Skip to main content

No-Pair Relativistic Hamiltonians:Q4C and X2C

  • Reference work entry
  • First Online:
Handbook of Relativistic Quantum Chemistry

Abstract

Under the no-pair approximation, four- and two-component relativistic quantum chemical calculations can be made identical in all the aspects of simplicity, accuracy, and efficiency through the quasi-four-component (Q4C) and exact two-component (X2C) approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu W (2012) The big picture of relativistic molecular quantum mechanics. AIP Conf Proc 1456:62

    Article  CAS  Google Scholar 

  2. Liu W (2015) Effective quantum electrodynamics Hamiltonians: a tutorial review. Int J Quantum Chem 116:631

    Article  Google Scholar 

  3. Liu W (2104) Advances in relativistic molecular quantum mechanics. Phys Rep 537:59

    Google Scholar 

  4. Liu W (2014) Perspective: relativistic Hamiltonians. Int J Quantum Chem 114:983

    Article  CAS  Google Scholar 

  5. Liu W (2010) Ideas of relativistic quantum chemistry. Mol Phys 108:1679

    Article  CAS  Google Scholar 

  6. Saue T (2011) Relativistic Hamiltonians for chemistry: a primer. Chem Phys Chem 12:3077

    CAS  Google Scholar 

  7. Peng D, Reiher M (2012) Exact decoupling of the relativistic Fock operator. Theor Chem Acc 131:1081

    Article  Google Scholar 

  8. Liu W, Peng D (2006) Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. J Chem Phys 125:044102; (E) 125:149901 (2006)

    Article  Google Scholar 

  9. Peng D, Liu W, Xiao Y, Cheng L (2007) Making four- and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”. J Chem Phys 127:104106

    Article  Google Scholar 

  10. Sun Q, Liu W, Kutzelnigg W (2011) Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations. Theor Chem Acc 129:423

    Article  CAS  Google Scholar 

  11. Stanton RE, Havriliak S (1984) Kinetic balance: a partial solution to the problem of variational safety in Dirac calculations. J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  12. Dyall KG, Enevoldsen T (1999) Interfacing relativistic and nonrelativistic methods. III. Atomic 4-spinor expansions and integral approximations. J Chem Phys 111:10000

    Google Scholar 

  13. Liu W (1995) Ph. D Dissertation, Peking University; Liu W, Hong G, Dai D, Li L, Dolg M (1997) The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO and YbS. Theor Chem Acc 96:75

    Google Scholar 

  14. Shabaev VM, Tupitsyn II, Yerokhin VA (2013) Model operator approach to the Lamb shift calculations in relativistic many-electron atoms. Phys Rev A 88:012513

    Article  Google Scholar 

  15. Kellö V, Sadlej AJ (1998) Picture change and calculations of expectation values in approximate relativistic theories. Int J Quantum Chem 68:159

    Article  Google Scholar 

  16. Liu W (2007) New advances in relativistic quantum chemistry. Prog Chem 19:833

    CAS  Google Scholar 

  17. Foldy LL, Wouthuysen SA (1950) On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys Rev 78:29

    Article  Google Scholar 

  18. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys 82:89

    Article  CAS  Google Scholar 

  19. Kutzelnigg W (1997) Relativistic one-electron Hamiltonians ‘for electrons only’ and the variational treatment of the Dirac equation. Chem Phys 225:203

    Article  CAS  Google Scholar 

  20. Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  21. van Lenthe E, Baerends EJ, Snijders JG (1993) Relativistic regular two-component Hamiltonians. J Chem Phys 99:4597

    Article  Google Scholar 

  22. Liu W, Peng D (2009) Exact two-component Hamiltonians revisited. J Chem Phys 131:031104

    Article  Google Scholar 

  23. Dyall KG (1997) Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified Dirac equation. J Chem Phys 106:9618

    Google Scholar 

  24. Kutzelnigg W, Liu W (2005) Quasirelativistic theory equivalent to fully relativistic theory. J Chem Phys 123:241102

    Article  Google Scholar 

  25. Barysz M, Sadlej AJ, Snijders JG (1997) Nonsingular two/one-component relativistic Hamiltonians accurate through arbitrary high order in α 2. Int J Quant Chem 65:225

    Article  CAS  Google Scholar 

  26. Barysz M, Sadlej AJ (2001) Two-component methods of relativistic quantum chemistry: from the Douglas-Kroll approximation to the exact two-component formalism. J Mol Struct (THEOCHEM) 573:181

    Article  CAS  Google Scholar 

  27. Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. I. General theory. J Chem Phys 121:2037

    CAS  Google Scholar 

  28. Reiher M, Wolf A (2004) Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. J Chem Phys 121:10945

    Google Scholar 

  29. Li Z, Xiao Y, Liu W (2012) On the spin separation of algebraic two-component relativistic Hamiltonians. J Chem Phys 137:154114

    Article  Google Scholar 

  30. Li Z, Xiao Y, Liu W (2014) On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular properties. J Chem Phys 141:054111

    Article  Google Scholar 

  31. Sun Q, Xiao Y, Liu W (2012) Exact two-component relativistic theory for NMR parameters: general formulation and pilot application. J Chem Phys 137:174105

    Article  Google Scholar 

  32. Shabaev VM, Tupitsyn II, Yerokhin VA, Plunien G, Soff G (2004) Dual kinetic balance approach to basis-set expansions for the Dirac equation. Phys Rev Lett 93:130405

    Article  CAS  Google Scholar 

  33. Liu W, Kutzelnigg W (2007) Quasirelativistic theory. II. Theory at matrix level. J Chem Phys 126:114107

    Google Scholar 

  34. Ilias̆ M, Saue T (2007) An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. J Chem Phys 126:064102

    Google Scholar 

  35. Seino J, Nakai H (2012) Local unitary transformation method for large-scale two-component relativistic calculations: case for a one-electron Dirac Hamiltonian. J Chem Phys 136:244102

    Article  Google Scholar 

  36. Peng D, Reiher M (2012) Local relativistic exact decoupling. J Chem Phys 136:244108

    Article  Google Scholar 

  37. Tamukong PK, Khait YG, Hoffmann MR, Li Z, Liu W (2014) Relativistic GVVPT2 multireference perturbation theory description of the electronic states of Y2 and Tc2. J Phys Chem A 118:1489

    Article  CAS  Google Scholar 

  38. Li Z, Suo B, Zhang Y, Xiao Y, Liu W (2013) Combining spin-adapted open-shell TD-DFT with spin–orbit coupling. Mol Phys 111:3741

    Article  CAS  Google Scholar 

  39. Liu W, Lindgren I (2013) Going beyond “no-pair relativistic quantum chemistry”. J Chem Phys 139:014108

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (Project Nos. 21033001, 21273011, and 21290192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Liu, W. (2017). No-Pair Relativistic Hamiltonians:Q4C and X2C. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40766-6_2

Download citation

Publish with us

Policies and ethics