Skip to main content
Log in

Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Various kinetic balances for constructing appropriate basis sets in four-component relativistic calculations are examined in great detail. These include the well-known restricted (RKB) and unrestricted (UKB) kinetic balances, the less-known dual kinetic balance (DKB) as well as the unknown inverse kinetic balance (IKB). The RKB and IKB are complementary to each other: The former is good for positive-energy states, whereas the latter good for negative-energy states. The DKB combines the good of both RKB and IKB and even provides full variational safety. However, such an advantage is largely offset by its complicated nature. The UKB does not offer any particular advantages as well. Overall, the RKB is the simplest ansatz. Although the negative-energy states by a finite RKB basis are in error of O(c 0), there is no objection to using them as intermediates for a sum-over-states formulation of perturbation theory, provided that the magnetic balance is also incorporated in the case of magnetic properties. In particular, the RKB is also an essential ingredient for formulating two-component relativistic theories, while all the others are simply incompatible. As such, the RKB should be regarded as the cornerstone of relativistic electronic structure calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim YK (1967) Phys Rev 154:17

    Article  CAS  Google Scholar 

  2. Schwarz WHE, Wallmeier H (1982) Mol Phys 46:1045

    Article  CAS  Google Scholar 

  3. Schwarz WHE, Wechsel-Trakowski E (1982) Chem Phys Lett 85:94

    Article  CAS  Google Scholar 

  4. Kutzelnigg W (1984) Int J Quantum Chem 25:107

    Article  CAS  Google Scholar 

  5. Wallmeier H (1984) Phys Rev A 29:2933

    Article  Google Scholar 

  6. Talman JD (1986) Phys Rev Lett 57:1091

    Article  CAS  Google Scholar 

  7. Hill RN, Krauthauser C (1994) Phys Rev Lett 72:2151

    Article  CAS  Google Scholar 

  8. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  9. Dyall KG, Fægri K Jr (1990) Chem Phys Lett 174:25 (The acronyms RKB and UKB were proposed therein for the first time)

  10. Ishikawa Y, Binning RC Jr, Sando KM (1983) Chem Phys Lett 101:111

    Article  CAS  Google Scholar 

  11. Heully JL, Lindgren I, Lindroth E, Lundquist S, Mårtensen-Pendrill AM (1986) J Phys B 19:2799

    Article  CAS  Google Scholar 

  12. Kutzelnigg W (1996) Phys Rev A 54:1183

    Article  CAS  Google Scholar 

  13. Kutzelnigg W (1997) Chem Phys 225:203

    Article  CAS  Google Scholar 

  14. Kutzelnigg W (1999) J Chem Phys 110:8283

    Article  CAS  Google Scholar 

  15. Kutzelnigg W (1989) Z Phys D 11:15

    Article  CAS  Google Scholar 

  16. Kutzelnigg W (2007) J Chem Phys 126:201103

    Article  Google Scholar 

  17. Kutzelnigg W (1994) Int J Quantum Chem 51:447

    Article  CAS  Google Scholar 

  18. Klahn BK, Bingel WA (1977) Theor Chim Acta 44:27

    Article  CAS  Google Scholar 

  19. Kutzelnigg W, Liu W (2006) Mol Phys 104:2225

    Article  CAS  Google Scholar 

  20. Kutzelnigg W, Liu W (2005) J Chem Phys 123:241102

    Article  Google Scholar 

  21. Dyall KG (1997) J Chem Phys 106:9618

    Article  CAS  Google Scholar 

  22. Dyall KG (2001) J Chem Phys 115:9136

    Article  CAS  Google Scholar 

  23. Dyall KG (2002) J Comput Chem 23:786

    Article  CAS  Google Scholar 

  24. Liu W, Peng D (2006) J Chem Phys 125:044102; 125:149901(E)

    Google Scholar 

  25. Peng D, Liu W, Xiao Y, Cheng L (2007) J Chem Phys 127:104106

    Article  Google Scholar 

  26. Liu W, Kutzelnigg W (2007) J Chem Phys 126:114107

    Article  Google Scholar 

  27. Kutzelnigg W, Liu W (2006) J Chem Phys 125:107102

    Article  Google Scholar 

  28. Liu W (2007) Progr Chem 19:833

    CAS  Google Scholar 

  29. Liu W, Peng D (2009) J Chem Phys 131:031104

    Article  Google Scholar 

  30. Iliaš M, Saue T (2007) J Chem Phys 126:064102

    Article  Google Scholar 

  31. Sikkema J, Visscher L, Saue T, Iliaš M (2009) J Chem Phys 131:124116

    Article  Google Scholar 

  32. Liu W (2010) Mol Phys 108:1679

    Article  CAS  Google Scholar 

  33. Lee YS, Mclean AD (1982) J Chem Phys 76:735

    Article  CAS  Google Scholar 

  34. Shabaev VM, Tupitsyn II, Yerokhin VA, Plunien G, Soff G (2004) Phys Rev Lett 93:130405

    Article  CAS  Google Scholar 

  35. Dyall KG (1994) J Chem Phys 100:2118

    Article  CAS  Google Scholar 

  36. Dyall KG, Grant IP, Wilson S (1984) J Phys B 17:483

    Article  Google Scholar 

  37. Foldy LL, Wouthuysen SA (1950) Phys Rev 78:29

    Article  Google Scholar 

  38. Dyall KG, Fægri K Jr (2007) Introduction to relativistic quantum chemistry. Oxford University Press, New York

    Google Scholar 

  39. Xiao Y, Peng D, Liu W (2007) J Chem Phys 126:081101

    Article  Google Scholar 

  40. Liu W, Hong G, Li L, Xu G (1996) Chin Sci Bull 41:651

    CAS  Google Scholar 

  41. Hong W, Liu G, Dai D, Li L, Dolg M (1997) Theor Chem Acc 96:75

    Google Scholar 

  42. Liu W, Wang F, Li L (2003) J Theor Comput Chem 2:257

    Article  CAS  Google Scholar 

  43. Liu W, Wang F, Li L (2004) Recent advances in relativistic molecular theory, recent advances in computational chemistry, vol 5. In: Hirao K, Ishikawa Y (eds). World Scientific, Singapore, p 257

  44. Liu W, Wang F, Li L (2004) Encyclopedia of computational chemistry (electronic edition). In: von Ragué Schleyer P, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Wiley, Chichester

  45. The interchanged eigenvectors should be \(({\bf -B}^D, {\bf A}^D) . ^T\) if the imaginary unit in Eq. 36. is not extracted explicitly

  46. Fægri K Jr (2001) Theor Chem Acc 105:252

    Google Scholar 

  47. Ramsey NF (1950) Phys Rev 78:699

    Article  CAS  Google Scholar 

  48. Kutzelnigg W (2003) Phys Rev A 67:032109

    Article  Google Scholar 

  49. Xiao Y, Liu W, Cheng L, Peng D (2007) J Chem Phys 126:214101

    Article  Google Scholar 

  50. Kutzelnigg W, Liu W (2009) J Chem Phys 131:044129

    Article  Google Scholar 

  51. Cheng L, Xiao Y, Liu W (2009) J Chem Phys 130:144102

    Article  Google Scholar 

  52. Cheng L, Xiao Y, Liu W (2009) J Chem Phys 131:244113

    Article  Google Scholar 

  53. Sun Q, Liu W, Xiao Y, Cheng L (2009) J Chem Phys 131:081101

    Article  Google Scholar 

  54. Komorovsky S, Repisky M, Malkina OL, Malkin VG, Ondík IM, Kaupp M (2008) J Chem Phys 128:104101

    Article  Google Scholar 

  55. Repiský M, Komorovský S, Malkina OL, Malkin VG (2009) Chem Phys 356:236

    Article  Google Scholar 

  56. Komorovsky S, Repisky M, Malkina OL, Malkin VG (2010) J Chem Phys 132:154101

    Article  Google Scholar 

  57. Hamaya S, Fukui H (2010) Bull Chem Soc Jpn 83:635

    Article  CAS  Google Scholar 

  58. Pecul M, Saue T, Ruud K, Rizzo A (2004) J Chem Phys 121:3051

    Article  CAS  Google Scholar 

  59. Maldonado A, Aucar G (2007) J Chem Phys 127:154115

    Article  Google Scholar 

Download references

Acknowledgments

The research of this work was supported by grants from the National Natural Science Foundation of China (Project Nos. 20625311, 20773003 and 21033001) and from MOST of China (Project Nos. 2006CB601103 and 2006AA01A119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Liu.

Additional information

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

Appendix: The radial Dirac equation for a hydrogenic ion in a DKB Gaussian basis

Appendix: The radial Dirac equation for a hydrogenic ion in a DKB Gaussian basis

The radial parts of the DKB basis functions (35) and (36) can be rewritten as

$$ R^L_{\mu}(r)=\frac{1}{r}\pi^L_{\mu}(r),\quad R^S_{\mu}(r)=\frac{1}{r}\pi^S_{\mu}(r), \quad \mu=1,\ldots, N, $$
(68)

such that the radial parts \((P_{n\kappa}(r),Q_{n\kappa}(r))^T=(\frac{1}{r}P^{\prime}_{n\kappa}(r),\frac{1}{r}Q^\prime_{n\kappa}(r))^T\) of spinor ψ i (34) can be expanded as

$$ \left( \begin{array}{cc} P^\prime_{n\kappa}(r) \\ Q^\prime_{n\kappa}(r) \end{array}\right) = \sum_{\mu=1}^{N} \left( \begin{array}{cc} \pi^L_{\mu} \\ \frac{1}{2mc}\left( \frac{d}{dr}+\frac{\kappa}{r} \right)\pi^L_{\mu} \end{array}\right) A^D_{\mu, n\kappa} +\sum_{\mu=1}^{N}\left( \begin{array}{cc} \frac{1}{2mc}\left( \frac{d}{dr}-\frac{\kappa}{r} \right)\pi^S_{\mu} \\ \pi^S_{\mu} \end{array}\right) B^D_{\mu, n\kappa}. $$
(69)

The matrix representation of the radial Dirac equation

$$ \left( \begin{array}{cc} V & c\left(-\frac{d}{dr}+\frac{\kappa}{r}\right) \\ c\left(\frac{d}{dr}+\frac{\kappa}{r}\right) & V-2mc^2 \end{array}\right) \left( \begin{array}{cc} P^\prime_{n\kappa}(r) \\ Q^\prime_{n\kappa}(r) \end{array}\right) =\left( \begin{array}{cc} P^\prime_{n\kappa}(r) \\ Q^\prime_{n\kappa}(r) \end{array}\right) {\mathbf{\epsilon}}^D $$
(70)

is then of the same form as Eq. 37 but with the matrix elements defined as

$$ {\mathbf{V}}_{\mu\nu}^{LL} =\langle \pi^L_\mu |V|\pi^L_\nu\rangle, $$
(71)
$$ {\mathbf{V}}_{\mu\nu}^{SS} = \langle \pi^S_\mu |V|\pi^S_\nu\rangle, $$
(72)
$$ {\mathbf{S}}_{\mu\nu}^{LL}= \langle \pi^L_\mu |\pi^L_\nu\rangle, $$
(73)
$$ {\mathbf{S}}_{\mu\nu}^{SS}= \left\langle{ \pi^S_\mu |\pi^S_\nu}\right\rangle, $$
(74)
$$ {\mathbf{T}}_{\mu\nu}^{LL}= \tfrac{1}{2m}\left\langle{ \left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right) \pi^L_\mu| \left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right)|\pi^L_\nu}\right\rangle =\tfrac{1}{2m}\left\langle {\pi^L_\mu| \left(-\tfrac{d^2}{dr^2}+\tfrac{\kappa(\kappa+1)}{r^2}\right) |\pi^L_\nu}\right\rangle , $$
(75)
$$ {\mathbf{T}}_{\mu\nu}^{SS}= \tfrac{1}{2m}\left\langle{ \left(\tfrac{d}{dr}-\tfrac{\kappa}{r}\right) \pi^S_\mu| \left(\tfrac{d}{dr}-\tfrac{\kappa}{r}\right)|\pi^S_\nu}\right\rangle =\tfrac{1}{2m}\left\langle {\pi^S_\mu| \left(-\tfrac{d^2}{dr^2}+\tfrac{\kappa(\kappa-1)}{r^2}\right) |\pi^S_\nu}\right\rangle, $$
(76)
$$ {\mathbf{W}}_{\mu\nu}^{LL}= \left\langle{ \left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right) \pi^L_\mu|V \left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right)|\pi^L_\nu}\right\rangle, $$
(77)
$$ {\mathbf{W}}_{\mu\nu}^{SS}= \left\langle {\left(\tfrac{d}{dr}-\tfrac{\kappa}{r}\right) \pi^S_\mu|V \left(\tfrac{d}{dr}-\tfrac{\kappa}{r}\right)|\pi^S_\nu}\right\rangle, $$
(78)
$$ \begin{aligned} {\mathbf{W}}_{\mu\nu}^{LS} & = \tfrac{1}{2mc}\left[\left\langle {\pi^L_\mu| V|\left(\tfrac{d}{dr}-\tfrac{\kappa}{r}\right) \pi^S_\nu}\right\rangle +\left\langle {\left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right) \pi^L_\mu|V |\pi^S_\nu}\right\rangle\right.\\ &\left.+\tfrac{1}{2m}\left\langle {\left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right) \pi^L_\mu| \left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right) | \left(\tfrac{d}{dr}-\tfrac{\kappa}{r}\right) \pi^S_\nu}\right\rangle\right], \end{aligned} $$
(79)
$$\begin{aligned}{\mathbf{W}}_{\mu\nu}^{SL} & =\tfrac{1}{2mc}\left[\left\langle {\pi^S_\mu|V|\left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right)\pi^L_\nu}\right\rangle +\left\langle{\left(\tfrac{d}{dr}-\tfrac{\kappa}{r}\right) \pi^S_\mu|V|\pi^L_\nu}\right\rangle\right.\\ & \left.+\tfrac{1}{2m}\left\langle{\left(\tfrac{d}{dr}-\tfrac{\kappa}{r}\right) \pi^S_\mu|\left(-\tfrac{d}{dr}+\tfrac{\kappa}{r}\right) |\left(\tfrac{d}{dr}+\tfrac{\kappa}{r}\right)\pi^L_\nu}\right\rangle \right].\end{aligned}$$
(80)

Note that the element for the above integrals is dr instead of r 2 dr. For Gaussian-type functions (52), i.e.,

$$ \begin{aligned} \pi^L_\mu &= r^{n} e^{-\zeta_\mu r^2},\quad n\ge 1, \\ \pi^S_\nu &= r^{n^\prime} e^{-\zeta_\nu r^2},\quad n^\prime\ge 1, \end{aligned} $$
(81)

the integrals are to be evaluated as

$$ {\mathbf{V}}^{LL}_{\mu\nu} =-Z {\mathcal{I}}(2n-1,\zeta_{\mu\nu}),\quad \zeta_{\mu\nu}\doteq \zeta_{\mu}+\zeta_{\nu}, $$
(82)
$$ {\mathbf{V}}^{SS}_{\mu\nu} =-Z {\mathcal{I}}(2n^\prime-1,\zeta_{\mu\nu}), $$
(83)
$$ {\mathbf{S}}^{LL}_{\mu\nu} = {\mathcal{I}}(2n,\zeta_{\mu\nu}), $$
(84)
$$ {\mathbf{S}}^{SS}_{\mu\nu} = {\mathcal{I}}(2n^\prime,\zeta_{\mu\nu}), $$
(85)
$$ \begin{aligned} {\mathbf{T}}^{LL}_{\mu\nu} &=\tfrac{1}{2n^\prime}[4\zeta_\mu\zeta_\nu {\mathcal{I}}(2n+2,\zeta_{\mu\nu}) -2(n+\kappa)\zeta_{\mu\nu}{\mathcal{I}}(2n,\zeta_{\mu\nu}) \\ &\quad+(n+\kappa)^2 {\mathcal{I}}(2n-2,\zeta_{\mu\nu})], \end{aligned} $$
(86)
$$ \begin{aligned} {\mathbf{T}}^{SS}_{\mu\nu} &=\tfrac{1}{2n^\prime}[4\zeta_\mu\zeta_\nu {\mathcal{I}}(2n^\prime+2,\zeta_{\mu\nu}) -2(m-\kappa)\zeta_{\mu\nu}{\mathcal{I}}(2n^\prime,\zeta_{\mu\nu}) \\ &\quad+(n^\prime-\kappa)^2 {\mathcal{I}}(2n^\prime-2,\zeta_{\mu\nu})], \end{aligned} $$
(87)
$$ \begin{aligned} {\mathbf{W}}^{LL}_{\mu\nu} &=-Z[4\zeta_\mu\zeta_\nu {\mathcal{I}}(2n+1,\zeta_{\mu\nu}) -2(n+\kappa)\zeta_{\mu\nu}{\mathcal{I}}(2n-1,\zeta_{\mu\nu}) \\ &\quad+(n+\kappa)^2 {\mathcal{I}}(2n-3,\zeta_{\mu\nu})], \end{aligned} $$
(88)
$$ \begin{aligned} {\mathbf{W}}^{SS}_{\mu\nu} &=-Z[4\zeta_\mu\zeta_\nu {\mathcal{I}}(2n^\prime+1,\zeta_{\mu\nu}) -2(n^\prime-\kappa)\zeta_{\mu\nu}{\mathcal{I}}(2n^\prime-1,\zeta_{\mu\nu}) \\ &\quad+(n^\prime-\kappa)^2 {\mathcal{I}}(2n^\prime-3,\zeta_{\mu\nu})], \end{aligned} $$
(89)
$$ \begin{aligned} {\mathbf{W}}^{LS}_{\mu\nu} &= -\tfrac{Z}{2mc}[ -2\zeta_{\mu\nu}{\mathcal{I}}(n+n^\prime,\zeta_{\mu\nu}) +(n+n^\prime){\mathcal{I}}(n+n^\prime-2,\zeta_{\mu\nu})] \\ &\quad -\tfrac{1}{4m^2c} [ 8\zeta_\mu\zeta_\nu^2{\mathcal{I}}(n+n^\prime+3,\zeta_{\mu\nu}) \\ &\quad-4((n+\kappa)\zeta_\nu^2+(2n^\prime+1)\zeta_\mu\zeta_\nu){\mathcal{I}}(n+n^\prime+1,\zeta_{\mu\nu}) \\ &\quad+2((n^\prime-1+\kappa)(n^\prime-\kappa)\zeta_\mu +(n+\kappa)(2n^\prime+1)\zeta_\nu){\mathcal{I}}(n+n^\prime-1,\zeta_{\mu\nu})\\ &\quad-(n+\kappa)(n^\prime-1+\kappa)(n^\prime-\kappa){\mathcal{I}}(n+n^\prime-3,\zeta_{\mu\nu})]\\ &={\mathbf{W}}^{SL\dagger}, \end{aligned} $$
(90)

where

$$ {\mathcal{I}}(n,\zeta_{\mu\nu})=\int\limits_{0}^{\infty} r^n e^{-\zeta_{\mu\nu} r^2} dr =f_n \frac{(n-1)!!}{(2\zeta_{\mu\nu})^{(n+1)/2}},\quad f_n=\left\{\begin{array}{ll} \sqrt{\pi} & n\in \hbox{non-negative even}, \\ 1 & n\in \hbox{non-negative odd}. \end{array}\right. $$
(91)

Note that DKB also involves new integrals not present in other schemes when evaluating the NMR shielding constants. However, they are not to be presented here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Liu, W. & Kutzelnigg, W. Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations. Theor Chem Acc 129, 423–436 (2011). https://doi.org/10.1007/s00214-010-0876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0876-6

Keywords

Navigation