Skip to main content

Agroforestry: Essential for Sustainable and Climate-Smart Land Use?

  • Living reference work entry
  • First Online:
Tropical Forestry Handbook

Abstract

Over the past four decades, a solid body of research has revealed the potential of agroforestry for increasing or maintaining system productivity while protecting natural resources and providing environmental services, including pollination, pest control/prevention, carbon sequestration, and the conservation of soil health, water quality, and biodiversity. Thus, agroforestry is well suited as a central tool for “sustainable intensification” within a land use paradigm that should be based, in alignment with a recent call by FAO, much more on biology and agroecology, rather than on chemistry and fossil fuels. With success stories from around the world and new methodological tools for valuing also environmental services, we can now apply these tools to design practices and systems that match the outputs of sustainable crop, tree, and animal agroforestry systems to the local needs. To custom-tailor the systems to the respective environmental and socioeconomic conditions, and rise to the challenge of sustainably producing more food that is less contaminated and less contaminating, we should advance in the following directions: (i) expand the species characterizations, (ii) widen the scope of plants and animals used and include “neglected and underutilized species” (NUS), (iii) intensify work on “using” beneficial soil organisms for soil and plant health, (iv) optimize the system design and management to maximize resource use efficiency and minimize pest incidence, (v) create climate-smart and pest-suppressive landscapes, and, finally, (vi) advance toward more holistic socioeconomic assessments including an improved valuation of environmental services. A call is made to apply also relevant experiences from other fields such as biointensive or organic production, urban agriculture, and permaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    For the roles of agroforestry for biodiversity conservation, see Schroth et al. (2004), and for the provision of ecosystem services, see Rapidel et al. (2011).

  2. 2.

    In the ideal agroforestry system, also the reverse is true: crops will improve the environment for the trees, e.g., through contributions of biologically fixed atmospheric N from N-fixing crops which can benefit the trees.

  3. 3.

    A good starting point is the USDA National Nutrient Database at www.nal.usda.gov/fnic/foodcomp/search/index.html

  4. 4.

    http://nationalzoo.si.edu/SCBI/MigratoryBirds/Coffee/default.cfm

  5. 5.

    The definition of what is “sufficiently high” depends on the ecological factors which determine or limit the capacity of “reconstruction.” Clearly, once all topsoil has been eroded, plant growth in the subsoil is greatly inhibited and the recuperation may be limited to the much slower processes of “primary succession” rather than “secondary succession,” requiring decades or even more time.

  6. 6.

    In agroecological crop production, the association of compatible crops, such as tomatoes intercropped with carrots, can prevent and suppress diseases and may increase production; see also “companion planting” and “list of companion plants” at Wikipedia.

  7. 7.

    The negative experiences with the monoclonal large-scale plantations of banana varieties illustrate the high susceptibility of such plantations to specialized diseases such as Mycosphaerella or to nematodes. When highly productive clones of cacao are planted, it may be best to establish “polyclones,” i.e., mixes of different clones, in the plantations to reduce the risks associated with disease and pest susceptibility (Phillips-Mora et al. 2013).

  8. 8.

    Hubert Sauper 2004. Darwin’s Nightmare. An Austrian-French-Belgian documentary. Nominated for the 2006 Academy Award for Documentary Feature. 102 min. https://www.youtube.com/watch?v=IV7Y9FHcdFk

References

  • Abukutsa-Onyango MO (2014) Strategic repositioning of African indigenous vegetables and fruits with nutrition, economic and climate change resilience potential. In: Gurib-Fakim A (ed) Novel plant bioresources: applications in food, medicine and cosmetics. Wiley, London, pp 361–370, Chapter 25

    Chapter  Google Scholar 

  • Akinnifesi FK, Ajayi OC, Sileshi G, Chirwa PW, Chianu J (2010) Fertilizer trees for sustainable food security in the maize-based productions systems of East and Southern Africa. A review. Agron Sustain Dev. doi:10.1051/agro/2009058

    Google Scholar 

  • Altieri MA (1999) Agroecología. Bases Cientificas para la Agricultura Sustentable. Editorial NORDAN-Comunidad, Montevideo, 325 p

    Google Scholar 

  • Altieri M (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93:1–24

    Article  Google Scholar 

  • Altieri M, Nicholls C (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–211

    Article  Google Scholar 

  • Altieri M, Nicholls C, Fritz MA (2005) Manage insects on your farm. A guide to ecological strategies. Sustainable Agriculture Network, Beltsville, 119 p

    Google Scholar 

  • Amaranthus M, Simpson L, Malajczuk N (2012) Inoculate with mycorrhizae – it’s as easy as A-B-seeds. ACRES (USA) 42(1)

    Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348(6235) doi:10.1126/science.1261071:1–6

    Google Scholar 

  • Antoniou M, Robinson C, Fagan J (2012) GMO myths and truths – an evidence-based examination of the claims made for the safety and efficacy of genetically modified crops. Earth Open Source, London, 331 p

    Google Scholar 

  • Aranda E, Barois I, Arellano P, Irissón S, Salazar T, Rodríguez J, Patron JC (1999) Vermicomposting in the tropics. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CAB International, Wallingford, pp 253–287, 300 p

    Google Scholar 

  • Avelino J, Romero-Gurdián A, Cruz-Cuellar HF, DeClerck FAJ (2012) Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol Appl 22:584–596

    Article  PubMed  Google Scholar 

  • Barantal S, Schimann H, Fromin N, Hättenschwiler S (2014) C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition. Proc R Soc B 281:20141682, http://dx.doi.org/10.1098/rspb.2014.1682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511. doi:10.1038/nature13855, pmid: 25428498

    Article  PubMed  CAS  Google Scholar 

  • Barradas VL, Fanjul L (1986) Microclimatic characterization of shaded and open-grown coffee (Coffea arabica L.) plantations in Mexico. Agric For Meteorol 38:101–112

    Article  Google Scholar 

  • Beck M (1997) The secret life of compost: a guide to static-pile composting – lawn, garden, feedlot or farm. Acres USA :170

    Google Scholar 

  • Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agroforest Syst 5:3–13

    Article  Google Scholar 

  • Beer J (1988) Litter production and nutrient cycling in coffee (Coffea arabica) or cacao (Theobroma cacao) plantations with shade trees. Agroforest Syst 7:103–114

    Article  Google Scholar 

  • Beer JW (ed) (2000) Highlights of CATIE’s agroforestry research in Latin America during the 1990s. Special issue. Agrofor Syst 51:75–175

    Google Scholar 

  • Beer J, Fassbender H, Heuveldop J (eds) (1987) Advances in agroforestry research: proceedings of a seminar. CATIE, Turrialba, 379 p. (also published in Spanish)

    Google Scholar 

  • Beer JW, Muschler RG, Somarriba E, Kass D (1998) Shade management in coffee and cacao plantations – a review. Agroforest Syst 38:139–164

    Article  Google Scholar 

  • Benavides JE (ed) (1994) Arboles y Arbustos Forrajeros en América Central, vol 236, Serie Técnica, Informe Técnico. CATIE, Turrialba, 2 Volumes. 721 p

    Google Scholar 

  • Benavides JE, Arias R (eds) (1995) Sistemas Tradicionales y Agroforestales de Produccion Caprina en América Central y República Dominicana, vol 269, Serie Técnica, Informe Técnico. CATIE, Turrialba, 266 p

    Google Scholar 

  • Benyus JM (2002) How will we feed ourselves? Farming to fit the land: growing food like a prairie. In: Benyus JM (ed) Biomimicry. Innovation inspired by nature. Perennial Publ, New York, pp 11–58, 308 p

    Google Scholar 

  • Benzing A (2001) Agricultura Orgánica. Fundamentos para la Región Andina. Neckar Verlag, Villingen-Schwenningen, 682 pp

    Google Scholar 

  • Boonkird SA, Fernandes ECM, Nair PKR (1984) Forest villages: an agroforestry approach to rehabilitating forest land degraded by shifting cultivation in Thailand. Agroforest Syst 2:87–102

    Google Scholar 

  • BOSTID (1989) Lost crops of the Incas. Little-known plants of the Andes with promise for worldwide cultivation. Board on science and technology for international development. National Research Council, National Academic Press, Washington, DC, 415 p

    Google Scholar 

  • BOSTID (1991) Microlivestock. Little-know small animals with a promising economic future. Board on science and technology for international development. National Research Council, National Academic Press, Washington, DC, 449 p

    Google Scholar 

  • BOSTID (1996a) Lost crops of Africa. Volume I (grains) and volume II (cultivated fruits). Board on science and technology for international development. National Research Council, National Academic Press, Washington, DC

    Google Scholar 

  • BOSTID (1996b) Foods of the future: volume I (promising tropical fruits) board on science and technology for international development. National Research Council, National Academic Press, Washington, DC

    Google Scholar 

  • Brandle J, Hintz D, Sturrock J (eds) (1988) Windbreak technology. Elsevier Science, Amsterdam, 598 pp

    Google Scholar 

  • Brittain C, Williams N, Kremen C, Klein A-M (2013) Synergistic effects of non-Apis bees and honeybees for pollination services. Proc R Soc B 280:20122767, http://dx.doi.org/10.1098/rspb.2012.2767

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown GG, Pashanasi B, Villenave C, Patrón JC, Senapati BK, Giri S, Barois I, Lavelle P, Blanchart E, Blakemore RJ, Spain AV, Boyer J (1999) In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CAB International, Wallingford, pp 87–137, 300 p

    Google Scholar 

  • Budelman A (1988) The decomposition of the leaf mulches of Leucaena leucocephala, Gliricidia sepium and Flemingia macrophylla under humid tropical conditions. Agroforest Syst 7:33–45, 47–62

    Article  Google Scholar 

  • Budelman A (1989) Nutrient composition of the leaf biomass of three selected woody leguminous species. Agroforest Syst 8:39–51

    Article  Google Scholar 

  • Budowski G (1987) Living fences in tropical America, a widespread agroforestry practice. In: Gholz HL (ed) Agroforestry: realities, possibilities and potentials. Martinus Nijhoff, Dordrecht, pp 169–178

    Google Scholar 

  • Buresh RJ, Cooper PJM (1999) The science and practice of improved fallows. Agroforest Syst 47:13–58

    Article  Google Scholar 

  • Cadisch G, Giller KE (1997) Driven by nature; plant litter quality and decomposition. Oxford University Press, Oxford, UK, 409 p

    Google Scholar 

  • Callo-Concha D, Krishnamurthy L, Alegre J (2002) Secuestro de carbono por sistemas agroforestales Amazónicos. Rev Chapingo: Cienc Forestales y Medio Ambiente 8:101–106

    Google Scholar 

  • Camero A, Ibrahim M, Kass M (2001) Improving rumen fermentation and milk production with legume-tree fodder in the tropics. Agroforest Syst 51:157–166

    Article  Google Scholar 

  • Cannell MGR (1983) Plant management in agroforestry: manipulation of trees, population densities and mixtures of trees and herbaceous crops. In: Huxley PA (ed) Plant research and agroforestry. ICRAF, Nairobi, pp 455–486

    Google Scholar 

  • Caramori PH, Androcioli Filho A, Leal AC (1996) Coffee shade with Mimosa scabrella Benth. for frost protection in southern Brazil. Agroforest Syst 33:205–214

    Article  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Castañeda P, Castañeda O (2000) El Café Ecologico. Algunas Recomendaciones para su Cultivo, Procesamiento y Comercializacion. Vecinos Mundiales, Guatemala, 230 p

    Google Scholar 

  • Castellón JU, Muschler RG, Jimenez F (2000) Abonos orgánicos: efecto de sombra y altitud en almácigos de café. Agroforestería en las Américas (CATIE) 7:30–33

    Google Scholar 

  • CATIE (1999) Agroforestería en el CATIE, vol 27, Bibliografía anotada. CATIE, Turrialba, 423 p

    Google Scholar 

  • CATIE (2001) Agroforestería en el CATIE, vol 28, Suplemento Bibliográfico. CATIE, Turrialba, 171 p

    Google Scholar 

  • Cayuela ML, Monedero M, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Scientific Reports 3, 1732

    Google Scholar 

  • Chizmar-Fernández C, Coronado-González I, Mejía-Ordóñez T, Raymond-House P, Ruiz-Valladares I, Menjívar-Cruz JE, Lara LR, Cerén-López JG, Quesada-Hernández A, Lobo-Cabezas SL, Chang-Vargas G, Correa-Arroyo MD (2009) Plantas Comestibles de Centroamérica. Instituto Nacional de Biodiversidad (INBIO), Santo Domingo de Heredia, Costa Rica, 360 p

    Google Scholar 

  • Christiansen JA (2004) Café Organico con Diversificacion. Ideas Litograficas, Tegucigalpa, 345 p

    Google Scholar 

  • Cifuentes-Jara M (2008) Aboveground biomass and ecosystem carbon pools in tropical secondary forests growing in six life zones of Costa Rica. PhD thesis. Oregon State University, 195 p

    Google Scholar 

  • Cleugh H, Prinsley R, Bird R, Brooks S, Carberry P, Crawford M, Jackson T, Meinke H, Mylius S, Nuberg I, Sudmeyer R, Wright A (2002) The Australian national windbreaks program: overview and summary of results. Aust J Exp Agric 42:649–664

    Article  Google Scholar 

  • Coe R, Huwe B, Schroth G (2003) Designing experiments and analyzing data. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility. Concepts and research methods. CABI Publishing, Wallingtford, pp 39–76, 437 p

    Google Scholar 

  • Colburn T, Dumanoski D, Myers JP (1997) Our stolen future: are we threatening our fertility, intelligence, and survival? A scientific detective story. Plume Publishers, New York, 336 p

    Google Scholar 

  • Conway GR, Pretty JN (1991) Unwelcome harvest. Agriculture and pollution. Earthscan Publications, UK, 645 p

    Google Scholar 

  • Cordero J, Boshier DH (eds) (2003) Árboles de Centroamérica. Un Manual para Extensionistas. Oxford Forestry Institute – CATIE, Costa Rica, 1080 p

    Google Scholar 

  • Corlett JE, Ong CK, Black CR (1989) Modification of microclimate in intercropping and alley-cropping systems. In: Reifsnyder WS, Darnhofer TO (eds) Meteorology and agroforestry. ICRAF/WMO/UNEP/GTZ, Nairobi, pp 419–430

    Google Scholar 

  • Crews TE, Peoples MB (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr Cycl Agroecosyst 72:101–120

    Article  CAS  Google Scholar 

  • Cunningham SJ (2000) Great garden companions: a companion-planting system for a beautiful. Chemical-free vegetable garden. Rodale Press, Emmaus, 288 p

    Google Scholar 

  • Current D, Lutz E, Scherr S (eds) (1995) Costs, benefits, and farmer adoption of agroforestry: project experiences in central America and the Caribbean, vol 14, World Bank environment paper. World Bank, Washington, DC

    Google Scholar 

  • Dagang ABK, Nair PKR (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agroforest Syst 59:149–155

    Article  Google Scholar 

  • Daghela Bisseleua HB, Fotio D, Yede, Missoup AD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS One 8(3):e56115. doi:10.1371/journal.pone.0056115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daily G (ed) (1997) Nature’s services. Societal dependence on natural ecosystems. Island Press, Washington, DC, 392 p

    Google Scholar 

  • DeClerck FAJ, Negreros-Castillo P (2000) Plant species of traditional Mayan homegardens of Mexico as analogs for multistrata agroforests. Agroforest Syst 48:303–317

    Article  Google Scholar 

  • Derpsch R, Friedrich T, Kassam A, Li HW (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25

    Google Scholar 

  • Diamond J (2011) Collapse. How societies choose to fail or succeed. Penguin, New York, 608 p

    Google Scholar 

  • Dixon RK (1995) Agroforestry systems: sources or sinks of greenhouse gases? Agroforest Syst 31:99–116

    Article  Google Scholar 

  • Dossa EL, Fernandes EC, Reid WS, Ezui K (2008) Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agroforest Syst 72:103–115

    Article  Google Scholar 

  • Douglas I (2009) Climate change, flooding and food security in south Asia. Food Secur 1:127–136

    Article  Google Scholar 

  • Dronen S (1988) Layout and design criteria for livestock windbreaks. Agric Ecosyst Environ 22(23):231–240

    Article  Google Scholar 

  • Ebert A (2014) Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 6:319–335. doi:10.3390/su6010319

    Article  Google Scholar 

  • Ebert A, Astorga C, Ebert I, Mora A, Umaña C (2007) Securing our future. CATIE’s germplasm collections. CATIE, Turrialba, Costa Rica. Boletín Técnico No 26. 204 pp

    Google Scholar 

  • Elevitch CR (ed) (2011) Specialty crops for pacific islands. Permanent Agriculture Resources, Hawaii, 558 p

    Google Scholar 

  • Elevitch CR, Wilkinson K (1999) A guide to orchard alley cropping for fertility, mulch and soil conservation. AgroForester, Hawaii, 10 pp. Available at http://www.agroforestry.net/images/pdfs/oachbk.pdf

  • Espina D, Ordetx G (1983) Flora Apicola Tropical. Editorial Tecnologica de Costa Rica, 406 p

    Google Scholar 

  • Evans TA, Dawes TZ, Ward PR, Lo N (2011) Ants and termites increase crop yield in a dry climate. Nat Commun 2:262. doi:10.1038/ncomms1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ewel JJ (1986) Designing agricultural ecosystems for the humid tropics. Annu Rev Ecol Syst 17:245–271

    Article  Google Scholar 

  • Ewel JJ (1999) Natural systems as models for the design of sustainable systems of land use. Agroforest Syst 45:1–21

    Article  Google Scholar 

  • Fallon S (1999) Nourishing traditions: the cookbook that challenges politically correct nutrition and the diet dictocrats. Newtrends Publishing, Indiana, 688 p

    Google Scholar 

  • FAO (2010) An international consultation on integrated crop-livestock systems for development, the way forward for sustainable production intensification, vol 13, Integrated crop management. FAO, Rome

    Google Scholar 

  • FAO (2011) Los bosques para una mejor nutrición y seguridad alimentaria. Roma, 12 p

    Google Scholar 

  • FAO (2013) Climate-smart agriculture sourcebook. Food and Agriculture Organization, Rome, 570 p

    Google Scholar 

  • FAO (2015) Genetic resources and biodiversity for food and agriculture. A treasure for the future. Infographic at http://www.fao.org/assets/infographics/FAO-Infographic-CGRFA30-en.pdf

  • Fassbender HW (1993) Modelos Edafológicos de Sistemas Agroforestales, 2nd edn. CATIE, Costa Rica. Serie de Materiales de Ensenanza No 29. 491 p

    Google Scholar 

  • Fassbender HW, Beer J, Heuveldop J, Imbach A, Enriquez G, Bonnemann A (1991) Ten years balances of organic matter and nutrients in agroforestry systems at CATIE, Costa Rica. For Ecol Manage 45:173–183

    Article  Google Scholar 

  • Fernandes ECM, Nair PKR (1986) An evaluation of the structure and function of tropical homegardens. Agric Syst 21:279–310

    Article  Google Scholar 

  • Figueroa R, Fischerworring B, Rosskamp R (1998) Guia para la Caficultura Ecológica: Café Orgánico. Novella Publigraf, Lima, 176 p

    Google Scholar 

  • Francesconi W, Montagnini F, Ibrahim M (2011) Living fences as linear extensions of forest remnants: a strategy for restoration of connectivity in agricultural landscapes. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science, New York, 244 p

    Google Scholar 

  • Frison EA, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253

    Article  Google Scholar 

  • Funes-Monzote F, Freyre Roach EF (eds) (2009) Transgénicos ¿Qué se gana? ¿Qué se pierde? Textos para un Debate en Cuba. OXFAM, RAP-AL. Publicaciones Acuario, Centro Félix Varela, Habana, Cuba, 321 p

    Google Scholar 

  • Gantheret L (2010) Capitaines de l’esperance. Film documentary about the successful establishment of artificial lakes in the Central Highlands of Haiti. Argus Productions, Port-au-Prince, Haiti. 52 min

    Google Scholar 

  • Garen EJ, Saltonstall K, Ashton MS, Slusser JL, Mathias S, Hall JS (2010) The tree planting and protecting culture of cattle ranchers and small-scale agriculturalists in rural Panama: opportunities for reforestation and land restoration. For Ecol Manag. doi:10.1016/j.foreco.2010.10.011

    Google Scholar 

  • Geilfus F (1994) El Arbol al Servicio del Agricultor. Manual de Agroforestería para el Desarrollo Rural. ENDA CARIBE – CATIE, Turrialba

    Google Scholar 

  • Geilfus F (2002) 80 herramientas para el desarrollo participativo: diagnóstico, planificación, monitoreo, evaluación. IICA, San José, 217 p

    Google Scholar 

  • Gliessman SR (2015) Agroecology. The ecology of sustainable food systems, 3rd edn. CRC Press, Boca Raton, 371 p

    Google Scholar 

  • Haggar JP, Warren GP, Beer JW, Kass D (1991) Phosphorous availability under alley cropping and mulched and unmulched sole cropping systems in Costa Rica. Plant and Soil 137:275–283

    Article  CAS  Google Scholar 

  • Haggar JP, Beer JW, Tanner EVJ, Rippin M (1993) Nitrogen dynamics of tropical agroforestry and annual cropping systems. Soil Biol Biochem 25:1363–1378

    Article  CAS  Google Scholar 

  • Hardner J, Rice R (2002) Replanteamiento del mercado ecológico. Investigacion y Ciencia 76–83

    Google Scholar 

  • Hartemink AE (2005) Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: a review. Adv Agron 86:227–253

    Article  CAS  Google Scholar 

  • Harvey CA, Tucker NIJ, Estrada A (2004) Live fences, isolated trees, and windbreaks: tools for conserving biodiversity in fragmented tropical landscapes. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 261–289, 523 p

    Google Scholar 

  • Harvey C, Medina A, Sánchez D, Vílchez S, Hernández B, Sáenz JC, Maes JM, Casanoves F, Sinclair F (2006) Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol Appl 16:19–86

    Google Scholar 

  • Hassan J (2011) Introduction of partial carbon footprint on double-purpose systems in Azuero province, Panama. M.Sc. thesis. CATIE, Turrialba, Costa Rica

    Google Scholar 

  • Hauggaard-Nielsen H, Jensen ES (2005) Facilitative root interactions in intercrops. Plant Soil 274:237–250

    Article  CAS  Google Scholar 

  • Heller NE, Zavaleta ES (2008) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 124:14–32

    Google Scholar 

  • Hergoualc’h K, Blanchart E, Skiba U, Hénault C, Harmand J-M (2012) Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora in Costa Rica. Agric Ecosyst Environ 148:102–110

    Article  CAS  Google Scholar 

  • Hoehn P, Steffan-Dewenter I, Tscharntke T (2010) Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodivers Conserv 19:2189–2200

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis, report of working group I of the intergovernmental panel on climate change. Cambridge University Press, UK, 944 p

    Google Scholar 

  • Huxley P (1999) Tropical agroforestry. Blackwell, Oxford, 371 p

    Google Scholar 

  • IASS (2015) Soil Atlas. Facts and figures about earth, land, and fields. Institute for Advanced Sustainability Studies (IASS), Potsdam, 68 pp. www.iass-potsdam.de/en/publications/soilatlas

  • Ibrahim M, Chacón M, Cuartas C, Naranjo J, Ponce G, Vega P, Casasola F, Rojas J (2007) Almacenamiento de carbono en el suelo y la biomasa aérea en sistemas de uso de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. Agroforest Am (CATIE, Costa Rica) 45:27–36

    Google Scholar 

  • Ibrahim M, Casasola F, Villanueva C, Murgueitio E, Ramírez E, Sáenz J, Sepúlveda C (2010) Payment for environmental services as a tool to encourage the adoption of of silvo-pastoral systems and restoration of agricultural landscapes dominated by cattle in Latin America. In: Montagnini F, Finney C (eds) Restoring degraded landscapes with native species in Latin America. Nova Science, New York, 244 p

    Google Scholar 

  • INIFAT (2011) Manual Técnico para Organopónicos, Huertos Intensivos y Organoponía Semiprotegida. 7ma edición. Instituto de Investigaciones Fundamentales en Agricultura Tropical (INIFAT), Habana, Cuba, 210 p

    Google Scholar 

  • Jackson LE, Pascual U, Hodgkin T (2007) Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric Ecosyst Environ 121:196–210

    Article  Google Scholar 

  • Jackson B, Pagella T, Sinclair F, Orellana B, Henshaw A, Reynolds B, Mcintyre N, Wheater H, Eycott A (2013) Polyscape: a GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landsc Urban Plan 112:74–88

    Article  Google Scholar 

  • Jaenicke H, Höschle-Zeledon I (eds) (2006) Strategic framework for underutilized plant species research and development with special reference to Asia and the pacific, and to Sub-Saharan Africa. International Center for Underutilized Crops, Colombo, Sri Lanka and Global Facilitation Unit for Underutilized Species, Rome, 33 p

    Google Scholar 

  • Jalonen R, Nygren P, Sierra J (2009) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ 32:1366–1376

    Article  PubMed  CAS  Google Scholar 

  • Jama BA, Palm CA, Buresh NJ, Niang AI, Gachengo C, Nziguheba G, Amadalo B (2000) Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: a review. Agroforest Syst 49:201–221

    Article  Google Scholar 

  • Jeavons J (2014) How to grow more vegetables (and fruits, nuts, berries, grains, and other crops) than you ever thought possible on less land than you can imagine, 8th edn. Ten Speed Press, Willits, Ecology Action, 256 p

    Google Scholar 

  • Jensen M (1993a) Soil conditions, vegetation structure and biomass of a Javanese homegarden. Agroforest Syst 24:171–186

    Article  CAS  Google Scholar 

  • Jensen M (1993b) Productivity and nutrient cycling in a Javanese homegarden. Agroforest Syst 24:187–201

    Article  Google Scholar 

  • Jha S, Bacon CM, Philpott SM, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64:416–428

    Article  Google Scholar 

  • Jiménez JJ, Thomas RJ (eds) (2001) Nature’s plow: soil macroinvertebrate communities in the neotropical savannas of Colombia. CIAT, Cali, 389 p

    Google Scholar 

  • Jiménez F, Muschler RG, Köpsell E (eds) (2001) Funciones y Aplicaciones de Sistemas Agroforestales. Modulo de Enseñanza No 6. Proyecto Agroforestal CATIE-GTZ, 187 p

    Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. Principles and their application in management and conservation. Wiley, New York, 190 p

    Google Scholar 

  • Jordan CF, Gajaseni J, Watanabe H (eds) (1992) Taungya: forest plantations with agriculture in Southeast Asia. CAB International, Wallingford

    Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agroforest Syst 76:1–10

    Article  Google Scholar 

  • Jose S, Gordon AM (eds) (2008) Towards agroforestry design – an ecological approach. Springer, Dordrecht, 315 p

    Google Scholar 

  • Kahane R, Hodgkin T, Jaenicke H, Hoogendoorn C, Hermann M, Keatinge D, d’Arros Hughes J, Padulosi S, Looney N (2013) Agrobiodiversity for food security, health and income. Agron Sustain Dev 63(4):671–693

    Article  Google Scholar 

  • Kang BT, Duguma B (1985) Nitrogen movement in alley cropping systems. In: Kang BT, van den Heide J (eds) Nitrogen in farming systems in the humid and subhumid tropics. Institute of Soil Fertility, Haren, pp 269–284

    Google Scholar 

  • Kang BT, Wilson GF (1987) The development of alley cropping as a promising agroforestry technology. In: Steppler HA, Nair PKR (eds) Agroforestry: a decade of development. ICRAF, Nairobi, pp 227–243

    Google Scholar 

  • Kang BT, van der Kruijs ACBM, Cooper DC (1989) Alley cropping for food production. In: Kang BT, Reynolds L (eds) Alley farming in the humid and sub-humid tropics. International Development Research Center, Ottawa, pp 16–26

    Google Scholar 

  • Kang BT, Reynolds L, Atta-Krah AN (1990) Alley farming. Adv Agron 43:315–359

    Article  Google Scholar 

  • Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (eds) (2011) Natural capital: theory and practice of mapping ecosystem services. Oxford Univ Press, Oxford, 365 p

    Google Scholar 

  • Kass D (1987) Alley cropping of annual food crops with woody legumes in Costa Rica. In: Beer JW, Fassbender HW, Heuveldop J (eds) Advances in agroforestry research: proceedings of a seminar. CATIE, Costa Rica, pp 197–208

    Google Scholar 

  • Kass D, Somarriba E (1999) Traditional fallows in Latin America. Agroforest Syst 47:13–36

    Article  Google Scholar 

  • Keatinge J, Waliyar F, Jamnadas RH, Moustafa A, Andrade M, Drechsel P, Hughes J, Kadirvel P, Luther K (2010) Relearning old lessons for the future of food – by bread alone no longer: diversifying diets with fruit and vegetables. Crop Sci 50:51–62

    Article  Google Scholar 

  • Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC (2014) Increasing homogeneity in global food supplies and the implications for food security. www.pnas.org/cgi/doi/10.1073/pnas.1313490111

  • Kimbrell A (ed) (2002) Fatal harvest. The tragedy of industrial agriculture. Island Press, Foundation for Deep Ecology, Washington, 384 p

    Google Scholar 

  • Kindt R, Ordonez J, Smith E, Orwa C, Harja D, Kehlenbeck K, Luedeling E, Munjuga M, Mwanzia L, Sinclair F, Jamnadass R (2013) ICRAF species switchboard. Version 1.0. World Agroforestry Centre, Nairobi. http://www.worldagroforestry.org/products/switchboard/index.php

  • Kiptot E, Franzel S (2012) Gender and agroforestry in Africa: who benefits? The African perspective. In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use. Springer, Dordrecht, pp 463–496, 541 p

    Chapter  Google Scholar 

  • Klein A-M, Cunningham SA, Bos M, Steffan-Dewenter I (2008) Advances in pollination ecology from tropical plantation crops. Ecology 89:935–943

    Article  PubMed  Google Scholar 

  • Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–479

    Article  PubMed  Google Scholar 

  • Kumar BM, Nair PKR (eds) (2006) Tropical homegardens: a time-tested example of sustainable agroforestry, vol 3, Advances in Agroforestry. Springer, Dordrecht

    Google Scholar 

  • Kumar BM, Nair PKR (eds) (2011) Carbon sequestration potential of agroforestry systems. Opportunities and challenges. Springer, Dordrecht, 310 p

    Google Scholar 

  • Kuyah S, Rosenstock TS (2015) Optimal measurement strategies for aboveground tree biomass in agricultural landscapes. Agroforest Syst 89:125–133

    Article  Google Scholar 

  • Lal R (2015) Sequestering carbon and increasing productivity by conservation agriculture. J Soil Water Conserv 70:55A–62A

    Article  Google Scholar 

  • Landauer K, Brazil M (eds) (1990) Tropical home gardens. United Nations University Press, Tokyo

    Google Scholar 

  • Lavelle P, Brussaard L, Hendrix P (eds) (1999) Earthworm management in tropical agroecosystems. CAB International, Wallingford, 300 pp

    Google Scholar 

  • Leakey RRB (1996) Definition of agroforestry revisited. Agroforest Today 8:5–7

    Google Scholar 

  • Leakey R (1999) Potential for novel food products from agroforestry trees: a review. Food Chem 66:1–14

    Article  CAS  Google Scholar 

  • Leakey RRB (2012) Multifunctional agriculture and opportunities for agroforestry: implications of IAASTD. In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use. Springer, Dordrecht, pp 203–214, 541 p

    Chapter  Google Scholar 

  • Leakey RRB, Weber JC, Page T, Cornelius JP, Akinnifesi FK, Roshetko JM, Tchoundjeu Z, Jamnadass R (2012) Tree domestication in agroforestry: progress in the second decade (2003–2012). In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use. Springer, Dordrecht, pp 145–173, 541 p

    Chapter  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management - science and technology. Earthscan, London; Sterling, VA. 404 p

    Google Scholar 

  • Leterme P, Buldgen A, Estrada F, London AM (1996) Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chem 95 (2006): 644–652

    Google Scholar 

  • Leu A (2014) The myths of safe pesticides. Acres USA. 142 p

    Google Scholar 

  • Leupolz W (2000) Manual de Crianza y Explotación de Ovejas de Pelo en los Trópicos. ECONICA, Managua, 300 p

    Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193

    Article  Google Scholar 

  • Lok R (ed) (1998a) Huertos caseros tradicionales de America Central: características, beneficios e importancia desde un enfoque multidisciplinario. CATIE, Turrialba, 232 p

    Google Scholar 

  • Lok, R (1998b) Introducción a los Huertos caseros tradicionales tropicales. Módulo de Enseñanza Agroforestal No. 3. CATIE. Serie Materiales de Enseñanza No. 41. Proyecto Agroforestal CATIE-GTZ, Turrialba, Costa Rica. 157 p

    Google Scholar 

  • Lorenzi H, Bacher L, Lacerda M, Sartori S (2006) Brazilian fruits and cultivated exotics. Instituto Plantarum de Estudos da Flora Ltda, Nova Odessa, 672 p

    Google Scholar 

  • Love BE, Bork EW, Spaner D (2009) Tree seedling establishment in living fences: a low-cost agroforestry management practice for the tropics. Agroforest Syst 77:1–8

    Article  Google Scholar 

  • Lowenfels J, Lewis W (2010) Teaming with microbes. The organic gardener’s guide to the soil food Web. Timber Press, Portland, 220 p

    Google Scholar 

  • Lyngbaek AE, Muschler RG, Sinclair FL (2001) Productivity and profitability of multistrata organic versus conventional coffee farms in Costa Rica. Agroforest Syst 53:205–213

    Article  Google Scholar 

  • MacDicken KG, Vergara NT (1990) Agroforestry: classification and management. Wiley, New York, 382 p

    Google Scholar 

  • Mafongoya PL, Hove (2008) Tree foliage polyphenols and nitrogen use in crop–livestock systems of Southern Africa: strategies for increasing efficiency. In: Jose S, Gordon AM (eds) Towards agroforestry design – an ecological approach. Springer, Dordrecht, pp 207–227, 315 pp

    Chapter  Google Scholar 

  • Mafongoya PL, Barak P, Reed JD (2000) Carbon, nitrogen and phosphorus mineralization from tree leaves and manure. Biol Fertil Soils 30:298–305

    Article  Google Scholar 

  • Magdoff F, Van Es H (2009) Building soils for better crops. Sustainable soil management, 3rd edn. SARE-USDA, Washington, DC, 294 p

    Google Scholar 

  • Makumba W, Janssen B, Oenema O, Akinnifesi FK, Mweta D, Kwesiga F (2006) The long-term effects of a gliricidia–maize intercropping system in Southern Malawi on gliricidia and maize yields, and soil properties. Agric Ecosyst Environ 116:85–92

    Article  Google Scholar 

  • Margulis L (1998) Symbiotic planet. A new look at evolution. Basic Books, Perseus Books Group, New York, 147 p

    Google Scholar 

  • Marten GG, Abdoellah OS (1988) Crop diversity and nutrition in West Java. Ecol Food Nutr 21:17–34

    Article  Google Scholar 

  • Martínez-Viera R, Dibut-Álvarez B (2012) Biofertilizantes bacterianos. Editorial Cieníífico-Técnica, La Habana, 279 p

    Google Scholar 

  • Martius C, Höfer H, Garcia MVB, Römbke J, Förster B, Hanagarth W (2004) Microclimate in agroforestry systems in central Amazonia: does canopy closure matter to soil organisms? Agroforest Syst 60:291–304

    Article  Google Scholar 

  • Matocha J, Schroth G, Hills T, Hole D (2012) Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use. Springer, Dordrecht, pp 105–126, 541 p

    Chapter  Google Scholar 

  • May T, Rodriguez S (2012) Plantas de interés apícola en el paisaje: observaciones de campo y la percepción de apicultores en República Dominicana. Rev Geogr Am Central 48:133–162

    Google Scholar 

  • McCann KS (2000) The diversity-stability debate. Nature 405:228–233

    Article  PubMed  CAS  Google Scholar 

  • Medina-Solís JA (1990) Manual de Apicultura Tropical. Imprenta Grafico Litho Offset SA. San José, Costa Rica, 225 p

    Google Scholar 

  • Mendez VE, Beer J, Faustino J, Otarola A (2000) Plantacion de Árboles en Línea, vol 1, 2nd edn, Módulo de Enseñanza Agroforestal. CATIE, Turrialba

    Google Scholar 

  • Méndez VE, Lok R, Somarriba E (2001) Interdisciplinary analysis of homegardens in Nicaragua: micro-zonation, plant use and socioeconomic importance. Agroforest Syst 51:85–96

    Article  Google Scholar 

  • Mercer DE, Miller RP (1998) Socioeconomic research in agroforestry: progress, prospects, priorities. Agroforest Syst 38:177–193

    Article  Google Scholar 

  • Milder JC, Buck LE, DeClerck F, Scherr SJ (2012) Landscape approaches to achieving food production, natural resource conservation, and the millennium development goals. In: Ingram JC, DeClerck F, Rumbaitis del Rio C (eds) Integrating ecology and poverty reduction, vol I, Ecological dimensions. Springer, New York, pp 77–108, 425 p

    Chapter  Google Scholar 

  • Mittal SP, Singh P (1989) Intercropping field crops between rows of Leucaena leucocephala under rainfed conditions in northern India. Agroforest Syst 8:165–172

    Article  Google Scholar 

  • Mollison B (1996) Permaculture. A designer’s manual. Tagari Publications, Tyalgum, 576 p

    Google Scholar 

  • Montagnini F, Finney C (eds) (2011) Restoring degraded landscapes with native species in Latin America. Nova Science, New York, 244 p

    Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: and underexploited environmental benefit of agroforestry systems. Agroforest Syst 61:281–295

    Google Scholar 

  • Montgomery DR (2012) Dirt. The erosion of civilizations. University of California Press, Berkeley, 285 p

    Google Scholar 

  • Morton JF (1987) Fruits of warm climates. JFM Publisher, Miami, 505 p

    Google Scholar 

  • Msuya JM, Mamiro P, Weinberger K (2009) Iron, zinc and β-carotene nutrient potential of non-cultivated indigenous vegetables in Tanzania. ISHS Acta Horticult 806:217–222

    Article  CAS  Google Scholar 

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manage 261:1654–1663

    Article  Google Scholar 

  • Murillo R, Kilian B, Castro R (2011) Leveraging and sustainability of PES. In: Rapidel B, DeClerck F, Le Coq J-F, Beer J (eds) Ecosystem services from agriculture and agroforestry. Measurement and payment. Earthscan, London, pp 267–287, 414 p

    Google Scholar 

  • Muschler RG (1993) Chapter 13. Component interactions. In: Nair PKR (ed) Introduction to agroforestry. Kluwer, Amsterdam, pp 243–258, 499 p

    Google Scholar 

  • Muschler RG (1998) Tree-crop compatibility in agroforestry: production and quality of coffee grown under managed Tree Shade in Costa Rica. Agroforestry Program, University of Florida, Ph.D. Dissertation. 219 p

    Google Scholar 

  • Muschler RG (2001a) Árboles en Cafetales. Módulo de Enseñanza Agroforestal. CATIE, Costa Rica. Proyecto Agroforestal CATIE/GTZ. 137 p

    Google Scholar 

  • Muschler RG (2001b) Shade improves coffee quality in a sub-optimal coffee zone of Costa Rica. Agroforest Syst 51:131–139

    Article  Google Scholar 

  • Muschler RG (2004) Shade management and its effect on coffee growth and quality. In: Wintgens J-N (ed) Coffee: growing, processing, sustainable production. A guidebook for growers, processors, traders and researchers. Wiley-VCH, Weinheim, pp 391–418

    Chapter  Google Scholar 

  • Muschler RG, Bonnemann A (1997) Potentials and limitations of agroforestry for changing land-use in the tropics: experiences from Central America. For Ecol Manage 91:61–73

    Article  Google Scholar 

  • Muschler RG, Nair PKR, Meléndez L (1993) Crown development and biomass production of pollarded Erythrina berteroana, E.fusca and Gliricidia sepium in the humid tropical lowlands of Costa Rica. Agroforest Syst 24:123–143

    Article  Google Scholar 

  • Muschler RG, Yépez C, Rodríguez A, Peters W, Pohlan HAJ (2006) Manejo y valoración de la biodiversidad en cafetales. In: Pohlan J, Soto L, Barrera J (eds) El Cafetal del Futuro. Realidades y Visiones. ECOSUR, Chiapas, México. Shaker, Aachen, pp 333–360, 462 p

    Google Scholar 

  • Mutua J, Muriuki J, Gachie P, Bourne M, Capis J (2014) Conservation agriculture with trees: principles and practice. A simplified guide for extension staff and farmers. World Agroforestry Center, Nairobi, 93 p

    Google Scholar 

  • NABCI Canada (2012) The state of Canada’s birds. North American bird conservation initiative Canada. Environment Canada, Ottawa, 36 p

    Google Scholar 

  • Nair PKR (1980) Agroforestry species – a crop sheets manual. ICRAF, Nairobi, 336 p

    Google Scholar 

  • Nair PKR (1989) Agroforestry Systems in the Tropics. Amsterdam: Kluwer. 680 p

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer, Amsterdam, 499 p

    Book  Google Scholar 

  • Nair PKR (2001) Do tropical homegardens elude science, or is it the other way around? Agroforest Syst 53:239–245

    Article  Google Scholar 

  • Nair PKR (2012) Climate change mitigation and adaptation: a low hanging fruit of agroforestry. In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use. Springer, Dordrecht, pp 31–67, 541 p

    Chapter  Google Scholar 

  • Nair PKR, Garrity D (eds) (2012) Agroforestry – the future of global land use. Springer, Dordrecht, 541 p

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10/23

    Google Scholar 

  • Nair MA, Sreedharan C (1986) Agroforestry farming systems in the homesteads of Kerala, southern India. Agroforest Syst 4:339–363

    Article  Google Scholar 

  • Nardi JB (2007) Life in the soil. A guide for naturalists and gardeners. Univesity of Chicago Press, Chicago, 293 p

    Book  Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Nicholls Estrada CI, Rios Osorio LA, Altieri MA (eds) (2013) Agroecología y resiliencia socioecológica: adaptandose al cambio climático. Sociedad Científica Latinoamericana de Agroecología (SOCLA), Medellin, 207 p

    Google Scholar 

  • Nicholls CI, Altieri MA (2013) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33:257–274

    Article  Google Scholar 

  • Nichols E, Spector S, Louzada J, Larsen T, Amezquita S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Conserv 141:1461–1474

    Article  Google Scholar 

  • Nicolas M (2010) Danser avec la Vie. Editions Nestor, Port-au-Prince, Haiti. 259 p

    Google Scholar 

  • Niggli U, Earley J, Ogorzalek K (2007) Organic agriculture and environmental stability of the food supply, Issues paper. FAO, Rome

    Google Scholar 

  • Nyambo A, Nyomora A, Ruffo CK, Tengnas B (2005) Fruits and nuts species with potential for Tanzania. World Agroforestry Centre (ICRAF) – Eastern and Central African Programme, Nairobi, 160 p

    Google Scholar 

  • Nygren P, Ramirez C (1995) Production and turnover of N2 fixing nodules in relation to foliage development in periodically pruned Erythrina poeppigiana (Leguminosae) trees. For Ecol Manage 73:59–73

    Article  Google Scholar 

  • OISAT (2015) Online Information Service for Non-Chemical Pest Management in the Tropics. Pesticide action network

    Google Scholar 

  • Ong CK, Huxley P (eds) (1996) Tree-crop interactions – a physiological approach. CAB Int’l, Wallingford

    Google Scholar 

  • Ong CK, Leakey RRB (1999) Why tree-crop interactions in agroforestry appear at odds with tree-grass interactions in tropical savannahs. Agroforest Syst 45:109–129

    Article  Google Scholar 

  • Ong CK, Black CR, Marshall FM, Corlett JE (1996) Principles of resource capture and utilization of light and water. In: Ong CK, Huxley P (eds) Tree-crop interactions – a physiological approach. CAB Int’l, Wallingford, pp 73–158

    Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya. http://www.worldagroforestry.org/resources/databases/agroforestree

  • Padulosi S, Hodgkin T, Williams JT, Haq N (2002) Underutilized crops: trends, challenges and opportunities in the 21st century. In: Managing plant genetic diversity. IPGRI, Rome, pp 323–338

    Google Scholar 

  • PAF-Ngöbe-Buglé (2003) Manual Keba Sula. Métodos Técnicos y Organizativos para el Manejo Sostenible de los Recursos Naturales Renovables en la Comarca Ngöbe-Buglé. Proyecto Agroforestal Ngöbe-Buglé PAN-ANAM – GTZ, San Félix, Panamá

    Google Scholar 

  • Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the landsparing/agriculture intensification model. Proc Natl Acad Sci U S A 107:5786–5791

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perfecto I, Rice RA, Greenberg R, van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity – shade coffee plantations can contain as much biodiversity as forest habitats. Bioscience 46:598–608

    Article  Google Scholar 

  • (n.d.) Permaculture design. Background information on permaculture principles and how to set up a permaculture system: http://www.tropicalpermaculture.com/permaculture-design.html

  • Pezo D, Ibrahim M (2001) Sistemas Silvopastoriles. Módulo de Enseñanza Agroforestal No. 2. CATIE. Serie Materiales de Enseñanza No. 44. Proyecto Agroforestal CATIE-GTZ. Turrialba, Costa Rica. 275 p

    Google Scholar 

  • Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A, Motamayor-Arias JC (2013) Catalogue of cacao clones selected by CATIE for commercial plantings. Turrialba, CATIE. Technical manual No 105. 68 p

    Google Scholar 

  • Philpott SM et al (2008) Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conserv Biol 22:1093–1105

    Article  PubMed  Google Scholar 

  • Phiri S, Rao IM, Barrios E, Singh BR (2003) Plant growth, mycorrhizal association, nutrient uptake and phosphorus dynamics in a volcanic-ash soil in Colombia, as affected by the establishment of Tithonia diversifolia. J Sustain Agric 21:41–59

    Article  Google Scholar 

  • Pilatic H (2012) Pesticides and honey bees – state of the science. Pesticide action network North America. 30 p

    Google Scholar 

  • Pinard F, Boffa JM, Rwakagara E (2014) Scattered shade trees improve low-input smallholder Arabica coffee productivity in the Northern Lake Kivu region of Rwanda. Agroforest Syst 88:707–718

    Article  Google Scholar 

  • Pope Francis (2015) Encyclical letter ‘Laudato si’ on care for our common home. The Holy See, Rome. 82 pp http://w2.vatican.va/content/francesco/en/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.pdf. Practical action. Practical hands-on information for agriculture and animal husbandry and other dimensions of sustainable living

  • Pyke CR, Andelman SJ (2007) Land use and land cover tools for climate adaptation. Clim Chang 80:239–251

    Article  Google Scholar 

  • Rao MR, Nair PK, Ong CK (1998) Biophysical interactions in tropical agroforestry systems. Agroforest Syst 38:3–50

    Article  Google Scholar 

  • Rapidel B, Roupsard O, Navarro M (eds) (2009) Modeling agroforestry systems. Workshop proceedings. CATIE, Costa Rica, 330 p

    Google Scholar 

  • Rapidel B, DeClerck F, Le Coq J-F, Beer J (eds) (2011) Ecosystem services from agriculture and agroforestry. Measurement and payment. Earthscan, London, 414 p

    Google Scholar 

  • Reid RS, Thornton PK, McCrabb GJ, Kruska RL, Atieno F, Jones PG (2004) Is it possible to mitigate greenhouse gas emissions in pastoral ecosystems of the tropics? Environ Dev Sustain 6:91–109

    Article  Google Scholar 

  • Reifsnyder WS, Darnhofer TO (eds) (1989) Meteorology and agroforestry ICRAF/WMO/UNEP/GTZ, Nairobi, Kenya. 546 p

    Google Scholar 

  • Restrepo-Rivera J, Hensel J (n.d.) El ABC de la Agricultura Orgánica – Fosfitos y Panes de Piedra. Feriva S.A., Santiago de Cali, Colombia. 396 p

    Google Scholar 

  • Reynolds MP, Hays D, Chapman S (2010) Breeding for adaptation to heat and drought stress. In: Reynolds MP (ed) Climate change and crop production. CAB International, Wallingford, pp 71–91

    Chapter  Google Scholar 

  • Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29:167–173

    Article  Google Scholar 

  • Richardson DM, Binggeli P, Schroth G (2004) Invasive agroforestry trees: problems and solutions. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, pp 371–396, 523 p

    Google Scholar 

  • Ríos JN, Andrade H, Ibrahim M, Jiménez F, Sancho F, Ramírez E, Reyes B, Woo A (2007) Escorrentía superficial e infiltración en sistemas silvopastoriles en el trópico subhúmedo de Costa Rica y Nicaragua. Agroforestería en las Américas (CATIE, Costa Rica) 45: 66–71

    Google Scholar 

  • Riotte L (1998) Carrots love tomatoes: secrets of companion planting for successful gardening. Storey Publishing, North Adams, 224 p

    Google Scholar 

  • Robalino J, Pfaff A, Villalobos L (2011) Assessing the impact of institutional design of payments for environmental services. The Costa Rican experience. In: Rapidel B, DeClerck F, Le Coq J-F, Beer J (eds) Ecosystem services from agriculture and agroforestry. Measurement and payment. Earthscan, London, pp 305–318, 414 p

    Google Scholar 

  • Robinson R (2007) Return to resistance, 3rd edn. Sharebooks Publisher, CA. http://www.sharebooks.ca/?filename=ReturnToResistance.pdf

  • Ruf FO (2011) The myth of complex cocoa agroforests: the case of Ghana. Hum Ecol 39:373–388

    Article  Google Scholar 

  • Ryan D, Bright GA, Somarriba E (2009) Damage and yield change in cocoa crops due to harvesting of timber shade trees in Talamanca, Costa Rica. Agroforest Syst 77:97–106

    Article  Google Scholar 

  • Salazar E, Muschler RG, Sanchez V, Jimenez F (2000) Calidad de Coffea arabica bajo sombra de Erythrina poeppigiana a diferentes elevaciones en Costa Rica. Agroforestería en las Américas (Costa Rica) 7:40–42

    Google Scholar 

  • Samsel A, Seneff F (2013) Glyphosate’s suppression of Cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 15:1416–1463. doi:10.3390/e15041416

    Article  CAS  Google Scholar 

  • Sanchez PA (1995) Science in agroforestry. Agroforest Syst 30:5–55

    Article  Google Scholar 

  • Sánchez de León Y, de Melo E, Soto G, Johnson-Maynard J, Lugo-Pérez J (2006) Earthworm populations, microbial biomass and coffee production in different experimental agroforestry management systems in Costa Rica. Carib J Sci 42:397–409

    Google Scholar 

  • Sánchez-Salmerón, D, Muschler RG, Prins C, Solano W, Astorga C (2015) Identifying underutilized edible plant species based on their potential to improve human nutrition and resilience to climate change: a case study from El Salvador (in Spanish). Submitted to agroecosistemas

    Google Scholar 

  • Scherr SJ, Sthapit S (2009) Mitigating climate change through food and land use, vol 179, World watch report. WorldWatch Institute, Washington, DC

    Google Scholar 

  • Schlönvoigt A (1998) Sistemas Taungya. Módulo de Enseñanza Agroforestal No. 4. CATIE. Serie Materiales de Enseñanza No. 42. Proyecto Agroforestal CATIE-GTZ, Turrialba, Costa Rica. 117 p

    Google Scholar 

  • Schlönvoigt A, Beer J (2001) Initial growth of pioneer timber tree species in a Taungya system in the humid lowlands of Costa Rica. Agroforest Syst 51:97–108

    Article  Google Scholar 

  • Schroth G (1995) Tree root characteristics as criteria for species selection and systems design in agroforestry. Agroforest Syst 30:125–143

    Article  Google Scholar 

  • Schroth G, Harvey C (2007) Biodiversity conservation in cocoa production landscapes: an overview. Biodivers Conserv 16:2237–2244

    Article  Google Scholar 

  • Schroth G, Sinclair FL (eds) (2003) Trees, crops and soil fertility. Concepts and research methods. CABI Publishing, Wallingford, 437 p

    Google Scholar 

  • Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac A-MN (eds) (2004) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, 523 p

    Google Scholar 

  • Sekercioglu CH (2012) Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J Ornithol 153:153–161

    Article  Google Scholar 

  • Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–234

    Article  PubMed  CAS  Google Scholar 

  • Shibata R, Yano K (2003) Phosphorus acquisition from non-labile sources in peanut and pigeonpea with mycorrhizal interaction. Appl Soil Ecol 24:133–141

    Article  Google Scholar 

  • Sieverding E (1991) Vesicular–arbuscular mycorrhiza management in tropical agroecosystems. Gesellschaft fur Technische Zusammenarbeit (GTZ), Eschborn

    Google Scholar 

  • Siles P, Harmand J-M, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforest Syst 78:269–286

    Article  Google Scholar 

  • Sinclair F (1999) A general classification of agroforestry practice. Agroforest Syst 46:161–180

    Article  Google Scholar 

  • Smith J (2010) Agroforestry: reconciling production with protection of the environment – a synopsis of research literature. Organic Research Center, Elm Farm, UK, 24 p

    Google Scholar 

  • Smith NJH, Williams JT, Plucknett DL, Talbot JP (1992) Tropical forests and their crops. Comstock Publishing Associates, Ithaca, 568 p

    Google Scholar 

  • Smith N, Vásquez R, Wust WH (2007) Frutos del Río Amazonas. Sabores para la Conservación. Amazon Conservation Association, Lima, 274 p

    Google Scholar 

  • Somarriba E (1992) Timber harvest, damage to crop plants and yield reduction in two Costa Rican coffee plantations with Cordia alliodora shade trees. Agroforest Syst 18:69–82

    Article  Google Scholar 

  • Somarriba E, Beer J (1987) Dimensions, volumes and growth of Cordia alliodora in agroforestry systems. For Ecol Manage 18:113–126

    Article  Google Scholar 

  • Somarriba E, Beer J (2011) Productivity of Theobroma cacao agroforestry systems with legume and timber shade tree species. Agroforest Syst 81:109–121

    Article  Google Scholar 

  • Somarriba E, Beer J, Muschler RG (2001) Research methods for multistrata agroforestry systems with coffee and cacao: recommendations from two decades of research at CATIE. Agroforest Syst 53:195–203

    Article  Google Scholar 

  • Somarriba E, Beer J, Alegre-Orihuela J, Andrade HJ, Cerda R, DeClerck F, Detlefsen G, Escalante M, Giraldo LA, Ibrahim M, Krishnamurthy L, Mena-Mosquera VE, Mora-Delgado JR, Orozco L, Scheelje M, Campos JJ (2012) Mainstreaming agroforestry in Latin America. In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use. Springer, Dordrecht, pp 429–454, 541 p

    Chapter  Google Scholar 

  • Somarriba E, Cerda R, Orozco L, Deheuvels O, Cifuentes M, Dávila H, Espin T, Mavisoy H, Ávila G, Alvarado E, Poveda V, Astorga C, Say E (2013) Carbon stocks in agroforestry systems with cocoa (Theobroma cacao L.) in Central America. Agric Ecosyst Environ 173:46–57

    Article  Google Scholar 

  • Somarriba E, Suárez-Islas A, Calero-Borge W, Villota A, Castillo C, Vílchez S, Deheuvels O, Cerda R (2014) Cocoa–timber agroforestry systems: Theobroma cacaoCordia alliodora in Central America. Agroforest Syst 86:1–19. doi:10.07/s10457-014-9692-7

