Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H. Ang, Oussama Khatib, Bruno Siciliano

Soft Robots

  • Cosimo Della Santina
  • Manuel G. CatalanoEmail author
  • Antonio BicchiEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_146-1



Soft robots are robotic systems with purposefully designed compliant elements embedded into their mechanical structure.


The physical characteristics of animals’ bodies are substantially different from those of classic robots. Elastic tendons, ligaments, and muscles enable animals to robustly interact with the external world and perform dynamic tasks (Fig. 1). The function of elastic elements in natural bodies is discussed in Roberts and Azizi (2011) and summarized in Table 1.
This is a preview of subscription content, log in to check access.


  1. Albu-Schäffer A, Bicchi A (2016) Actuators for soft robotics. In: Springer handbook of robotics. Springer, Berlin, pp 499–530CrossRefGoogle Scholar
  2. Albu-Schäffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimbock T, Wolf S, Hirzinger G (2008) Soft robotics. IEEE Robot Autom Mag 15(3):20–30CrossRefGoogle Scholar
  3. Albu-Schäffer A, Ott C, Hirzinger G (2007) A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1):23–39zbMATHCrossRefGoogle Scholar
  4. Albu-Schäffer A, Wolf S, Eiberger O, Haddadin S, Petit F, Chalon M (2010) Dynamic modelling and control of variable stiffness actuators. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on. IEEE, pp 2155–2162Google Scholar
  5. Araromi OA, Gavrilovich I, Shintake J, Rosset S, Richard M, Gass V, Shea HR (2015) Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans Mechatron 20(1):438–446CrossRefGoogle Scholar
  6. Asano Y, Okada K, Inaba M (2017) Design principles of a human mimetic humanoid: humanoid platform to study human intelligence and internal body system. Sci Robot 2(13):eaaq0899Google Scholar
  7. Boxerbaum AS, Shaw KM, Chiel HJ, Quinn RD (2012) Continuous wave peristaltic motion in a robot. Int J Robot Res 31(3):302–318CrossRefGoogle Scholar
  8. Buchli J, Iida F, Ijspeert AJ (2006) Finding resonance: adaptive frequency oscillators for dynamic legged locomotion. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE, pp 3903–3909Google Scholar
  9. Buondonno G, De Luca A (2016) Efficient computation of inverse dynamics and feedback linearization for VSA-based robots. IEEE Robot Autom Lett 1(2):908–915CrossRefGoogle Scholar
  10. Carpi F, De Rossi D, Kornbluh R, Pelrine RE, Sommer-Larsen P (2011) Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, Amsterdam, NetherlandsGoogle Scholar
  11. Carpino G, Accoto D, Sergi F, Tagliamonte NL, Guglielmelli E (2012) A novel compact torsional spring for series elastic actuators for assistive wearable robots. J Mech Des 134(12):121002CrossRefGoogle Scholar
  12. Catalano M, Grioli G, Garabini M, Belo FW, Di Basco A, Tsagarakis N, Bicchi A (2012) A variable damping module for variable impedance actuation. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, pp 2666–2672Google Scholar
  13. Chenevier J, González D, Aguado JV, Chinesta F, Cueto E (2018) Reduced-order modeling of soft robots. PLoS One 13(2):e0192052CrossRefGoogle Scholar
  14. Cheney N, Bongard J, Vytas SunSpiral, Lipson H (2018) Scalable co-optimization of morphology and control in embodied machines. J R Soc Interface 15(143):20170937CrossRefGoogle Scholar
  15. Chirikjian GS (1994) Hyper-redundant manipulator dynamics: a continuum approximation. Adv Robot 9(3):217–243CrossRefGoogle Scholar
  16. Culha U, Hughes J, Rosendo A, Giardina F, Iida F (2017) Design principles for soft-rigid hybrid manipulators. In: Soft robotics: trends, applications and challenges. Springer, Berlin, pp 87–94CrossRefGoogle Scholar
  17. De Luca A, Book W (2008) Robots with flexible elements. In: Springer handbook of robotics. Springer, Berlin, pp 287–319CrossRefGoogle Scholar
  18. De Luca A, Flacco F (2010) Dynamic gravity cancellation in robots with flexible transmissions. In: Decision and Control (CDC), 2010 49th IEEE Conference on. Citeseer, pp 288–295Google Scholar
  19. De Luca A, Siciliano B, Zollo L (2005) Pd control with on-line gravity compensation for robots with elastic joints: theory and experiments. Automatica 41(10):1809–1819MathSciNetzbMATHCrossRefGoogle Scholar
  20. Deimel R, Brock O (2016) A novel type of compliant and underactuated robotic hand for dexterous grasping. Int J Robot Res 35(1–3):161–185CrossRefGoogle Scholar
  21. Della Santina C, Bianchi M, Grioli G, Angelini F, Catalano M, Garabini M, Bicchi A (2017) Controlling soft robots: balancing feedback and feedforward elements. IEEE Robot Autom Mag 24(3):75–83CrossRefGoogle Scholar
  22. Della Santina C, Katzschmann RK, Bicchi A, Rus D (2019) Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. Int J Robot Res 0278364919897292Google Scholar
  23. Della Santina C, Piazza C, Gasparri GM, Bonilla M, Catalano MG, Grioli G, Garabini M, Bicchi A (2017) The quest for natural machine motion: an open platform to fast-prototyping articulated soft robots. IEEE Robot Autom Mag 24(1):48–56CrossRefGoogle Scholar
  24. Dickey MD (2017) Stretchable and soft electronics using liquid metals. Adv Mat 29(27):1606425CrossRefGoogle Scholar
  25. Dill EH (1992) Kirchhoff’s theory of rods. Arch Hist Exact Sci 44(1):1–23MathSciNetzbMATHCrossRefGoogle Scholar
  26. Doyle CE, Bird JJ, Isom TA, Kallman JC, Bareiss DF, Dunlop DJ, King RJ, Abbott JJ, Minor MA (2013) An avian-inspired passive mechanism for quadrotor perching. IEEE/ASME Trans Mechatron 18(2): 506–517CrossRefGoogle Scholar
  27. Duriez C (2013) Control of elastic soft robots based on real-time finite element method. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp 3982–3987. IEEEGoogle Scholar
  28. Feldman AG, Levin MF (2009) The equilibrium-point hypothesis–past, present and future. In: Progress in motor control. Springer, Berlin, pp 699–726CrossRefGoogle Scholar
  29. Frame J, Lopez N, Curet O, Engeberg ED (2018) Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspiration Biomimetics 13(6):064001CrossRefGoogle Scholar
  30. Fras J, Noh Y, Macias M, Wurdemann H, Althoefer K (2018) Bio-inspired octopus robot based on novel soft fluidic actuator. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 1583–1588Google Scholar
  31. Garabini M, Passaglia A, Belo F, Salaris P, Bicchi A (2011) Optimality principles in variable stiffness control: The VSA hammer. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, pp 3770–3775Google Scholar
  32. Garofalo G, Ott C (2017) Energy based limit cycle control of elastically actuated robots. IEEE Trans Autom Control 62(5):2490–2497MathSciNetzbMATHCrossRefGoogle Scholar
  33. George Thuruthel T, Ansari Y, Falotico E, Laschi C (2018) Control strategies for soft robotic manipulators: a survey. Soft Robot 5(2):149–163CrossRefGoogle Scholar
  34. Goswami A, Peshkin MA, Colgate JE (1990) Passive robotics: an exploration of mechanical computation. In: Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on. IEEE, pp 279–284Google Scholar
  35. Grazioso S, Di Gironimo G, Bruno S (2018) A geometrically exact model for soft continuum robots: the finite element deformation space formulation. Soft Robot 6(6):790–811CrossRefGoogle Scholar
  36. Grebenstein M, Albu-Schäffer A, Bahls T, Chalon M, Eiberger O, Friedl W, Gruber R, Haddadin S, Hagn U, Haslinger R et al (2011) The DLR hand arm system. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, pp 3175–3182Google Scholar
  37. Green AE, Naghdi PM, Wenner ML (1974) On the theory of rods. I. Derivations from the three-dimensional equations. Proc R Soc Lond A 337(1611):451–483Google Scholar
  38. Greer JD, Morimoto TK, Okamura AM, Hawkes EW (2018) A soft, steerable continuum robot that grows via tip extension. Soft Robot 6(1):95–108CrossRefGoogle Scholar
  39. Haldane DW, Plecnik MM, Yim JK, Fearing RS (2016) Robotic vertical jumping agility via series-elastic power modulation. Sci Robot 1(1)Google Scholar
  40. Hauser H, Ijspeert AJ, Füchslin RM, Pfeifer R, Maass W (2011) Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 105(5–6):355–370MathSciNetzbMATHCrossRefGoogle Scholar
  41. Herr H, Dennis RG (2004) A swimming robot actuated by living muscle tissue. J Neuroeng Rehabil 1(1):6CrossRefGoogle Scholar
  42. Howell LL, Magleby SP, Olsen BM (2013) Handbook of compliant mechanisms. John Wiley & Sons, Hoboken, New JerseyCrossRefGoogle Scholar
  43. Huang C, Jiu-an LV, Tian X, Wang Y, Yu Y, Liu J (2015) Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci Rep 5:17414CrossRefGoogle Scholar
  44. Hutter M, Gehring C, Jud D, Lauber A, Bellicoso CD, Tsounis V, Hwangbo J, Bodie K, Fankhauser P, Bloesch M et al (2016) Anymal-a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 38–44Google Scholar
  45. Iida F, Rummel J, Seyfarth A (2008) Bipedal walking and running with spring-like biarticular muscles. J Biomech 41(3):656–667CrossRefGoogle Scholar
  46. Katzschmann RK, DelPreto J, MacCurdy R, Rus D (2018) Exploration of underwater life with an acoustically controlled soft robotic fish. Sci Robot 3(16):eaar3449Google Scholar
  47. Keppler M, Lakatos D, Ott C, Albu-Schäffer A (2018) Elastic structure preserving (ESP) control for compliantly actuated robots. IEEE Trans Robot 34(2): 317–335CrossRefGoogle Scholar
  48. Kiang CT, Spowage A, Yoong CK (2015) Review of control and sensor system of flexible manipulator. J Intell Robot Syst 77(1):187–213CrossRefGoogle Scholar
  49. Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR et al (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24(1):65–74CrossRefGoogle Scholar
  50. Laffranchi M, Tsagarakis NG, Caldwell DG (2013) Compact arm: a compliant manipulator with intrinsic variable physical damping. In: Robotics: science and systems, vol 8, p 225Google Scholar
  51. Lakatos D, Ploeger K, Loeffl F, Seidel D, Schmidt F, Gumpert T, John F, Bertram T, Albu-Schäffer A (2018) Dynamic locomotion gaits of a compliantly actuated quadruped with slip-like articulated legs embodied in the mechanical design. IEEE Robot Autom Lett 3(4):3908–3915CrossRefGoogle Scholar
  52. Lanini J, Razavi H, Urain J, Ijspeert A (2018) Human intention detection as a multiclass classification problem: Application in physical human–robot interaction while walking. IEEE Robot Autom Lett 3(4):4171–4178CrossRefGoogle Scholar
  53. Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, Mazzolai B, Shepherd R (2016) Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351(6277):1071–1074CrossRefGoogle Scholar
  54. Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P (2012) Soft robot arm inspired by the octopus. Adv Robot 26(7):709–727CrossRefGoogle Scholar
  55. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41(12):2034–2057CrossRefGoogle Scholar
  56. Macchelli A, Melchiorri C, Stramigioli S (2009) Port-based modeling and simulation of mechanical systems with rigid and flexible links. IEEE Trans Robot 25(5):1016–1029CrossRefGoogle Scholar
  57. Manti M, Cacucciolo V, Cianchetti M (2016) Stiffening in soft robotics: a review of the state of the art. IEEE Robot Autom Mag 23(3):93–106CrossRefGoogle Scholar
  58. Mettin U, La Hera PX, Freidovich LB, Shiriaev AS (2010) Parallel elastic actuators as a control tool for preplanned trajectories of underactuated mechanical systems. Int J Robot Res 29(9):1186–1198CrossRefGoogle Scholar
  59. Negrello F, Settimi A, Caporale D, Lentini G, Poggiani M, Kanoulas D, Muratore L, Luberto E, Santaera G, Ciarleglio L, Ermini L (2018) Walk-man humanoid robot: field experiments in a post-earthquake scenario. IEEE Robot Autom Mag 99:1–1Google Scholar
  60. Niiyama R, Nagakubo A, Kuniyoshi Y (2007) Mowgli: a bipedal jumping and landing robot with an artificial musculoskeletal system. In: Robotics and Automation, 2007 IEEE International Conference on, pp 2546–2551. IEEEGoogle Scholar
  61. Palagi S, Mark AG, Reigh SY, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez-Castillo A, Kapernaum N et al (2016) Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater 15(6):647CrossRefGoogle Scholar
  62. Sung-Jin Park, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, Lind JU, Campbell PH, Dauth S, Capulli AK et al (2016) Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353(6295): 158–162CrossRefGoogle Scholar
  63. Pfeifer R, Lungarella M, Iida F (2012) The challenges ahead for bio-inspired’soft’robotics. Commun ACM 55(11):76–87CrossRefGoogle Scholar
  64. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst 73: 135–143CrossRefGoogle Scholar
  65. Pratt GA, Williamson MM (1995) Series elastic actuators. In: Intelligent Robots and Systems 95. ’Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, vol 1, pp 399–406. IEEEGoogle Scholar
  66. Preston DJ, Rothemund P, Jiang HJ, Nemitz MP, Rawson J, Suo Z, Whitesides GM (2019) Digital logic for soft devices. Proc Natl Acad Sci 116(16):7750–7759CrossRefGoogle Scholar
  67. Ranzani T, Gerboni G, Cianchetti M, Menciassi A (2015) A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration Biomimetics 10(3):035008CrossRefGoogle Scholar
  68. Renda F, Boyer F, Dias J, Seneviratne L (2018) Discrete Cosserat approach for multisection soft manipulator dynamics. IEEE Trans RobotCrossRefGoogle Scholar
  69. Roberts TJ, Azizi E (2011) Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J Exp Biol 214(3):353–361CrossRefGoogle Scholar
  70. Robertson MA, Paik J (2017) New soft robots really suck: Vacuum-powered systems empower diverse capabilities. Sci Robot 2(9):eaan6357Google Scholar
  71. Robinson G, Davies JBC (1999) Continuum robots-a state of the art. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol 4, pp 2849–2854. IEEEGoogle Scholar
  72. Roche ET, Horvath MA, Wamala I, Alazmani A, Song S-E, Whyte W, Machaidze Z, Payne CJ, Weaver JC, Fishbein G et al (2017) Soft robotic sleeve supports heart function. Sci Transl Med 9(373):eaaf3925Google Scholar
  73. Rollinson D, Bilgen Y, Brown B, Enner F, Ford S, Layton C, Rembisz J, Schwerin M, Willig A, Velagapudi P et al (2014) Design and architecture of a series elastic snake robot. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE, pp 4630–4636Google Scholar
  74. Sadati SMH, Naghibi SE, Walker ID, Althoefer K, Nanayakkara T (2018) Control space reduction and real-time accurate modeling of continuum manipulators using Ritz and Ritz–Galerkin methods. IEEE Robot Autom Lett 3(1):328–335CrossRefGoogle Scholar
  75. Sadeghi A, Tonazzini A, Popova L, Mazzolai B (2014) A novel growing device inspired by plant root soil penetration behaviors. PloS One 9(2):e90139CrossRefGoogle Scholar
  76. Seok S, Onal CD, Wood R, Rus D, Kim S (2010) Peristaltic locomotion with antagonistic actuators in soft robotics. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, pp 1228–1233. IEEEGoogle Scholar
  77. Sharbafi MA, Rode C, Kurowski S, Scholz D, Möckel R, Radkhah K, Zhao G, Rashty AM, von Stryk O, Seyfarth A (2016) A new biarticular actuator design facilitates control of leg function in biobiped3. Bioinspiration Biomimetics 11(4):046003CrossRefGoogle Scholar
  78. Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA, Mazzeo AD, Chen X, Wang M, Whitesides GM (2011) Multigait soft robot. Proc Natl Acad Sci 108(51):20400–20403CrossRefGoogle Scholar
  79. Spong M, Khorasani K, Kokotovic P (1987) An integral manifold approach to the feedback control of flexible joint robots. IEEE J Robot Autom 3(4):291–300CrossRefGoogle Scholar
  80. Spröwitz AT, Tuleu A, Ajallooeian M, Vespignani M, Möckel R, Eckert P, D’Haene M, Degrave J, Nordmann A, Schrauwen B et al (2018) Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs. Front Robot AI 5Google Scholar
  81. Suzumori K, Iikura S, Tanaka H (1991) Development of flexible microactuator and its applications to robotic mechanisms. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, pp 1622–1627. IEEEGoogle Scholar
  82. Takeichi M, Suzumori K, Endo G, Nabae H (2017) Development of giacometti arm with balloon body. IEEE Robot Autom Lett 2(2):951–957CrossRefGoogle Scholar
  83. Taylor DC, Dalton Jr JD, Seaber AV, Garrett Jr WE (1990) Viscoelastic properties of muscle-tendon units: the biomechanical effects of stretching. Am J Sports Med 18(3):300–309CrossRefGoogle Scholar
  84. Thuruthel TG, Falotico E, Renda F, Laschi C (2017) Learning dynamic models for open loop predictive control of soft robotic manipulators. Bioinspiration Biomimetics 12(6):066003CrossRefGoogle Scholar
  85. Tolley MT, Shepherd RF, Mosadegh B, Galloway KC, Wehner M, Karpelson M, Wood RJ, Whitesides GM (2014) A resilient, untethered soft robot. Soft Robot 1(3):213–223CrossRefGoogle Scholar
  86. Trivedi D, Lotfi A, Rahn CD (2008) Geometrically exact models for soft robotic manipulators. IEEE Trans Robot 24(4):773–780CrossRefGoogle Scholar
  87. Truby RL, Della Santina C, Rus D (2020) Distributed proprioception of 3d configuration in soft, sensorized robots via deep learning. In: Robotics and Automation (ICRA), 2020 IEEE International Conference on. IEEEGoogle Scholar
  88. Tsagarakis NG, Morfey S, Cerda GM, Zhibin L, Caldwell DG (2013) Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, pp 673–678Google Scholar
  89. Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano MG, Eiberger O, Friedl W, Ganesh G et al (2013) Variable impedance actuators: a review. Robot Auton Syst 61(12):1601–1614CrossRefGoogle Scholar
  90. Verrelst B, Van Ham R, Vanderborght B, Daerden F, Lefeber D, Vermeulen J (2005) The pneumatic biped Lucy actuated with pleated pneumatic artificial muscles. Auton Robots 18(2):201–213CrossRefGoogle Scholar
  91. Villanueva A, Smith C, Priya S (2011) A biomimetic robotic jellyfish (robojelly) actuated by shape memory alloy composite actuators. Bioinspiration Biomimetics 6(3):036004CrossRefGoogle Scholar
  92. Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617):451CrossRefGoogle Scholar
  93. Zappetti D, Mintchev S, Shintake J, Floreano D (2017) Bio-inspired tensegrity soft modular robots. In: Conference on Biomimetic and Biohybrid Systems, pp 497–508. SpringerGoogle Scholar
  94. Zinn M, Khatib O, Roth B, Salisbury JK (2004) Playing it safe [human-friendly robots]. IEEE Robot Autom Mag 11(2):12–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Cognitive Robotics DepartmentDelft University of TechnologyDelftNetherlands
  2. 2.Institute of Robotics and MechatronicsGerman Aerospace CenterWeßlingGermany
  3. 3.Soft Robotics for Human Cooperation and RehabilitationIstituto Italiano di TecnologiaGenovaItaly
  4. 4.Centro di Ricerca Enrico PiaggioUniversità di PisaPisaItaly

Section editors and affiliations

  • Clément Gosselin
    • 1
  1. 1.Laboratoire de robotique, Département de génie mécaniqueUniversité LavalQuébecCanada