZ: Tessellations.

    Google Scholar 

  • Bier, C. (2012). The decagonal tomb tower at Maragha and its architectural context: Lines of mathematical thought. Nexus Network Journal, 14(2), 251–273.

    Article  Google Scholar 

  • Bier, C. (2013). Pentagons and decagons in Islamic art: Symmetry and periodicity. Symmetry: Art and Science, 58–61.

    Google Scholar 

  • Bier, C. (2014). Sinan’s screens: Networks of intersecting polygons in Ottoman architecture. In G. Greenfield, G. Hart, & R. Sarhangi (Eds.), Proceedings of bridges Seoul 2014: Mathematics, music, art, architecture, culture (pp. 321–24). Seoul, Korea: Gwacheon National Science Museum.

    Google Scholar 

  • Blair, S. S. (1992). The monumental inscriptions from early Islamic Iran and Transoxiana. Leiden, Netherlands: E. J. Brill.

    Google Scholar 

  • Blair, S. S. (1998). Islamic inscriptions. Edinburgh, Scotland: Edinburgh University.

    Google Scholar 

  • Blair, S. S. (2006). Islamic calligraphy. Edinburgh, Scotland: Edinburgh University.

    Google Scholar 

  • Blair, S. S. (2012a). Gereh-sāzī, i. Woodwork. In Encyclopaedia Iranica. Accessed October 21, 2014, from http://www.iranicaonline.org/articles/gereh-sazi.

  • Blair, S. S. (2012b). Il-Khanids ii. Architecture. In Encyclopaedia Iranica. Accessed October 10, 2014, from http://www.iranicaonline.org/articles/il-khanids-ii-architecture.

  • Blair, S. S., & Bloom, J. M. (1994). The art and architecture of Islam 1250–1850. New Haven, CT: Yale University.

    Google Scholar 

  • Blair, S. S., & Bloom, J. M. (2006). Cosmophilia: Islamic art from the David Collection, Copenhagen. Chicago: McMullen Museum of Art, Boston College and University of Chicago.

    Google Scholar 

  • Bloom, J. M. (1988). The introduction of the muqarnas into Egypt. Muqarnas, 5, 21–28.

    Article  Google Scholar 

  • Bloom, J. M. (1993). On the transmission of designs in early Islamic architecture. Muqarnas, 10, 21–28.

    Article  Google Scholar 

  • Bloom, J. M., & Blair, S. S. (Eds.). (2009). The Grove encyclopedia of Islamic art and architecture. Oxford, UK/New York: Oxford University.

    Google Scholar 

  • Bloom, J. M., Toufiq, A., Carboni, S., Soultanian, J., Wilmering, A. M., Minor, M. D., Zawacki, A. W., & Hbibi, M. (1998). The minbar from the Kutubiyya mosque. New York: Metropolitan Museum of Art.

    Google Scholar 

  • Bonner, J. (2003). Three traditions of self-similarity in fourteenth and fifteenth century Islamic geometric ornament. In J. Barrallo et al. (Ed.), Meeting Alhambra: ISAMA-bridges conference proceedings (pp. 1–12). Granada, Spain: University of Granada.

    Google Scholar 

  • Bonner, J. (2015, Forthcoming). Islamic geometric patterns: Historical development and traditional design methodologies. New York: Springer.

    Google Scholar 

  • Bourgoin, J. (1879). Les éléments de l’art arabe. Le trait des entrelacs. Paris: Firmin-Didot et cie.

    Google Scholar 

  • Bourgoin, J. (1973). Arabic geometrical pattern and design. New York: Dover Reprint.

    Google Scholar 

  • Broug, E. (2008). Islamic geometric patterns. London: Thames & Hudson.

    Google Scholar 

  • Broug, E. (2013). Islamic geometric design. London: Thames & Hudson.

    Google Scholar 

  • Bulatov, M. S. (1978). Geometricheskaia garmonizatsiia v arkhitekture Srednei Asii, IX-XV vv., istoriko-teoreticheskoe issledovaniya (in Russian). Moscow: Nauka

    Google Scholar 

  • Castéra, J.-M. (1999). Arabesques: Decorative art in Morocco. Courbevoie, France: ACR.

    Google Scholar 

  • Castéra, J.-M. (2003). Play with infinity. In J. Barrallo et al. (Ed.), Meeting Alhambra: ISAMA-bridges conference proceedings (pp. 189–196). Granada, Spain: University of Granada.

    Google Scholar 

  • Castéra, J.-M. (2011). Flying patterns. In Bridges 2011: Mathematics, music, art, architecture, culture. Retrieved http://archive.bridgesmathart.org/2011/bridges2011-263.pdf.

  • Chorbachi, W. K. (1989). In the tower of Babel: Beyond symmetry in Islamic design. Computers and Mathematics with Applications, 17, 751–789. [Reprint. In I. Hargittai (Ed.), Symmetry 2: Unifying human understanding. New York/Pergamon, Turkey].

    Google Scholar 

  • Chorbachi, W. K., & Loeb, A. D. (1992). An Islamic pentagonal seal (from scientific manuscripts of the geometry of design). In I. Hargittai (Ed.), Fivefold symmetry (pp. 283–305). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Crane, H., (Trans.). (1987). Risāle-i Mi’māriyye: An early-seventeenth-century Ottoman treatise on architecture by Cafer Efendi. Leiden, Netherlands/New York: E. J. Brill.

    Google Scholar 

  • Critchlow, K. (1976). Islamic patterns: An analytical and cosmological approach. London: Thames & Hudson.

    Google Scholar 

  • Cromwell, P. R. (2009). The search for quasi-periodicity in Islamic 5-fold ornament. Mathematical Intelligencer, 31(1), 36–56.

    Article  Google Scholar 

  • Cromwell, P. R. (2010a). Hybrid 1-point and 2-point constructions for some Islamic geometric designs. Journal of Mathematics and the Arts, 4(1), 21–28.

    Article  Google Scholar 

  • Cromwell, P. R. (2010b). Islamic geometric designs from the Topkapi Scroll I: Unusual arrangements of stars. Journal of Mathematics and the Arts, 4(2), 73–85.

    Article  Google Scholar 

  • Cromwell, P. R. (2010c). Islamic geometric designs from the Topkapi Scroll II: A modular design system. Journal of Mathematics and the Arts, 4(3), 119–136.

    Article  Google Scholar 

  • Cromwell, P. R. (2012). Analysis of a multi-layered geometric pattern from the Friday Mosque in Yazd. Journal of Mathematics and the Arts, 6(4), 159–168.

    Article  Google Scholar 

  • Cromwell, P. R., & Beltrami, E. (2011). The whirling kites of Isfahan: Geometric variations on a theme. The Mathematical Intelligencer, 33(3), 84–93.

    Article  Google Scholar 

  • De Bruijn, T. J. P., (Trans.). (1983). Of piety and poetry: The interaction of religion and literature in the life and works of Ḥakīm Sanā’ī of Ghazna. Leiden, Netherlands: Brill.

    Google Scholar 

  • Denny, W. B. (2002). The classical tradition in Anatolian carpets. Washington, DC/London: Scala.

    Google Scholar 

  • Dold-Samplonius, Y. (1992). Practical Arabic mathematics: Measuring the muqarnas by al-Kāshī. Centaurus, 35(3), 193–242.

    Article  Google Scholar 

  • Dold-Samplonius, Y. (2003). Calculating surface areas and volumes in Islamic architecture. In The enterprise of science in Islam: New perspectives (pp. 235–265). Cambridge, MA: MIT Press.

    Google Scholar 

  • Dold-Samplonius, Y., & Harmsen, S. L. (2005). The muqarnas plate found at Takht-i Sulayman: A new interpretation. Muqarnas, 22, 85–94.

    Article  Google Scholar 

  • El-Said, I. (1993). Islamic Art and Architecture: The System of Geometric Design, ed. T. El-Bouri & K. Critchlow. Reading UK: Garnet.

    Google Scholar 

  • El-Said, I., & Parman, A. (1976). Geometric concepts in Islamic art. London: World of Islam Festival.

    Google Scholar 

  • Ettinghausen, R., Grabar, O., & Jenkins-Madina, M. (2001). Islamic art and architecture, 650–1250. New Haven, CT: Yale University.

    Google Scholar 

  • Freedberg, D. (1989). The power of images: Studies in the history and theory of response. Chicago/London: University of Chicago Press.

    Google Scholar 

  • Fuentes González, P., & Huerta, S. (2010). Islamic domes of crossed-arches: Origin, geometry and structural behavior. In Arch'10. 6th international conference on arch bridges, Fuzhou, China (pp. 11–13).

    Google Scholar 

  • Gerdes, P. (1999). Geometry from Africa: Mathematical and educational explorations. Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Ghazarian, A., & Ousterhout, R. (2001). A muqarnas drawing from thirteenth-century Armenia and the use of architectural drawings during the Middle Ages. Muqarnas, 18, 141–154.

    Article  Google Scholar 

  • Golombek, L., & Wilber, D. N. (1988). The Timurid architecture of Iran and Turan. Princeton: Princeton University Press.

    Google Scholar 

  • Gonzalez, V. (2001). Beauty and Islam: Aesthetics in Islamic art and architecture. New York: I. B. Tauris.

    Google Scholar 

  • Grabar, O. (1988). Geometry and ideology: The festival of Islam and the study of Islamic art, ch. V. In F. Kazemi & R. D. McChesney (Eds.), A way prepared, essays on Islamic culture in honor of Richard Bayly Winder (pp.145–152). New York/London: New York University Press.

    Google Scholar 

  • Grabar, O. (1992). The mediation of ornament. Princeton: Princeton University Press.

    Google Scholar 

  • Grabar, O. (2006). The Dome of the Rock. Cambridge MA: Belknap Press of Harvard University.

    Google Scholar 

  • Grünbaum, B. (2006). What symmetry groups are present in the Alhambra. Notices of the American Mathematical Society, 53(6), 670–673.

    Google Scholar 

  • Grünbaum, B., Grünbaum, Z., & Shepard, G. C. (1986). Symmetry in Moorish and other ornaments. Computers and Mathematics with Applications, 12(3), 641–653.

    Article  Google Scholar 

  • Grünbaum, B., & Shephard, G. C. (1992). Interlace patterns in Islamic and Moorish art. Leonardo, 25, 331–339.

    Article  Google Scholar 

  • Hamilton, R. W. (1959). Khirbat al Mafjar; an Arabian mansion in the Jordan valley. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Hankin, E. H. (1925). The drawing of geometric patterns in Saracenic art. Calcutta, India: Government of India Central Publication Branch.

    Google Scholar 

  • Herzfeld, E. (1942). Damascus: Studies in architecture – I. Ars Islamica, 9, 1–53.

    Google Scholar 

  • Herzfeld, E. (1943). Damascus: Studies in architecture – II. Ars Islamica, 10, 13–70.

    Google Scholar 

  • Herzfeld, E. (1946). Damascus: Studies in architecture – III. Ars Islamica, 11(12), 1–71.

    Google Scholar 

  • Hillenbrand, R. (1994). Islamic architecture: Form, function, and meaning. New York: Columbia University Press.

    Google Scholar 

  • Hillenbrand, R. (2009). Islamic Art, §1: Introduction, 8. Subject Matter, (vi) Geometry. Grove Art Online. Oxford University Press. www.oxfordartonline.com.

  • Holod, R. (1988). Text, plan and building: On the transmission of architectural knowledge. In M. Ševčenko (Ed.), Theories and principles of design in the architecture of Islamic societies (pp. 1–12). Cambridge, MA: Aga Khan Program for Architecture at Harvard University and the Massachusetts Institute of Technology.

    Google Scholar 

  • ’Ilm al-Handasa. In Encyclopaedia of Islam (2nd ed). Brill Online 2013. Accessed December 31, 2013, from http://referenceworks.brillonline.com/entries/encyclopaedia-of-islam-2/ilm-al-handasa-COM_1408.

  • Jones, O. (1856). Grammar of ornament. London: Day & Son.

    Google Scholar 

  • Kaplan, C. S. (2000a). Computer generated islamic star patterns. In Bridges: Mathematical connections in art, music, and science (pp. 105–112). London: Tarquin Publications.

    Google Scholar 

  • Kaplan, C. S. (2000b). Taprats. In Computer generated islamic star patterns (java applet). http://www.cgl.uwaterloo.ca/~csk/washington/taprats.

  • Kaplan, C. S. (2005). Islamic star patterns from polygons in contact. In Proceedings of graphics interface 2005 (pp. 17–185). Canadian Human-Computer Communications Society, Victoria, British Columbia, Canada

    Google Scholar 

  • Kaplan, C. S., & Salesin, D. H. (2004). Islamic star patterns in absolute geometry. ACM Transactions on Graphics (TOG), 23(2), 97–119.

    Article  Google Scholar 

  • King, D. A. (1999). World-maps for finding the direction and distance to Mecca: Innovation and tradition in Islamic science. London/Leiden, Netherlands/Boston: Al-Furqān Islamic Heritage Foundation/Brill.

    Google Scholar 

  • Koliji, H. (2012a). Revisiting the squinch: From squaring the circle to circling the square. Nexus Network Journal, 14, 291–305.

    Article  Google Scholar 

  • Koliji, H. (2012b). In between: Architectural drawing and imaginative knowledge. PhD thesis, Virginia Tech University. Accessed October 2, 2014, from http://vtechworks.lib.vt.edu/handle/10919/50412.

  • Lee, A. J. (1987). Islamic star patterns. Muqarnas, 4, 182–197.

    Article  Google Scholar 

  • Lu, P. J., & Steinhardt, P. J. (2007a). Decagonal and quasi-crystalline tilings in medieval Islamic architecture. Science, 315, 1106–1110. Supplementary Online Materials, figs. S1-S8, www.sciencemag.org/cgi/content/full/315/5815/[page]DC1.

  • Lu, P. J., & Steinhardt, P. J. (2007b, November 30). Response to (E. Makovicky), Comment on Decagonal and quasi-crystalline tilings in medieval Islamic architecture. Science, 318, 1383.

    Google Scholar 

  • Maheronnaqsh, M. (1984). Design and execution in persian ceramics (in Persian) (5 volumes). Teheran, Iran: Reza Abbasi Museum.

    Google Scholar 

  • Majewski, M. L. (2011). Islamic geometric ornaments in Istanbul. Torun, Poland: Uniwersytet Mikołaja Kopernika.

    Google Scholar 

  • Makovicky, E. (1992). 800-Year-old pentagonal tiling from Maragha, Iran, and the new varieties of a periodic tiling it inspired. In I. Hargittai (Ed.), Fivefold symmetry (pp. 67–86). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Makovicky, E. (2007). Comment on ‘Decagonal and quasi-crystalline tilings in medieval Islamic architecture’. Science, 318, 1383.

    Article  Google Scholar 

  • Makovicky, E. (2008). Another look at the blue tomb of Maragha, a site of the first quasicrystalline Islamic pattern. Symmetry: Culture and Science, 19(2–3), 127–151.

    Google Scholar 

  • Makovicky, E., & Fenoll Hach-Alí, P. (1996). Mirador de Lindaraja: Islamic ornamental patterns based on quasi-periodic octagonal lattices in Alhambra, Granada, and Alcazar, Sevilla, Spain. (El mirador de Lindaraja: dibujos islámicos ornamentales de la Alhambra de Granada y del Alcázar de Sevilla (Es.). Boletín de la Sociedad Española de Mineralogía, 19, 1–26.

    Google Scholar 

  • Makovicky, E., & Makovicky, N. M. (2011). The first find of dodecagonal quasiperiodic tiling in historical Islamic architecture. Journal of Applied Crystallography, 44(3), 569–573.

    Article  Google Scholar 

  • Makovicky, E., Rull Pérez, F., & Fenoll Hach-Alí, P. (1998). Decagonal patterns in the Islamic ornamental art of Spain and Morocco. Boletín de la Sociedad Española de Mineralogía, 21, 107–127.

    Google Scholar 

  • Marks, L. U. (2010). Enfoldment and infinity: An Islamic genealogy of new media art. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mawani, R. (2016). Piety and pluralism: Ritual, space and Muslim practice, London: I.B. Tauris.

    Google Scholar 

  • Mayer, L. A. (1956). Islamic architects and their works. Geneva, Switzerland: A. Kundig.

    Google Scholar 

  • Mayer, L. A. (1958). Islamic woodcarvers and their works. Geneva, Switzerland: A. Kundig.

    Google Scholar 

  • Meinecke, M. (1976). Fayencedekorationen seldschukischer Sakralbauten in Kleinasien. Tübingen, Germany: Wasmuth.

    Google Scholar 

  • Meisami, J. S. (2001). Palaces and paradises: Palace description in medieval Persian poetry. In O. Grabar & C. Robinson (Eds.), Islamic art and literature (pp. 21–54). Princeton: Markus Wiener.

    Google Scholar 

  • Milwright, M. (2012). Gereh-sāzī, ii. Architecture. In Encyclopaedia Iranica. Accessed October 21, 2014, from http://www.iranicaonline.org/articles/gereh-sazi.

  • Müller, E. (1944). Gruppentheoretische und strukturanalytische Untersuchungen der maurischen Ornamente aus der Alhambra in Granada. Buchdruckerei Baublatt ag.

    Google Scholar 

  • Nava’i, K. (2012). Khesht o khial (An interpretation of Iranian islamic architecture). Teheran: Soroosh In Persian.

    Google Scholar 

  • Necipoğlu, G. (1995). The Topkapı scroll: Geometry and ornament in Islamic architecture. Santa Monica, CA: Getty Center for the History of Art and the Humanities.

    Google Scholar 

  • Necipoğlu, G. (Ed.) (2015). The arts of ornamental geometry: A Persian compendium on similar or complementary interlocking figures (A volume commemorating Alpay Özdural). Leiden and Boston: E. J. Brill.

    Google Scholar 

  • Özdural, A. (1995). Omar Khayyam, mathematicians, and conversazioni with artisans. Journal of the Society of Architectural Historians, 54(1), 54–71.

    Article  Google Scholar 

  • Özdural, A. (1996). On interlocking similar or corresponding figures and ornamental patterns of cubic equations. Muqarnas, 13, 191–211.

    Article  Google Scholar 

  • Özdural, A. (1998). A mathematical sonata for architecture: Omar Khayyam and the Friday Mosque of Isfahan. Technology and Culture, 39(4), 699–715.

    Article  Google Scholar 

  • Özdural, A. (2000). Mathematics and arts: Connections between theory and practice in the medieval Islamic world. Historia Mathematica, 27(2), 171–201.

    Article  Google Scholar 

  • Özdural, A. (2002). The use of cubic equations in Islamic art and architecture. Nexus: Architecture and Mathematics, 4, 165–179.

    Google Scholar 

  • Paccard, A. (1980). Traditional Islamic craft in Moroccan architecture. Saint-Jorioz, France: Éditions Ateliers 74.

    Google Scholar 

  • Pickett, D. (1997). Early persian tilework: The medieval flowering of kāshī. London: Associated University Presses.

    Google Scholar 

  • Pope, A. U., & Ackerman, P. (Eds.). (1938/1939). A survey of persian art from prehistoric times to the present (6 volumes). London/New York: Oxford University Press.

    Google Scholar 

  • Prisse d’Avennes, É. (1877). L’art arabe d’après les monuments du Kaire: depuis le VIIe siècle jusqu’à la fin du XVIIIe. Paris: A. Morel et Cie.

    Google Scholar 

  • Raynaud, D. (2012). Abū al-Wafā’ Latinus? A study of method. Historia Mathematica, 39, 34–83.

    Article  Google Scholar 

  • Rempel, L. I. (1961). Arkhitekturnyi ornament Uzbekistana; istoriia razvitiia i teoriia postroeniia. Tashkent.

    Google Scholar 

  • Rogers, J. M. (1973). The 11th century: A turning point in the architecture of the mashriq? In D. S. Richards (Ed.), Islamic civilisation, 950–1150 (Papers on Islamic history 3, pp. 211–249). Oxford, UK: Cassirer.

    Google Scholar 

  • Saltzman, P. (2008). Quasi-periodicity in Islamic geometric design. Nexus: Architecture and Mathematics, 7, 153–168.

    Google Scholar 

  • Sarhangi, R. (2008a). Modules and modularity in mosaic patterns. Journal of the Symmetrion, 19(2–3), 153–163.

    Google Scholar 

  • Sarhangi, R. (2008b). Illustrating Abu al-Wafa’ Buzjani: Flat images, spherical constructions. Iranian Studies, 41(4), 511–523.

    Article  Google Scholar 

  • Sarhangi, R. (2013a). Interlocking star polygons in Persian architecture: The special case of the decagram in mosaic designs. Nexus Network Journal, 14(2), 345–372.

    Article  Google Scholar 

  • Sarhangi, R. (2013b). Tiling and tazhib of some special star polygons: A mathematics and art case study. In Proceedings of Bridges 2013: Mathematics, music, art, architecture, culture (pp. 151–158). Phoenix, AZ: Tessellations.

    Google Scholar 

  • Sarhangi, R., Jablan, S., & Sazdanovic, R. (2005). Modularity in medieval persian mosaics: Textual, empirical, analytical, and theoretical considerations. Visual Mathematics Journal, 7(1), 281–292.

    Google Scholar 

  • Schimmel, A. (1984). Calligraphy and Islamic culture. New York: New York University Press.

    Google Scholar 

  • Schmidtke, S. (2013). Samawʾal al-Maghribī, al-. In N. A. Stillman (Ed.), Encyclopedia of Jews in the Islamic world. Brill Online. http://referenceworks.brillonline.com/entries/encyclopedia-of-jews-in-the-islamic-world/samawal-al-maghribi-al-COM_0001760.

  • Schneider, G. (1980). Geometrische bauornamente der Seldschuken in Kleinasien. Wiesbaden, Germany: Reichert.

    Google Scholar 

  • Singer, L. (Ed.). (2008). The minbar of Saladin: Reconstructing a jewel of Islamic art. New York: Thames & Hudson.

    Google Scholar 

  • Soucek, P. P. (1975). The Khamseh of 1524/25. In P. J. Chelkowski (Ed.), Mirror of the invisible world: Tales from the Khamseh of Nizami (pp. 11–20). New York: Metropolitan Museum of Art.

    Google Scholar 

  • Stronach, D., & Young, T. C., Jr. (1966). Three Seljuq tomb towers from Iran. Iran, 4, 1–20.

    Article  Google Scholar 

  • Suter, H. (2014). Handasa. In Encyclopaedia of Islam (1st ed.). (1913–1936), Brill Online. Accessed October 28, 2014, from http://referenceworks.brillonline.com/entries/encyclopaedia-of-islam-1/handasa-SIM_2686?s.num=8.

  • Tabbaa, Y. (1985). The muqarnas dome: Its origins and meaning. Muqarnas, 3, 61–74.

    Google Scholar 

  • Tabbaa, Y. (1991). The transformation of Arabic writing: Part 1, Qur’ānic calligraphy. Ars Orientalis, 21, 119–148.

    Google Scholar 

  • Tabbaa, Y. (1994). The transformation of Arabic writing: Part 2, the public text. Ars Orientalis, 24, 119–147.

    Google Scholar 

  • Tabbaa, Y. (2001). The transformation of Islamic art during the Sunni revival. Seattle, Washington/London: University of Washington.

    Google Scholar 

  • The Creswell Archive. (2003) Ashmolean Museum of Art and Archaeology. Oxford, UK. Accessed January 1, 2014, from http://creswell.ashmolean.museum/.

  • Wade, D. (2015). Pattern in Islamic art: The WADE photo-archive – 2nd ed. Accessed December 31, 2013, from http://www.patterninislamicart.com/.

  • Wichmann, B., & Lee, A. J. A tiling database. http://tilingsearch.org/.

  • Wilber, D. N. (1939). The development of mosaic faience in Islamic architecture in Iran. Ars Islamica, 6(1), 16–47.

    Google Scholar 

  • Yaghan, M. A. J. (2000). Decoding the two-dimensional pattern found at Takht-i Sulayman into three-dimensional muqarnas forms. Iran, 38, 77–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Bier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bier, C. (2015). Geometry in Islamic Art. In: Selin, H. (eds) Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3934-5_10111-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-3934-5_10111-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-3934-5

  • eBook Packages: Springer Reference Religion and PhilosophyReference Module Humanities and Social SciencesReference Module Humanities

Publish with us

Policies and ethics