    Google Scholar 

  • Soto G, Le Coq J-F (2011) Certification process in the coffee value chain. Achievement and limits to foster provision of environmental services. In: Rapidel B, DeClerck F, Le Coq J-F, Beer J (eds) Ecosystem services from agriculture and agroforestry. Measurement and payment. Earthscan, London, pp 319–345, 414 p

    Google Scholar 

  • Stamets P (2005) Mycelium running. How mushrooms can help save the world. Ten Speed Press, Berkeley, 344 p

    Google Scholar 

  • Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agroforest Syst 53:151–170

    Article  Google Scholar 

  • Steppler HA, Nair PKR (eds) (1987) Agroforestry: a decade of development. ICRAF, Nairobi, Kenya

    Google Scholar 

  • Stigter K (ed) (2010) Applied agrometeorology. Springer, Berlin, 1101 p

    Google Scholar 

  • Stigter CJ, Darnhofer C, Herrera H (1989) Crop protection from very strong winds: recommendations from a Costa Rican agroforestry case study. In: Reifsnyder WS, Darnhofer TO (eds) Meteorology and agroforestry. ICRAF/WMO/UNEP/GTZ, Nairobi, pp 521–529, 546 p

    Google Scholar 

  • Stigter K, Ofori E, Kyei-Baffour N, Walker S (2011) Microclimate management and manipulation aspects of applied agroforestry. Overstory #240

    Google Scholar 

  • Stolton S, Geier B, McNeely JA (eds) (2000) The relationship between nature conservation, biodiversity and organic agriculture. IFOAM-IUCN-AIAB, Tholey, 224 p

    Google Scholar 

  • Sullivan GM, Huke SM, Fox JM (eds) (1992) Financial and economic analyses of agroforestry systems. Proceedings of a workshop held in Honolulu, Hawaii, USA, July 1991. Nitrogen Fixing Tree Association, Paia. 312 p

    Google Scholar 

  • Szott LT, Palm CA, Sanchez PA (1991) Agroforestry on acid soils of the humid tropics. Adv Agron 45:275–301

    Article  Google Scholar 

  • The Montpellier Panel (2013) Sustainable intensification: a new paradigm for African agriculture. The Montpellier Panel, London

    Google Scholar 

  • Thornton T (2009) Can I grow a complete diet? Designing a tropical subsistence garden. 4 pp. Available at http://www.agroforestry.net/images/pdfs/Can_I_Grow_a_Complete_Diet.pdf

  • Thornton PK, Herrero M (2010) Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc Natl Acad Sci U S A 107(46):19667–19672. doi:10.1073/pnas.0912890107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thuerig B, Fließbach A, Berger N, Fuchs JG, Kraus N, Mahlberg N, Nietlispach B, Tamm L (2009) Re-establishment of suppressiveness to soil- and air-borne diseases by re-inoculation of soil microbial communities. Soil Biol Biochem 41:2153–2161

    Article  CAS  Google Scholar 

  • Thurston HD (1997) Slash/mulch systems. Westview, Boulder

    Google Scholar 

  • Trumper K, Bertzky M, Dickson B, van der Heijden G, Jenkins M, Manning P (2009) The natural fix? The role of ecosystems in climate mitigation. A UNEP rapid response assessment. United Nations Environment Programme, UNEP- WCMC, Cambridge, UK. 65 p

    Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Holscher DH, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • UN SDSN (2012) Solutions for Sustainable Agriculture and Food Systems. Technical report for the post-2015 Development agenda. United Nations, Sustainable Development Solutions Network. 108 p

    Google Scholar 

  • USDA (2015) National nutrient database for standard reference. URL: http://ndb.nal.usda.gov

  • Vaast P, Somarriba E (2014) Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agroforest Syst 88:947–956

    Article  Google Scholar 

  • van Bael SA, Philpott SM, Greenberg R, Bichier P, Barber NA, Mooney KA, Gruner DS (2008) Birds as predators in tropical agroforestry systems. Ecology 89:928–934

    Article  PubMed  Google Scholar 

  • van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security. FAO Forestry Paper 171. FAO, Rome

    Google Scholar 

  • van Noordwijk M, Lusian B, Leimona B, Dewi S, Wulandari D (eds) (2013) Negotiation-support toolkit for learning landscapes. Bogor, Indonesia, World Agroforestry Centre (ICRAF) Southeast Asia Regional Program. 285 p

    Google Scholar 

  • van Nordwijk M (2014) Agroforestry as plant production system in a multifunctional landscape. Inaugural lecture at Wageningen University. 16 Oct 2014. http://worldagroforestry.org/regions/southeast_asia/publications?do=view_pub_detail&pub_no=BL0051-15

  • van Nordwijk M, Lestari Tata H, Xu J, Dewi S, Minang PA (2012) Segregate or integrate for multifuntionality and sustained change through rubber-based agroforestry in Indonesia and China. In: Nair PKR, Garrity D (eds) Agroforestry – the future of global land use. Springer, Dordrecht, pp 69–104, 541 p

    Chapter  Google Scholar 

  • van Rikxoort H, Schroth G, Läderach P, Rodríguez-Sánchez B (2014) Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agron Sustain Dev. doi:10.1007/s13593-014-0223-8

    Google Scholar 

  • Vázquez-Moreno LL (ed) (2014) Compendio de Buenas Prácticas Agroecológicas en Manejo de Plagas. Editora Agroecológica. La Habana, Cuba. 302 p

    Google Scholar 

  • Villachica H (1996) Frutales y Hortalizas Promisorios de la Amazonia. Tratado de Cooperacion Amazonica, Lima, 367 p

    Google Scholar 

  • Villamor GB, Djanibekov U, Le QB, Vlek PLG (2013) Modelling the socio-ecological system dynamics of rubber agroforests to design reward mechanisms for agrobiodiversity conservation. 20th International congress on modelling and simulation, Adelaide, Australia, 1–6 Dec 2013 www.mssanz.org.au/modsim2013

  • von Maydell HJ (1986) Trees and shrubs of the Sahel: their characteristics and uses. GTZ, Eschborn

    Google Scholar 

  • Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 2012:789–797

    Article  CAS  Google Scholar 

  • Wambugo C, Franzel S, Cordero J, Stewart J (2006) Fodder shrubs for dairy farmers in east Africa. Making extension decisions and putting them into practice. World Agroforestry Center, Nairobi, Oxford Forestry Institute, Oxford, UK. 169 p

    Google Scholar 

  • Weller DM, Raaijmakers JM, Mcspadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Willey RW (1975) The use of shade in coffee, cocoa and tea. Horticult Abstr 45:791–798

    Google Scholar 

  • Witt C, Pasuquin JM, Pampolino MF, Buresh RJ, Dobermann A (2009) A manual for the development and participatory evaluation of site-specific nutrient management for maize in tropical, favorable environments. International Plant Nutrition Institute, Penang, 30 p

    Google Scholar 

  • Yamamoto W, Dewi I, Ibrahim M (2007) Effects of silvopastoral areas on milk production at dual-purpose cattle farms at the semi-humid old agricultural frontier in central Nicaragua. Agr Syst 94:368–375

    Article  Google Scholar 

  • Yépez C, Muschler RG, Benjamin T, Musálem M (2003) Selección de especies para sombra en cafetales diversificados en Chiapas, México. Agroforestería en las Américas (Costa Rica) 9:55–61

    Google Scholar 

  • Young A (1989) Agroforestry for soil conservation. CABI, ICRAF, Wallingford, 276 p

    Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F, van Nordwijk M, Xu J (2014) Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. ICRAF Working Paper no 179. Bogor, Indonesia: World Agroforestry Centre (ICRAF) Southeast Asia Regional Program. doi:10.5716/WP14064.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold G. Muschler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Muschler, R.G. (2015). Agroforestry: Essential for Sustainable and Climate-Smart Land Use?. In: Pancel, L., Köhl, M. (eds) Tropical Forestry Handbook. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41554-8_300-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41554-8_300-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-41554-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics