Skip to main content

Low-Molecular-Weight Materials: Hole Injection Materials

  • Living reference work entry
  • First Online:
Handbook of Organic Light-Emitting Diodes
  • 402 Accesses

Abstract

Low-molecular-weight hole injection materials (HIMs) are categorized as small molecules with a strong acceptor and metal oxides, and halogen derivatives. Since the relationship between the substrate work function and the ionization energy of an organic layer is important for considering the hole injection barrier, not only the HIM-dependent OLED characteristics but also the energy diagram between the anode and HIM has been extensively studied using a Kelvin probe and by ultraviolet photoelectron spectroscopy. The hole injection barrier is defined as the energy difference between the Fermi level of the anode and the highest occupied molecular orbital level of the organic layer on the anode. In this chapter, both the improvement of device characteristics using HIMs and the detailed hole injection mechanisms are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Campbell IH, Rubin S, Kress JD, Martin RL, Smith DL, Barashkov NN, Ferraris JP (1996) Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys Rev B 54:14321(R)

    Article  ADS  Google Scholar 

  • Chan I-M, Hsu T-Y, Hong FC (2002) Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl Phys Lett 81:1899–1901

    Article  ADS  Google Scholar 

  • Choi B, Rhee J, Lee HH (2001) Tailoring of self-assembled monolayer for polymer light-emitting diodes. Appl Phys Lett 79:2109–2111

    Article  ADS  Google Scholar 

  • Duhm S, Salzmann I, Bröker B, Glowatzki H, Johnson RL, Koch N (2009) Interdiffusion of molecular acceptors through organic layers to metal substrates mimics doping-related energy level shifts. Appl Phys Lett 95:093305

    Article  ADS  Google Scholar 

  • Gao W, Kahn A (2001) Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study. Appl Phys Lett 79:4040–4042

    Article  ADS  Google Scholar 

  • Gao W, Kahn A (2003) Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine. J Appl Phys 94:359–366

    Article  ADS  Google Scholar 

  • Gao C-H, Zhu X-Z, Zhang L, Zhou D-Y, Wang Z-K, Liao L-S (2013) Comparative studies on the inorganic and organic p-type dopants in organic light-emitting diodes with enhanced hole injection. Appl Phys Lett 102:153301

    Article  ADS  Google Scholar 

  • Helander MG, Wang ZB, Qiu J, Greiner MT, Puzzo DP, Liu ZW, Lu ZH (2011) Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332:944–947

    Article  ADS  Google Scholar 

  • Hung LS, Zheng LR, Mason MG (2001) Anode modification in organic light-emitting diodes by low-frequency plasma polymerization of CHF3. Appl Phys Lett 78:673–675

    Article  ADS  Google Scholar 

  • Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11:605–625

    Article  Google Scholar 

  • Kanno H, Ishikawa K, Nishio Y, Endo A, Adachi C, Shibata K (2007) Highly efficient and stable red phosphorescent organic light-emitting device using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material. Appl Phys Lett 90:123509

    Article  ADS  Google Scholar 

  • Kim Y-K, Kim JW, Park Y (2009) Energy level alignment at a charge generation interface between 4,4′-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile. Appl Phys Lett 94:063305

    Article  ADS  Google Scholar 

  • Kim YH, Kwon S, Lee JH, Park SM, Lee YM, Kim JW (2011) Hole injection enhancement by a WO3 interlayer in inverted organic light-emitting diodes and their interfacial electronic structures. J Phys Chem C 115:6599–6604

    Article  Google Scholar 

  • Koch N, Duhm S, Rabe JP (2005) Optimized hole injection with strong electron acceptors at organic-metal interfaces. Phys Rev Lett 95:237601

    Article  ADS  Google Scholar 

  • Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A (2009) Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl Phys Lett 95:123301

    Article  ADS  Google Scholar 

  • Lee ST, Wang YM, Hou XY, Tang CW (1999) Interfacial electronic structures in an organic light-emitting diode. Appl Phys Lett 74:670–672

    Article  ADS  Google Scholar 

  • Lüssem B, Riede M, Leo K (2013a) Doping of organic semiconductors. Phys Status Solidi A 210:9–43

    Article  ADS  Google Scholar 

  • Lüssem B, Tietze ML, Kleemann H, bach CH, Bartha JW, Zakhidov A, Leo K (2013b) Doped organic transistors operating in the inversion and depletion regime. Nat Commun 4:2775

    Article  ADS  Google Scholar 

  • Mason MG, Hung LS, Tang CW, Lee ST, Wong KW, Wang M (1999) Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. J Appl Phys 86:1688–1692

    Article  ADS  Google Scholar 

  • Matsushima T, Kinoshita Y, Murata H (2007) Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers. Appl Phys Lett 91:253504

    Article  ADS  Google Scholar 

  • Meyer J, Hamwi S, Bülow T, Johannes H-H, Riedl T, Kowalsky W (2007) Highly efficient simplified organic light emitting diodes. Appl Phys Lett 91:113506

    Article  ADS  Google Scholar 

  • Meyer J, Kidambi PR, Bayer BC, Weijtens C, Kuhn A, Centeno A, Pesquera A, Zurutuza A, Robertson J, Hofmann S (2014) Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Sci Rep 4:5380

    Article  ADS  Google Scholar 

  • Morii K, Ishida M, Takashima T, Shimoda T, Wang Q, Nazeeruddin MK, Grätzel M (2006) Encapsulation-free hybrid organic-inorganic light-emitting diodes. Appl Phys Lett 89:183510

    Article  ADS  Google Scholar 

  • Nakayama Y, Morii K, Suzuki Y, Machida H, Kera S, Ueno N, Kitagawa H, Noguchi Y, Ishii H (2009) Origins of improved hole-injection efficiency by the deposition of MoO3 on the polymeric semiconductor poly(dioctylfluorene-alt-benzothiadiazole). Adv Funct Mater 19:3746–3752

    Article  Google Scholar 

  • Okumoto K, Kanno H, Hamada Y, Takahashi H, Shibata K (2006a) Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10%. Appl Phys Lett 89:063504

    Article  ADS  Google Scholar 

  • Okumoto K, Kanno H, Hamada Y, Takahashi H, Shibata K (2006b) High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer. Appl Phys Lett 89:013502

    Article  ADS  Google Scholar 

  • Park CH, Lee HJ, Hwang JH, Kim KN, Shim YS, Jung S-G, Bae BH, Park CH, Lee DJ, Park YW, Ju BK (2015) High-efficiency hybrid buffer layer in inverted top-emitting organic light-emitting diodes. SID 2015 Digest 46:1647–1649

    Article  Google Scholar 

  • Pfeiffer M, Beyer A, Fritz T, Leo K (1998) Controlled doping of phthalocyanine layers by cosublimation: a systematic seebeck and conductivity study. Appl Phys Lett 73:3202–3204

    Article  ADS  Google Scholar 

  • Qi D, Chen W, Gao X, Wang L, Chen S, Loh KP, Wee ATS (2007) Surface transfer doping of diamond (100) by tetrafluoro-tetracyanoquinodimethane. J Am Chem Soc 129:8084–8085

    Article  Google Scholar 

  • Rana O, Srivastava R, Chauhan G, Zulfequar M, Husain M, Srivastava PC, Kamalasanan MN (2012) Modification of metal–organic interface using F4-TCNQ for enhanced hole injection properties in optoelectronic devices. Phys Status Solidi A 209:2539–2545

    Article  ADS  Google Scholar 

  • Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010

    Article  Google Scholar 

  • Shirota Y, Kuwabara Y, Inada H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K (1994) Multilayered organic electroluminescent device using a novel starburst molecule, ,4′,4′-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. Appl Phys Lett 65:807–809

    Article  ADS  Google Scholar 

  • Son S-H, Jang J-G, Jeon S-Y, Yoon S-H, Lee J-C, Kim K-K (2004) Electroluminescent devices with low work function anode. WO Patent 2004054326 A2

    Google Scholar 

  • Tang JX, Li YQ, Zheng LR, Hung LS (2004) Anode/organic interface modification by plasma polymerized fluorocarbon films. J Appl Phys 95:4397–4403

    Article  ADS  Google Scholar 

  • Tokito S, Noda K, Taga Y (1996) Metal oxides as a hole-injecting layer for an organic electroluminescent device. J Phys D Appl Phys 29:2750–2753

    Article  ADS  Google Scholar 

  • Van Slyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162

    Article  ADS  Google Scholar 

  • Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233–1271

    Article  Google Scholar 

  • Wan A, Hwang J, Amy F, Kahn A (2005) Impact of electrode contamination on the α-NPD/Au hole injection barrier. Org Electron 6:47–54

    Article  Google Scholar 

  • Wang H, Klubek KP, Tang CW (2008) Current efficiency in organic light-emitting diodes with a hole-injection layer. Appl Phys Lett 93:093306

    Article  ADS  Google Scholar 

  • Witte G, Lukas S, Bagus PS, Wöll C (2005) Vacuum level alignment at organic/metal junctions: “Cushion” effect and the interface dipole. Appl Phys Lett 87:263502

    Article  ADS  Google Scholar 

  • Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T, Leo K (2001) Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Appl Phys Lett 78:410–412

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohiko Fukagawa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fukagawa, H. (2019). Low-Molecular-Weight Materials: Hole Injection Materials. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55761-6_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55761-6_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55761-6

  • Online ISBN: 978-4-431-55761-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics