Skip to main content

Force Control

  • Reference work entry
Springer Handbook of Robotics

Abstract

A fundamental requirement for the success of a manipulation task is the capability to handle the physical contact between a robot and the environment. Pure motion control turns out to be inadequate because the unavoidable modeling errors and uncertainties may cause a rise of the contact force, ultimately leading to an unstable behavior during the interaction, especially in the presence of rigid environments. Force feedback and force control becomes mandatory to achieve a robust and versatile behavior of a robotic system in poorly structured environments as well as safe and dependable operation in the presence of humans. This chapter starts from the analysis of indirect force control strategies, conceived to keep the contact forces limited by ensuring a suitable compliant behavior to the end effector, without requiring an accurate model of the environment. Then the problem of interaction tasks modeling is analyzed, considering both the case of a rigid environment and the case of a compliant environment. For the specification of an interaction task, natural constraints set by the task geometry and artificial constraints set by the control strategy are established, with respect to suitable task frames. This formulation is the essential premise to the synthesis of hybrid force/motion control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DOF:

degree of freedom

PD:

proportional-derivative

PI:

policy iteration

RCC:

remote center of compliance

References

  1. T.L. De Fazio, D.S. Seltzer, D.E. Whitney: The instrumented remote center of compliance, Ind. Robot 11(4), 238–242 (1984)

    Google Scholar 

  2. J. De Schutter, H. Van Brussel: Compliant robot motion II. A control approach based on external control loops, Int. J. Robot. Res. 7(4), 18–33 (1988)

    Article  Google Scholar 

  3. I. Nevins, D.E. Whitney: The force vector assembler concept, First CISM-IFToMM Symp. Theory Pract. Robot. Manip. (Udine 1973)

    Google Scholar 

  4. M.T. Mason, J.K. Salisbury: Robot Hands and Mechanics of Manipulation (MIT Press, Cambridge 1985)

    Google Scholar 

  5. J.Y.S. Luh, W.D. Fisher, R.P.C. Paul: Joint torque control by direct feedback for industrial robots, IEEE Trans. Autom. Contr. 28, 153–161 (1983)

    Article  MATH  Google Scholar 

  6. G. Hirzinger, N. Sporer, A. Albu-Shäffer, M. Hähnle, R. Krenn, A. Pascucci, R. Schedl: DLRʼs torque-controlled light weight robot III – are we reaching the technological limits now?, IEEE Int. Conf. Robot. Autom. (Washington 2002) pp. 1710–1716

    Google Scholar 

  7. N. Hogan: Impedance control: an approach to manipulation: parts I–III, ASME J. Dyn. Syst. Meas. Contr. 107, 1–24 (1985)

    Article  MATH  Google Scholar 

  8. H. Kazerooni, T.B. Sheridan, P.K. Houpt: Robust compliant motion for manipulators. Part I: the fundamental concepts of compliant motion, IEEE J. Robot. Autom. 2, 83–92 (1986)

    Google Scholar 

  9. J.K. Salisbury: Active stiffness control of a manipulator in Cartesian coordinates, 19th IEEE Conf. Decis. Contr. (Albuquerque, 1980) pp. 95–100

    Google Scholar 

  10. D.E. Whitney: Force feedback control of manipulator fine motions, ASME J. Dyn. Syst. Meas. Contr. 99, 91–97 (1977)

    Article  Google Scholar 

  11. M.T. Mason: Compliance and force control for computer controlled manipulators, IEEE Trans. Syst. Man Cybern. 11, 418–432 (1981)

    Article  Google Scholar 

  12. J. De Schutter, H. Van Brussel: Compliant robot motion I. A formalism for specifying compliant motion tasks, Int. J. Robot. Res. 7(4), 3–17 (1988)

    Article  Google Scholar 

  13. M.H. Raibert, J.J. Craig: Hybrid position/force control of manipulators, ASME J. Dyn. Syst. Meas. Contr. 103, 126–133 (1981)

    Article  Google Scholar 

  14. T. Yoshikawa: Dynamic hybrid position/force control of robot manipulators – description of hand constraints and calculation of joint driving force, IEEE J. Robot. Autom. 3, 386–392 (1987)

    Article  Google Scholar 

  15. N.H. McClamroch, D. Wang: Feedback stabilization and tracking of constrained robots, IEEE Trans. Autom. Contr. 33, 419–426 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. J.K. Mills, A.A. Goldenberg: Force and position control of manipulators during constrained motion tasks, IEEE Trans. Robot. Autom. 5, 30–46 (1989)

    Article  Google Scholar 

  17. O. Khatib: A unified approach for motion and force control of robot manipulators: the operational space formulation, IEEE J. Robot. Autom. 3, 43–53 (1987)

    Article  Google Scholar 

  18. L. Villani, C. Canudas de Wit, B. Brogliato: An exponentially stable adaptive control for force and position tracking of robot manipulators, IEEE Trans. Autom. Contr. 44, 798–802 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Chiaverini, L. Sciavicco: The parallel approach to force/position control of robotic manipulators, IEEE Trans. Robot. Autom. 9, 361–373 (1993)

