Skip to main content

Hybrid Force and Position Control

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Hybrid force and motion control; Hybrid force and velocity control

Definition

Control algorithm for a robot manipulator executing a task involving physical interaction with the environment, which consists in controlling the robot’s position along some task directions and the exchanged force along other task directions.

Overview

Robots can be used to accomplish operations involving physical interaction, with the exchange of forces with the environment. For these applications, suitable control strategies able to control not only the robot’s motion but also the exchanged force must be adopted. The interaction may happen in any part of the robot’s body. The focus here is on the case that the contact occurs at the end effector of the manipulator.

There are tasks where the environment imposes kinematic constraints to the end-effector motion. In these situations, the interaction forces include the constraint forces, i.e., the reaction forces that arise when the end effector tends to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bruyninckx H, De Schutter J (1996) Specification of force-controlled actions in the “task frame formalism” – a synthesis. IEEE Trans Robot Autom 12(4):581–589

    Article  Google Scholar 

  • De Luca A, Manes C (1994) Modeling robots in contact with a dynamic environment. IEEE Trans Robot Autom 10:542–548

    Article  Google Scholar 

  • De Schutter J, Van Brussel H (1988) Compliant robot motion I. A formalism for specifying compliant motion tasks. Int J Robot Res 7(4):3–17

    Article  Google Scholar 

  • De Schutter J, De Laet T, Rutgeerts J, Decré W, Smits R, Aerbeliën E, Claes K, Bruyninckx H (2007) Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. Int J Robot Res 26(5):433–455

    Article  Google Scholar 

  • Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Autom 3:43–53

    Article  Google Scholar 

  • Kroemer O, Niekum S, Konidaris G (2021) A review of robot learning for manipulation: challenges, representations, and algorithms. J Mach Learn Res 22(30):1–82

    MathSciNet  MATH  Google Scholar 

  • Mason MT (1981) Compliance and force control for computer controlled manipulators. IEEE Trans Syst Man Cybern 11:418–432

    Article  Google Scholar 

  • McClamroch N, Wang D (1988) Feedback stabilization and tracking of constrained robots. IEEE Trans Autom Control 33(5):419–426

    Article  MathSciNet  Google Scholar 

  • Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. ASME J Dyn Syst Meas Control 103:126–133

    Article  Google Scholar 

  • Siciliano B, Sciavicco L, Villani L, Oriolo G (2009) Robotics: modelling, planning and control. Springer, London

    Book  Google Scholar 

  • Villani L, De Schutter J (2008) Force control. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 161–185

    Chapter  Google Scholar 

  • Yoshikawa T (1987) Dynamic hybrid position/force control of robot manipulators – description of hand constraints and calculation of joint driving force. IEEE J Robot Aut 3:386–392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Villani .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Villani, L. (2022). Hybrid Force and Position Control. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_110-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics