Skip to main content

Soft Robots

Encyclopedia of Robotics

Synonyms

Compliant Robots; Elastically Actuated Robots; Flexible Robots

Definition

Soft robots are robotic systems with purposefully designed compliant elements embedded into their mechanical structure.

Overview

The physical characteristics of animals’ bodies are substantially different from those of classic robots. Elastic tendons, ligaments, and muscles enable animals to robustly interact with the external world and perform dynamic tasks (Fig. 1). The function of elastic elements in natural bodies is discussed in Roberts and Azizi (2011) and summarized in Table 1.

Fig. 1
figure 1

Compliance is ubiquitous in natural bodies and appears in disparate forms. The only rigid body part of an octopus (a) is its beak, which is about 1 inch wide, so that this invertebrate mollusk can squeeze in small crevices to prey. The compliant body of vertebrates such as humans (b) enables them to perform dynamic motions with high resilience to impacts. Some vertebrates have continuously deformable parts, e.g.,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The term continuous robots is also used, albeit less frequently

References

  • Albu-Schäffer A, Bicchi A (2016) Actuators for soft robotics. In: Springer handbook of robotics. Springer, Berlin, pp 499–530

    Chapter  Google Scholar 

  • Albu-Schäffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimbock T, Wolf S, Hirzinger G (2008) Soft robotics. IEEE Robot Autom Mag 15(3):20–30

    Article  Google Scholar 

  • Albu-Schäffer A, Ott C, Hirzinger G (2007) A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1):23–39

    Article  MATH  Google Scholar 

  • Albu-Schäffer A, Wolf S, Eiberger O, Haddadin S, Petit F, Chalon M (2010) Dynamic modelling and control of variable stiffness actuators. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, pp 2155–2162

    Google Scholar 

  • Araromi OA, Gavrilovich I, Shintake J, Rosset S, Richard M, Gass V, Shea HR (2015) Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans Mechatron 20(1):438–446

    Article  Google Scholar 

  • Asano Y, Okada K, Inaba M (2017) Design principles of a human mimetic humanoid: humanoid platform to study human intelligence and internal body system. Sci Robot 2(13):eaaq0899

    Google Scholar 

  • Boxerbaum AS, Shaw KM, Chiel HJ, Quinn RD (2012) Continuous wave peristaltic motion in a robot. Int J Robot Res 31(3):302–318

    Article  Google Scholar 

  • Buchli J, Iida F, Ijspeert AJ (2006) Finding resonance: adaptive frequency oscillators for dynamic legged locomotion. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE, pp 3903–3909

    Google Scholar 

  • Buondonno G, De Luca A (2016) Efficient computation of inverse dynamics and feedback linearization for VSA-based robots. IEEE Robot Autom Lett 1(2):908–915

    Article  Google Scholar 

  • Carpi F, De Rossi D, Kornbluh R, Pelrine RE, Sommer-Larsen P (2011) Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  • Carpino G, Accoto D, Sergi F, Tagliamonte NL, Guglielmelli E (2012) A novel compact torsional spring for series elastic actuators for assistive wearable robots. J Mech Des 134(12):121002

    Article  Google Scholar 

  • Catalano M, Grioli G, Garabini M, Belo FW, Di Basco A, Tsagarakis N, Bicchi A (2012) A variable damping module for variable impedance actuation. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, pp 2666–2672

    Google Scholar 

  • Chenevier J, González D, Aguado JV, Chinesta F, Cueto E (2018) Reduced-order modeling of soft robots. PLoS One 13(2):e0192052

    Article  Google Scholar 

  • Cheney N, Bongard J, Vytas SunSpiral, Lipson H (2018) Scalable co-optimization of morphology and control in embodied machines. J R Soc Interface 15(143):20170937

    Article  Google Scholar 

  • Chirikjian GS (1994) Hyper-redundant manipulator dynamics: a continuum approximation. Adv Robot 9(3):217–243

    Article  Google Scholar 

  • Culha U, Hughes J, Rosendo A, Giardina F, Iida F (2017) Design principles for soft-rigid hybrid manipulators. In: Soft robotics: trends, applications and challenges. Springer, Berlin, pp 87–94

    Chapter  Google Scholar 

  • De Luca A, Book W (2008) Robots with flexible elements. In: Springer handbook of robotics. Springer, Berlin, pp 287–319

    Chapter  Google Scholar 

  • De Luca A, Flacco F (2010) Dynamic gravity cancellation in robots with flexible transmissions. In: Decision and Control (CDC), 2010 49th IEEE Conference on. Citeseer, pp 288–295

    Google Scholar 

  • De Luca A, Siciliano B, Zollo L (2005) Pd control with on-line gravity compensation for robots with elastic joints: theory and experiments. Automatica 41(10):1809–1819

    Article  MathSciNet  MATH  Google Scholar 

  • Deimel R, Brock O (2016) A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res 35(1–3):161–185

    Article  Google Scholar 

  • Della Santina C, Bianchi M, Grioli G, Angelini F, Catalano M, Garabini M, Bicchi A (2017) Controlling soft robots: balancing feedback and feedforward elements. IEEE Robot Autom Mag 24(3):75–83

    Article  Google Scholar 

  • Della Santina C, Katzschmann RK, Bicchi A, Rus D (2019) Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. Int J Robot Res 0278364919897292

    Google Scholar 

  • Della Santina C, Piazza C, Gasparri GM, Bonilla M, Catalano MG, Grioli G, Garabini M, Bicchi A (2017) The quest for natural machine motion: an open platform to fast-prototyping articulated soft robots. IEEE Robot Autom Mag 24(1):48–56

    Article  Google Scholar 

  • Dickey MD (2017) Stretchable and soft electronics using liquid metals. Adv Mat 29(27):1606425

    Article  Google Scholar 

  • Dill EH (1992) Kirchhoff’s theory of rods. Arch Hist Exact Sci 44(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Doyle CE, Bird JJ, Isom TA, Kallman JC, Bareiss DF, Dunlop DJ, King RJ, Abbott JJ, Minor MA (2013) An avian-inspired passive mechanism for quadrotor perching. IEEE/ASME Trans Mechatron 18(2): 506–517

    Article  Google Scholar 

  • Duriez C (2013) Control of elastic soft robots based on real-time finite element method. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp 3982–3987. IEEE

    Google Scholar 

  • Feldman AG, Levin MF (2009) The equilibrium-point hypothesis–past, present and future. In: Progress in motor control. Springer, Berlin, pp 699–726

    Chapter  Google Scholar 

  • Frame J, Lopez N, Curet O, Engeberg ED (2018) Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspiration Biomimetics 13(6):064001

    Article  Google Scholar 

  • Fras J, Noh Y, Macias M, Wurdemann H, Althoefer K (2018) Bio-inspired octopus robot based on novel soft fluidic actuator. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 1583–1588

    Google Scholar 

  • Garabini M, Passaglia A, Belo F, Salaris P, Bicchi A (2011) Optimality principles in variable stiffness control: The VSA hammer. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, pp 3770–3775

    Google Scholar 

  • Garofalo G, Ott C (2017) Energy based limit cycle control of elastically actuated robots. IEEE Trans Autom Control 62(5):2490–2497

    Article  MathSciNet  MATH  Google Scholar 

  • George Thuruthel T, Ansari Y, Falotico E, Laschi C (2018) Control strategies for soft robotic manipulators: a survey. Soft Robot 5(2):149–163

    Article  Google Scholar 

  • Goswami A, Peshkin MA, Colgate JE (1990) Passive robotics: an exploration of mechanical computation. In: Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on. IEEE, pp 279–284

    Google Scholar 

  • Grazioso S, Di Gironimo G, Bruno S (2018) A geometrically exact model for soft continuum robots: the finite element deformation space formulation. Soft Robot 6(6):790–811

    Article  Google Scholar 

  • Grebenstein M, Albu-Schäffer A, Bahls T, Chalon M, Eiberger O, Friedl W, Gruber R, Haddadin S, Hagn U, Haslinger R et al (2011) The DLR hand arm system. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, pp 3175–3182

    Google Scholar 

  • Green AE, Naghdi PM, Wenner ML (1974) On the theory of rods. I. Derivations from the three-dimensional equations. Proc R Soc Lond A 337(1611):451–483

    Google Scholar 

  • Greer JD, Morimoto TK, Okamura AM, Hawkes EW (2018) A soft, steerable continuum robot that grows via tip extension. Soft Robot 6(1):95–108

    Article  Google Scholar 

  • Haldane DW, Plecnik MM, Yim JK, Fearing RS (2016) Robotic vertical jumping agility via series-elastic power modulation. Sci Robot 1(1)

    Google Scholar 

  • Hauser H, Ijspeert AJ, Füchslin RM, Pfeifer R, Maass W (2011) Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 105(5–6):355–370

    Article  MathSciNet  MATH  Google Scholar 

  • Herr H, Dennis RG (2004) A swimming robot actuated by living muscle tissue. J Neuroeng Rehabil 1(1):6

    Article  Google Scholar 

  • Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. John Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

  • Huang C, Jiu-an LV, Tian X, Wang Y, Yu Y, Liu J (2015) Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci Rep 5:17414

    Article  Google Scholar 

  • Hutter M, Gehring C, Jud D, Lauber A, Bellicoso CD, Tsounis V, Hwangbo J, Bodie K, Fankhauser P, Bloesch M et al (2016) Anymal-a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 38–44

    Google Scholar 

  • Iida F, Rummel J, Seyfarth A (2008) Bipedal walking and running with spring-like biarticular muscles. J Biomech 41(3):656–667

    Article  Google Scholar 

  • Katzschmann RK, DelPreto J, MacCurdy R, Rus D (2018) Exploration of underwater life with an acoustically controlled soft robotic fish. Sci Robot 3(16):eaar3449

    Google Scholar 

  • Keppler M, Lakatos D, Ott C, Albu-Schäffer A (2018) Elastic structure preserving (ESP) control for compliantly actuated robots. IEEE Trans Robot 34(2): 317–335

    Article  Google Scholar 

  • Kiang CT, Spowage A, Yoong CK (2015) Review of control and sensor system of flexible manipulator. J Intell Robot Syst 77(1):187–213

    Article  Google Scholar 

  • Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR et al (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24(1):65–74

    Article  Google Scholar 

  • Laffranchi M, Tsagarakis NG, Caldwell DG (2013) Compact arm: a compliant manipulator with intrinsic variable physical damping. In: Robotics: science and systems, vol 8, p 225

    Google Scholar 

  • Lakatos D, Ploeger K, Loeffl F, Seidel D, Schmidt F, Gumpert T, John F, Bertram T, Albu-Schäffer A (2018) Dynamic locomotion gaits of a compliantly actuated quadruped with slip-like articulated legs embodied in the mechanical design. IEEE Robot Autom Lett 3(4):3908–3915

    Article  Google Scholar 

  • Lanini J, Razavi H, Urain J, Ijspeert A (2018) Human intention detection as a multiclass classification problem: Application in physical human–robot interaction while walking. IEEE Robot Autom Lett 3(4):4171–4178

    Article  Google Scholar 

  • Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R (2016) Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351(6277):1071–1074

    Article  Google Scholar 

  • Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P (2012) Soft robot arm inspired by the octopus. Adv Robot 26(7):709–727

    Article  Google Scholar 

  • Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41(12):2034–2057

    Article  Google Scholar 

  • Macchelli A, Melchiorri C, Stramigioli S (2009) Port-based modeling and simulation of mechanical systems with rigid and flexible links. IEEE Trans Robot 25(5):1016–1029

    Article  Google Scholar 

  • Manti M, Cacucciolo V, Cianchetti M (2016) Stiffening in soft robotics: a review of the state of the art. IEEE Robot Autom Mag 23(3):93–106

    Article  Google Scholar 

  • Mettin U, La Hera PX, Freidovich LB, Shiriaev AS (2010) Parallel elastic actuators as a control tool for preplanned trajectories of underactuated mechanical systems. Int J Robot Res 29(9):1186–1198

    Article  Google Scholar 

  • Negrello F, Settimi A, Caporale D, Lentini G, Poggiani M, Kanoulas D, Muratore L, Luberto E, Santaera G, Ciarleglio L, Ermini L (2018) Walk-man humanoid robot: field experiments in a post-earthquake scenario. IEEE Robot Autom Mag 99:1–1

    Google Scholar 

  • Niiyama R, Nagakubo A, Kuniyoshi Y (2007) Mowgli: a bipedal jumping and landing robot with an artificial musculoskeletal system. In: Robotics and Automation, 2007 IEEE International Conference on, pp 2546–2551. IEEE

    Google Scholar 

  • Palagi S, Mark AG, Reigh SY, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N et al (2016) Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater 15(6):647

    Article  Google Scholar 

  • Sung-Jin Park, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, Lind JU, Campbell PH, Dauth S, Capulli AK et al (2016) Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353(6295): 158–162

    Article  Google Scholar 

  • Pfeifer R, Lungarella M, Iida F (2012) The challenges ahead for bio-inspired’soft’robotics. Commun ACM 55(11):76–87

    Article  Google Scholar 

  • Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst 73: 135–143

    Article  Google Scholar 

  • Pratt GA, Williamson MM (1995) Series elastic actuators. In: Intelligent Robots and Systems 95. ’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol 1, pp 399–406. IEEE

    Google Scholar 

  • Preston DJ, Rothemund P, Jiang HJ, Nemitz MP, Rawson J, Suo Z, Whitesides GM (2019) Digital logic for soft devices. Proc Natl Acad Sci 116(16):7750–7759

    Article  Google Scholar 

  • Ranzani T, Gerboni G, Cianchetti M, Menciassi A (2015) A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration Biomimetics 10(3):035008

    Article  Google Scholar 

  • Renda F, Boyer F, Dias J, Seneviratne L (2018) Discrete Cosserat approach for multisection soft manipulator dynamics. IEEE Trans Robot

    Book  Google Scholar 

  • Roberts TJ, Azizi E (2011) Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J Exp Biol 214(3):353–361

    Article  Google Scholar 

  • Robertson MA, Paik J (2017) New soft robots really suck: Vacuum-powered systems empower diverse capabilities. Sci Robot 2(9):eaan6357

    Google Scholar 

  • Robinson G, Davies JBC (1999) Continuum robots-a state of the art. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol 4, pp 2849–2854. IEEE

    Google Scholar 

  • Roche ET, Horvath MA, Wamala I, Alazmani A, Song S-E, Whyte W, Machaidze Z, Payne CJ, Weaver JC, Fishbein G et al (2017) Soft robotic sleeve supports heart function. Sci Transl Med 9(373):eaaf3925

    Google Scholar 

  • Rollinson D, Bilgen Y, Brown B, Enner F, Ford S, Layton C, Rembisz J, Schwerin M, Willig A, Velagapudi P et al (2014) Design and architecture of a series elastic snake robot. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE, pp 4630–4636

    Google Scholar 

  • Sadati SMH, Naghibi SE, Walker ID, Althoefer K, Nanayakkara T (2018) Control space reduction and real-time accurate modeling of continuum manipulators using Ritz and Ritz–Galerkin methods. IEEE Robot Autom Lett 3(1):328–335

    Article  Google Scholar 

  • Sadeghi A, Tonazzini A, Popova L, Mazzolai B (2014) A novel growing device inspired by plant root soil penetration behaviors. PloS One 9(2):e90139

    Article  Google Scholar 

  • Seok S, Onal CD, Wood R, Rus D, Kim S (2010) Peristaltic locomotion with antagonistic actuators in soft robotics. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp 1228–1233. IEEE

    Google Scholar 

  • Sharbafi MA, Rode C, Kurowski S, Scholz D, Möckel R, Radkhah K, Zhao G, Rashty AM, von Stryk O, Seyfarth A (2016) A new biarticular actuator design facilitates control of leg function in biobiped3. Bioinspiration Biomimetics 11(4):046003

    Article  Google Scholar 

  • Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA, Mazzeo AD, Chen X, Wang M, Whitesides GM (2011) Multigait soft robot. Proc Natl Acad Sci 108(51):20400–20403

    Article  Google Scholar 

  • Spong M, Khorasani K, Kokotovic P (1987) An integral manifold approach to the feedback control of flexible joint robots. IEEE J Robot Autom 3(4):291–300

    Article  Google Scholar 

  • Spröwitz AT, Tuleu A, Ajallooeian M, Vespignani M, Möckel R, Eckert P, D’Haene M, Degrave J, Nordmann A, Schrauwen B et al (2018) Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs. Front Robot AI 5

    Google Scholar 

  • Suzumori K, Iikura S, Tanaka H (1991) Development of flexible microactuator and its applications to robotic mechanisms. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, pp 1622–1627. IEEE

    Google Scholar 

  • Takeichi M, Suzumori K, Endo G, Nabae H (2017) Development of giacometti arm with balloon body. IEEE Robot Autom Lett 2(2):951–957

    Article  Google Scholar 

  • Taylor DC, Dalton Jr JD, Seaber AV, Garrett Jr WE (1990) Viscoelastic properties of muscle-tendon units: the biomechanical effects of stretching. Am J Sports Med 18(3):300–309

    Article  Google Scholar 

  • Thuruthel TG, Falotico E, Renda F, Laschi C (2017) Learning dynamic models for open loop predictive control of soft robotic manipulators. Bioinspiration Biomimetics 12(6):066003

    Article  Google Scholar 

  • Tolley MT, Shepherd RF, Mosadegh B, Galloway KC, Wehner M, Karpelson M, Wood RJ, Whitesides GM (2014) A resilient, untethered soft robot. Soft Robot 1(3):213–223

    Article  Google Scholar 

  • Trivedi D, Lotfi A, Rahn CD (2008) Geometrically exact models for soft robotic manipulators. IEEE Trans Robot 24(4):773–780

    Article  Google Scholar 

  • Truby RL, Della Santina C, Rus D (2020) Distributed proprioception of 3d configuration in soft, sensorized robots via deep learning. In: Robotics and Automation (ICRA), 2020 IEEE International Conference on. IEEE

    Google Scholar 

  • Tsagarakis NG, Morfey S, Cerda GM, Zhibin L, Caldwell DG (2013) Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, pp 673–678

    Google Scholar 

  • Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano MG, Eiberger O, Friedl W, Ganesh G et al (2013) Variable impedance actuators: a review. Robot Auton Syst 61(12):1601–1614

    Article  Google Scholar 

  • Verrelst B, Van Ham R, Vanderborght B, Daerden F, Lefeber D, Vermeulen J (2005) The pneumatic biped Lucy actuated with pleated pneumatic artificial muscles. Auton Robots 18(2):201–213

    Article  Google Scholar 

  • Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (robojelly) actuated by shape memory alloy composite actuators. Bioinspiration Biomimetics 6(3):036004

    Article  Google Scholar 

  • Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617):451

    Article  Google Scholar 

  • Zappetti D, Mintchev S, Shintake J, Floreano D (2017) Bio-inspired tensegrity soft modular robots. In: Conference on Biomimetic and Biohybrid Systems, pp 497–508. Springer

    Google Scholar 

  • Zinn M, Khatib O, Roth B, Salisbury JK (2004) Playing it safe [human-friendly robots]. IEEE Robot Autom Mag 11(2):12–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel G. Catalano or Antonio Bicchi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Della Santina, C., Catalano, M.G., Bicchi, A. (2020). Soft Robots. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_146-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_146-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Soft Robots
    Published:
    04 February 2021

    DOI: https://doi.org/10.1007/978-3-642-41610-1_146-2

  2. Original

    Soft Robots
    Published:
    05 November 2020

    DOI: https://doi.org/10.1007/978-3-642-41610-1_146-1