    Article  Google Scholar 

  20. D.E. Whitney: Historical perspective and state of the art in robot force control, Int. J. Robot. Res. 6(1), 3–14 (1987)

    Article  Google Scholar 

  21. M. Vukobratović, Y. Nakamura: Force and contact control in robotic systems., Tutorial IEEE Int. Conf. Robot. Autom. (Atlanta 1993)

    Google Scholar 

  22. J. De Schutter, H. Bruyninckx, W.H. Zhu, M.W. Spong: Force control: a birdʼs eye view. In: Control Problems in Robotics and Automation, ed. by K.P. Valavanis, B. Siciliano (Springer, Berlin, Heidelberg 1998) pp. 1–17

    Chapter  Google Scholar 

  23. D.M. Gorinevski, A.M. Formalsky, A.Yu. Schneider: Force Control of Robotics Systems (CRC Press, Boca Raton 1997)

    Google Scholar 

  24. B. Siciliano, L. Villani: Robot Force Control (Kluwer Academic Publishers, Boston 1999)

    MATH  Google Scholar 

  25. D.E. Whitney: Quasi-static assembly of compliantly supported rigid parts, ASME J. Dyn. Syst. Meas. Contr. 104, 65–77 (1982)

    Article  MATH  Google Scholar 

  26. N. Hogan: On the stability of manipulators performing contact tasks, IEEE J. Robot. Autom. 4, 677–686 (1988)

    Article  Google Scholar 

  27. H. Kazerooni: Contact instability of the direct drive robot when constrained by a rigid environment, IEEE Trans. Autom. Contr. 35, 710–714 (1990)

    Article  MATH  Google Scholar 

  28. R. Kelly, R. Carelli, M. Amestegui, R. Ortega: Adaptive impedance control of robot manipulators, IASTED Int. J. Robot. Autom. 4(3), 134–141 (1989)

    Google Scholar 

  29. R. Colbaugh, H. Seraji, K. Glass: Direct adaptive impedance control of robot manipulators, J. Robot. Syst. 10, 217–248 (1993)

    Article  MATH  Google Scholar 

  30. Z. Lu, A.A. Goldenberg: Robust impedance control and force regulation: theory and experiments, Int. J. Robot. Res. 14, 225–254 (1995)

    Article  Google Scholar 

  31. R.J. Anderson, M.W. Spong: Hybrid impedance control of robotic manipulators, IEEE J. Robot. Autom. 4, 549–556 (1988)

    Article  Google Scholar 

  32. J. Lončarić: Normal forms of stiffness and compliance matrices, IEEE J. Robot. Autom. 3, 567–572 (1987)

    Article  Google Scholar 

  33. T. Patterson, H. Lipkin: Structure of robot compliance, ASME J. Mech. Design 115, 576–580 (1993)

    Article  Google Scholar 

  34. E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: part I – General theory and geometric potential function method, ASME J. Dyn. Syst. Meas. Contr. 120, 496–500 (1998)

    Article  Google Scholar 

  35. E.D. Fasse, P.C. Breedveld: Modelling of elastically coupled bodies: part II – Exponential and generalized coordinate method, ASME J. Dyn. Syst. Meas. Contr. 120, 501–506 (1998)

    Article  Google Scholar 

  36. R.L. Hollis, S.E. Salcudean, A.P. Allan: A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling and control, IEEE Trans. Robot. Autom. 7, 320–333 (1991)

    Article  Google Scholar 

  37. M.A. Peshkin: Programmed compliance for error corrective assembly, IEEE Trans. Robot. Autom. 6, 473–482 (1990)

    Article  Google Scholar 

  38. J.M. Shimmels, M.A. Peshkin: Admittance matrix design for force-guided assembly, IEEE Trans. Robot. Autom. 8, 213–227 (1992)

    Article  Google Scholar 

  39. E.D. Fasse, J.F. Broenink: A spatial impedance controller for robotic manipulation, IEEE Trans. Robot. Autom. 13, 546–556 (1997)

    Article  Google Scholar 

  40. F. Caccavale, C. Natale, B. Siciliano, L. Villani: Six-DOF impedance control based on angle/axis representations, IEEE Trans. Robot. Autom. 15, 289–300 (1999)

    Article  Google Scholar 

  41. F. Caccavale, C. Natale, B. Siciliano, L. Villani: Robot impedance control with nondiagonal stiffness, IEEE Trans. Autom. Contr. 44, 1943–1946 (1999)

    Article  MATH  Google Scholar 

  42. S. Stramigioli: Modeling and IPC Control of Interactive Mechanical Systems – A Coordinate Free Approach, Lecture Notes in Control and Information Sciences (Springer, London 2001)

    MATH  Google Scholar 

  43. H. Bruyninckx, J. De Schutter: Specification of Force-controlled actions in the “task frame formalism” – a synthesis, IEEE Trans. Robot. Autom. 12, 581–589 (1996)

    Article  Google Scholar 

  44. H. Lipkin, J. Duffy: Hybrid twist and wrench control for a robotic manipulator, ASME J. Mech. Trans. Autom. Des. 110, 138–144 (1988)

    Article  Google Scholar 

  45. J. Duffy: The fallacy of modern hybrid control theory that is based on ‘orthogonal complements’ of twist and wrench spaces, J. Robot. Syst. 7, 139–144 (1990)

    Article  Google Scholar 

  46. K.L. Doty, C. Melchiorri, C. Bonivento: A theory of generalized inverses applied to robotics, Int. J. Robot. Res. 12, 1–19 (1993)

    Article  Google Scholar 

  47. T. Patterson, H. Lipkin: Duality of constrained elastic manipulation, IEEE Conf. Robot. Autom. (Sacramento 1991) pp. 2820–2825

    Google Scholar 

  48. J. De Schutter, H. Bruyninckx, S. Dutré, J. De Geeter, J. Katupitiya, S. Demey, T. Lefebvre: Estimation first-order geometric parameters and monitoring contact transitions during force-controlled compliant motions, Int. J. Robot. Res. 18(12), 1161–1184 (1999)

    Article  Google Scholar 

  49. T. Lefebvre, H. Bruyninckx, J. De Schutter: Polyedral contact formation identification for auntonomous compliant motion, IEEE Trans. Robot. Autom. 19, 26–41 (2007)

    Article  Google Scholar 

  50. J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aerbeliën, K. Claes, H. Bruyninckx: Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty, Int. J. Robot. Res. 26(5), 433–455 (2007)

    Article  Google Scholar 

  51. A. De Luca, C. Manes: Modeling robots in contact with a dynamic environment, IEEE Trans. Robot. Autom. 10, 542–548 (1994)

    Article  Google Scholar 

  52. T. Yoshikawa, T. Sugie, N. Tanaka: Dynamic hybrid position/force control of robot manipulators – controller design and experiment, IEEE J. Robot. Autom. 4, 699–705 (1988)

    Article  Google Scholar 

  53. J. De Schutter, D. Torfs, H. Bruyninckx, S. Dutré: Invariant hybrid force/position control of a velocity controlled robot with compliant end effector using modal decoupling, Int. J. Robot. Res. 16(3), 340–356 (1997)

    Article  Google Scholar 

  54. R. Lozano, B. Brogliato: Adaptive hybrid force-position control for redundant manipulators, IEEE Trans. Autom. Contr. 37, 1501–1505 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  55. L.L. Whitcomb, S. Arimoto, T. Naniwa, F. Ozaki: Adaptive model-based hybrid control if geometrically constrained robots, IEEE Trans. Robot. Autom. 13, 105–116 (1997)

    Article  Google Scholar 

  56. B. Yao, S.P. Chan, D. Wang: Unified formulation of variable structure control schemes for robot manipulators, IEEE Trans. Autom. Contr. 39, 371–376 (1992)

    MathSciNet  Google Scholar 

  57. S. Chiaverini, B. Siciliano, L. Villani: Force/position regulation of compliant robot manipulators, IEEE Trans. Autom. Contr. 39, 647–652 (1994)

    Article  MATH  Google Scholar 

  58. J.T.-Y. Wen, S. Murphy: Stability analysis of position and force control for robot arms, IEEE Trans. Autom. Contr. 36, 365–371 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  59. R. Volpe, P. Khosla: A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Trans. Autom. Contr. 38, 1634–1650 (1993)

    Article  MathSciNet  Google Scholar 

  60. L.S. Wilfinger, J.T. Wen, S.H. Murphy: Integral force control with robustness enhancement, IEEE Contr. Syst. Mag. 14(1), 31–40 (1994)

    Article  Google Scholar 

  61. S.D. Eppinger, W.P. Seering: Introduction to dynamic models for robot force control, IEEE Contr. Syst. Mag. 7(2), 48–52 (1987)

    Article  Google Scholar 

  62. C.H. An, J.M. Hollerbach: The role of dynamic models in Cartesian force control of manipulators, Int. J. Robot. Res. 8(4), 51–72 (1989)

    Article  Google Scholar 

  63. R. Volpe, P. Khosla: A theoretical and experimental investigation of impact control for manipulators, Int. J. Robot. Res. 12, 351–365 (1993)

    Article  Google Scholar 

  64. J.K. Mills, D.M. Lokhorst: Control of robotic manipulators during general task execution: a discontinuous control approach, Int. J. Robot. Res. 12, 146–163 (1993)

    Article  Google Scholar 

  65. T.-J. Tarn, Y. Wu, N. Xi, A. Isidori: Force regulation and contact transition control, IEEE Contr. Syst. Mag. 16(1), 32–40 (1996)

    Article  Google Scholar 

  66. B. Brogliato, S. Niculescu, P. Orhant: On the control of finite dimensional mechanical systems with unilateral constraints, IEEE Trans. Autom. Contr. 42, 200–215 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luigi Villani Prof or Joris De Schutter PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Villani, L., De Schutter, J. (2008). Force Control. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics