Skip to main content

Parameter Estimation and Predictive Uncertainty Quantification in Hydrological Modelling

  • Living reference work entry
  • First Online:
Handbook of Hydrometeorological Ensemble Forecasting

Abstract

The majority of hydrological and environmental models contain parameters that must be specified before the model can be used. Parameter estimation is hence a very common problem in environmental sciences and has received tremendous amount of research and industry attention. This chapter reviews some of the key principles of parameter estimation, with a focus on calibration approaches and uncertainty quantification. The distinct approaches of manual calibration, optimization, multi-objective optimization, and probabilistic approaches are described in terms of key theory and representative applications. Advantages and limitations of these strategies are listed and discussed, with a focus on their ability to represent parametric and predictive uncertainties. The role of posterior diagnostics to check calibration and model assumptions that impact on parameter estimation is emphasized. Auxiliary tricks and techniques are described to simplify the process of parameter estimation in practical applications. The chapter concludes with an outline of directions for ongoing and future research. It is hoped that this chapter will help hydrologists and environmental modellers get to the current state of research and practice in model calibration, parameter estimation, and uncertainty quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • M.B. Abbott, V.M. Babovic, J.A. Cunge, Reply to comment by Beven et al on “Towards the hydraulics of the hydroinformatics era” by Abbott et al. J. Hydraul. Res. 41(3), 333–336 (2003)

    Google Scholar 

  • C. Albert, A mechanistic dynamic emulator. Nonlinear Anal. Real World Appl. 13(6), 2747–2754 (2012)

    Article  Google Scholar 

  • A.H.-S. Ang, W.H. Tang, Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering (Wiley, Hoboken, 2007)

    Google Scholar 

  • S.A. Archfield, M. Clark, B. Arheimer, L.E. Hay, H. McMillan, J.E. Kiang, J. Seibert, K. Hakala, A. Bock, T. Wagener, W.H. Farmer, V. Andréassian, S. Attinger, A. Viglione, R. Knight, S. Markstrom, T. Over, Accelerating advances in continental domain hydrologic modeling. Water Resour. Res. 51(12), 10078–10091 (2015)

    Article  Google Scholar 

  • J.G. Arnold, N. Fohrer, SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 19(3), 563–572 (2005)

    Article  Google Scholar 

  • M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002). Special Issue on Monte Carlo Methods for Statistical Signal Processing

    Article  Google Scholar 

  • M. Asadzadeh, B.A. Tolson, Pareto archived dynamically dimensioned search with hypervolume-based selection for multiobjective optimization. Eng. Optim. 45(12), 1489–1509 (2013)

    Article  Google Scholar 

  • K. Beven, TOPMODEL: A critique. Hydrol. Process. 11(9), 1069–1085 (1997)

    Article  Google Scholar 

  • K. Beven, On the concept of model structural error. Water Sci. Technol. 52, 167–175 (2005)

    Article  Google Scholar 

  • K.J. Beven, A manifesto for the equifinality thesis. J. Hydrol. 320, 18–36 (2006)

    Article  Google Scholar 

  • K.J. Beven, A.M. Binley, The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 6, 279–298 (1992)

    Article  Google Scholar 

  • K. Beven, I. Westerberg, On red herrings and real herrings: Disinformation and information in hydrological inference. Hydrol. Process. 25, 1676–1680 (2011)

    Article  Google Scholar 

  • K. Beven, P. Smith, I. Westerberg, J. Freer, Comment on “Pursuing the method of multiple working hypotheses for hydrological modeling” by P. Clark et al. Water Resour. Res. 48, W11801 (2012)

    Google Scholar 

  • G.E.P. Box, G.C. Tiao, Bayesian Inference in Statistical Analysis (Wiley, New York, 1992)

    Book  Google Scholar 

  • G.O. Brown, Henry Darcy and the making of a law. Water Resour. Res. 38(7), 1–12 (2002)

    Article  Google Scholar 

  • N. Bulygina, H. Gupta, Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation. Water Resour. Res. 45, W00B13 (2009)

    Google Scholar 

  • T.G. Chapman, Optimization of a rainfall-runoff model for an arid zone catchment, in I.A.S.H.-UNESCO Symposium on the Results of Research on Representative and Experimental Basins, (IASH-AISH Publ, Wellington, 1970), pp. 126–144

    Google Scholar 

  • F.H. Chiew, L. Siriwardena, Estimation of SIMHYD parameter values for application in ungauged catchments, in MODSIM 2005 International Congress on Modelling and Simulation, ed. by A. Zerger, R.M. Argent (Modelling and Simulation Society of Australia and New Zealand, Melbourne, Australia, 2005), pp. 2883–2889

    Google Scholar 

  • F.H.S. Chiew, M.J. Stewardson, T.A. McMahon, Comparison of six rainfall-runoff modelling approaches. J. Hydrol. 147, 1–36 (1993)

    Article  Google Scholar 

  • M.P. Clark, A.G. Slater, D.E. Rupp, R.A. Woods, J.A. Vrugt, H.V. Gupta, T. Wagener, L.E. Hay, Framework for understanding structural errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res. 44, W00B02 (2008). https://doi.org/10.1029/2007WR006735

    Article  Google Scholar 

  • M.P. Clark, D. Kavetski, F. Fenicia, Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res. 47, W09301 (2011)

    Google Scholar 

  • M.P. Clark, D. Kavetski, F. Fenicia, Reply to comment by K. Beven et al. on “Pursuing the method of multiple working hypotheses for hydrological modeling”. Water Resour. Res. 48, W11802 (2012)

    Article  Google Scholar 

  • M.P. Clark, B. Nijssen, J.D. Lundquist, D. Kavetski, D.E. Rupp, R.A. Woods, J.E. Freer, E.D. Gutmann, A.W. Wood, L.D. Brekke, J.R. Arnold, D.J. Gochis, R.M. Rasmussen, A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res. 51(4), 2498–2514 (2015)

    Article  Google Scholar 

  • H.L. Cloke, F. Pappenberger, Ensemble flood forecasting: A review. J. Hydrol. 375, 613–626 (2009)

    Article  Google Scholar 

  • J. Craig, et al., Raven User’s and Developer’s manual v2.7, http://www.civil.uwaterloo.ca/jrcraig/Raven/. (University of Waterloo, 2017)

  • B. de Finetti, Foresight: Its logical laws, its subjective sources, in Studies in Subjective Probability, ed. by H.E. Kyburg (Wiley, New York, 1964), pp. 93–158

    Google Scholar 

  • N. De Vleeschouwer, V.R.N. Pauwels, Assessment of the indirect calibration of a rainfall-runoff model for ungauged catchments in Flanders. Hydrol. Earth Syst. Sci. 17, 2001–2016 (2013)

    Article  Google Scholar 

  • J. Demargne, L. Wu, S.K. Regonda, J.D. Brown, H. Lee, M. He, D.J. Seo, R. Hartman, H.D. Herr, M. Fresch, J. Schaake, Y. Zhu, The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Am. Meteorol. Soc. 95(1), 79–98 (2014)

    Article  Google Scholar 

  • J. Doherty, Ground water model calibration using pilot points and regularization. Ground Water 41, 170–177 (2003)

    Article  Google Scholar 

  • J. Doherty, PEST: Model Independent Parameter Estimation, 5th edn. (Watermark Numerical Computing, Brisbane, 2005)

    Google Scholar 

  • Q. Duan, S. Sorooshian, V. Gupta, Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28(4), 1015–1031 (1992)

    Article  Google Scholar 

  • Q. Duan, J. Schaake, V. Andreassian, S.W. Franks, G. Goteti, H.V. Gupta, Y.M. Gusev, F. Habets, A. Hall, L. Hay, T. Hogue, M. Huang, G. Leavesley, X. Liang, O.N. Nasonova, J. Noilhan, L. Oudin, S. Sorooshian, T. Wagener, E.F. Wood, Model parameter estimation experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol. 320(1–2), 3–17 (2006)

    Article  Google Scholar 

  • A. Efstratiadis, D. Koutsoyiannis, One decade of multi-objective calibration approaches in hydrological modelling: A review. Hydrol. Sci. J. 55(1), 58–78 (2010)

    Article  Google Scholar 

  • G. Evin, D. Kavetski, M. Thyer, G. Kuczera, Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration. Water Resour. Res. 49, 4518–4524 (2013)

    Article  Google Scholar 

  • G. Evin, M. Thyer, D. Kavetski, D. McInerney, G. Kuczera, Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resour. Res. 50, 2350–2375 (2014)

    Article  Google Scholar 

  • F. Fenicia, H.H.G. Savenije, P. Matgen, L. Pfister, Understanding catchment behavior through stepwise model concept improvement. Water Resour. Res. 44, W01402 (2008)

    Google Scholar 

  • F. Fenicia, S. Wrede, D. Kavetski, L. Pfister, L. Hoffmann, H. Savenije, J.J. McDonnell, Impact of mixing assumptions on mean residence time estimation. Hydrol. Process. 24(12), 1730–1741 (2010). (Special Issue on Residence Times and Preferential Flows)

    Article  Google Scholar 

  • F. Fenicia, D. Kavetski, H.H.G. Savenije, Elements of a flexible approach for conceptual hydrological modeling: Part 1. Motivation and theoretical development. Water Resour. Res. 47, W11510 (2011)

    Article  Google Scholar 

  • F. Fenicia, D. Kavetski, H.H.G. Savenije, P. L, From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions. Water Resour. Res. 52, 954–989 (2016)

    Article  Google Scholar 

  • F. Fenicia, D. Kavetski, P. Reichert, C. Albert, Signature-domain calibration of hydrological models using approximate Bayesian computation: Empirical analysis of fundamental properties. Water Resour. Res. in press, https://doi.org/10.1002/2017WR021616 (2018)

  • C.W. Fetter, Applied Hydrogeology, 3rd edn. (Prentice-Hall, Upper Saddle River, 1994)

    Google Scholar 

  • J. Freer, K. Beven, B. Ambroise, Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach. Water Resour. Res. 32(7), 2161–2173 (1996)

    Article  Google Scholar 

  • J.E. Freer, H. McMillan, J.J. McDonnell, K.J. Beven, Constraining dynamic TOPMODEL responses for imprecise water table information using fuzzy rule based performance measures, J. Hydrol. 291(3–4), 254–277 (2004)

    Article  Google Scholar 

  • R.A. Freeze, R.L. Harlan, Blueprint for a physically-based, digitally-simulated hydrologic response model. J. Hydrol. 9, 237–258 (1969)

    Article  Google Scholar 

  • A. Gelb (ed.), Applied Optimal Estimation (MIT Press, Cambridge, MA, 1974)

    Google Scholar 

  • A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis (Chapman and Hall, London, 1998)

    Google Scholar 

  • P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic, London, 1981)

    Google Scholar 

  • L. Giustarini, R. Hostache, D. Kavetski, M. Chini, G. Corato, S. Schlaffer, P. Matgen, Probabilistic flood mapping using synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens. 54(12), 6958–6969 (2016)

    Article  Google Scholar 

  • R.S. Govindaraju, Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 5(2), 115–123 (2000)

    Article  Google Scholar 

  • R.B. Grayson, I.D. Moore, T.A. McMahon, Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour. Res. 28(10), 2659–2666 (1992)

    Article  Google Scholar 

  • V.K. Gupta, S. Sorooshian, The automatic calibration of conceptual catchment models using derivative-based optimization algorithms. Water Resour. Res. 21(4), 473–485 (1985)

    Article  Google Scholar 

  • H.V. Gupta, S. Sorooshian, P.O. Yapo, Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 34(4), 751–763 (1998)

    Article  Google Scholar 

  • H.V. Gupta, T. Wagener, Y. Liu, Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol. Process. 22, 3802–3813 (2008)

    Article  Google Scholar 

  • T.T. Hailegeorgis, K. Alfredsen, Regional flood frequency analysis and prediction in ungauged basins including estimation of major uncertainties for mid-Norway. J. Hydrol. 9, 104–126 (2017)

    Google Scholar 

  • A.W. Harbaugh, MODFLOW-2005, the U.S. Geological Survey modular ground-water model – the Ground-Water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16 (2005)

    Google Scholar 

  • M.C. Hill, D. Kavetski, M.P. Clark, M. Ye, M. Arabi, D. Lu, L. Foglia, S. Mehl, Practical use of computationally frugal model analysis methods. Groundwater 54(2), 159 (2015)

    Article  Google Scholar 

  • R. Hostache, X. Lai, J. Monnier, C. Puech, Assimilation of spatially distributed water levels into a shallow-water model. Part II: Use of a remote sensing image of Mosel River. J. Hydrol. 390(3–4), 257–268 (2010)

    Article  Google Scholar 

  • M. Hrachowitz, H.H.G. Savenije, G. Blöschl, J.J. McDonnell, M. Sivapalan, J.W. Pomeroy, B. Arheimer, T. Blume, M.P. Clark, U. Ehret, F. Fenicia, J.E. Freer, A. Gelfan, H.V. Gupta, D.A. Hughes, R.W. Hut, A. Montanari, S. Pande, D. Tetzlaff, P.A. Troch, S. Uhlenbrook, T. Wagener, H.C. Winsemius, R.A. Woods, E. Zehe, C. Cudennec, A decade of predictions in ungauged basins (PUB) – A review. Hydrol. Sci. J. 58(6), 198–1255 (2013)

    Article  Google Scholar 

  • M. Hrachowitz, O. Fovet, L. Ruiz, T. Euser, S. Gharari, R. Nijzink, J. Freer, H.H.G. Savenije, C. Gascuel-Odoux, Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resour. Res. 50(9), 7445–7469 (2014)

    Article  Google Scholar 

  • D. Huard, A. Mailhot, Calibration of hydrological model GR2M using Bayesian uncertainty analysis. Water Resour. Res. 44, W02424 (2008)

    Article  Google Scholar 

  • R.P. Ibbitt, T. O’Donnell, Designing conceptual catchment models for automatic fitting methods, in Mathematical Models in Hydrology Symposium, IAHS-AISH Publication No. 101(2) (1971), pp. 461–475

    Google Scholar 

  • V.Y. Ivanov, E.R. Vivoni, R.L. Bras, D. Entekhabi, Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour. Res. 40(11), W11102 (2004). https://doi.org/10.1029/2004WR003218

    Article  Google Scholar 

  • A.J. Jakeman, G.M. Hornberger, How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 29(8), 2637–2649 (1993)

    Article  Google Scholar 

  • R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  • D. Kavetski, Analysis of input data uncertainty and numerical robustness in conceptual rainfall-runoff modelling, PhD Thesis, Faculty of Engineering and Built Environment, University of Newcastle (2005)

    Google Scholar 

  • D. Kavetski, M.P. Clark, Ancient numerical daemons of conceptual hydrological modeling. Part 2: Impact of time stepping schemes on model analysis and prediction. Water Resour. Res. 46, W10511 (2010). https://doi.org/10.1029/2009WR008896

    Article  Google Scholar 

  • D. Kavetski, G. Kuczera, Model smoothing strategies to remove microscale discontinuities and spurious secondary optima in objective functions in hydrological calibration. Water Resour. Res. 43, W03411 (2007). https://doi.org/10.1029/2006WR005195

    Article  Google Scholar 

  • D. Kavetski, S. Franks, G. Kuczera, Confronting input uncertainty in environmental modelling, in Calibration of Watershed Models. Water Science and Application Series 6, ed. by Q.Y. Duan, H.V. Gupta, S. Sorooshian, A. Rousseau, R. Tourcotte. (American Geophysical Union, Washington, DC, 2002), pp. 49–68

    Google Scholar 

  • D. Kavetski, G. Kuczera, S.W. Franks, Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour. Res. 42(3), W03407 (2006a)

    Google Scholar 

  • D. Kavetski, G. Kuczera, S.W. Franks, Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts. J. Hydrol. 320(1–2), 173–186 (2006b)

    Article  Google Scholar 

  • D. Kavetski, G. Kuczera, S.W. Franks, Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis. J. Hydrol. 320(1–2), 187–201 (2006c)

    Article  Google Scholar 

  • D. Kavetski, G. Kuczera, M. Thyer, B. Renard, Multistart Newton-type optimisation methods for the calibration of conceptual hydrological models, In Proceedings of Oxley, L. and Kulasiri, D. (eds) MODSIM 2007 International Congress on Modelling and Simulation, Christchurch, New Zealand. (Modelling and Simulation Society of Australia and New Zealand, 2007)

    Google Scholar 

  • D. Kavetski, F. Fenicia, P. Reichert, C. Albert, Signature-domain calibration of hydrological models using approximate Bayes computation: Theory and comparison to existing applications. Water Resour. Res. in press, https://doi.org/10.1002/2017WR020528 (2018)

  • G.B. Kingston, H.R. Maier, M.F. Lambert, Bayesian model selection applied to artificial neural networks used for water resources modeling. Water Resour. Res. 44, W04419 (2008)

    Article  Google Scholar 

  • J.W. Kirchner, Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 42(3), W03S04 (2006). https://doi.org/10.1029/2005WR004362

    Article  Google Scholar 

  • L.F. Konikow, J.D. Bredehoeft, Ground-water models cannot be validated. Adv. Water Resour. 15, 75–83 (1992)

    Article  Google Scholar 

  • V. Koren, M. Smith, Q. Duan, Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models, in Calibration of Watershed Models, ed. by Q. Duan, H.V. Gupta, S. Sorooshian, A.N. Rousseau, R. Turcotte (AGU Press, Washington, DC, 2003)

    Google Scholar 

  • R. Krzysztofowicz, Bayesian theory of probabilistic forecasting via a deterministic hydrologic model. Water Resour. Res. 35(9), 2739–2750 (1999)

    Article  Google Scholar 

  • G. Kuczera, S. Franks, Testing hydrologic models: Fortification or falsification? in Mathematical Modelling of Large Watershed Hydrology, ed. by V.P. Singh, D.K. Frevert (Water Resources Publications, Littleton, 2002)

    Google Scholar 

  • G. Kuczera, D. Kavetski, S.W. Franks, M. Thyer, Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters. J. Hydrol. 331(1–2), 161–177 (2006)

    Article  Google Scholar 

  • E. Laloy, B. Rogiers, J.A. Vrugt, D. Mallants, D. Jacques, Efficient posterior exploration of a high-dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion. Water Resour. Res. 49(5), 2664–2682 (2013)

    Article  Google Scholar 

  • J. Le Coz, B. Renard, L. Bonnifait, F. Branger, R. Le Boursicaud, Combining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approach. J. Hydrol. 509, 573–587 (2014)

    Article  Google Scholar 

  • D.R. Legates, G.J. McCabe Jr., Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35(1), 233–241 (1999)

    Article  Google Scholar 

  • J. Lerat, C. Pickett-Heaps, D. Shin, S. Zhou, P. Feikema, U. Khan, R. Laugesen, N. Tuteja, G. Kuczera, M. Thyer, D. Kavetski, Dynamic streamflow forecasts within an uncertainty framework for 100 catchments in Australia, in Hydrology and Water Resources Symposium: The Art and Science of Water, (Engineers Australia, Barton, ACT, Australia, 2015), pp. 1396–1403

    Google Scholar 

  • G. Lindstrom, B. Johansson, M. Persson, M. Gardelin, S. Bergstrom, Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 201, 272–288 (1997)

    Article  Google Scholar 

  • D.P. Loucks, J.R. Stedinger, D.A. Haith, Water Resource Systems Planning and Analysis (Prentice-Hall, Englewood Cliffs, 1981)

    Google Scholar 

  • D.R. Maidment, Handbook of Hydrology (McGraw-Hill, New York, 1993)

    Google Scholar 

  • P. Mantovan, E. Todini, Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. J. Hydrol. 330(1–2), 368–381 (2006)

    Article  Google Scholar 

  • P. Mantovan, E. Todini, M.L.V. Martina, Reply to comment by Keith Beven, Paul Smith and Jim Freer on “Hydrological forecasting uncertainty assessment: Inconherence of the GLUE methodology”. J. Hydrol. 338, 319–324 (2007)

    Article  Google Scholar 

  • A. Marchi, E. Salomons, A. Simpson, A. Zecchin, H. Maier, Z. Wu, C. Stokes, W. Wu, G.C. Dandy, The battle of the water networks II (BWN-II). J. Water Resour. Plann. Manage. 140, 04014009:04014001–04014009:04014014 (2014)

    Google Scholar 

  • E.S. Martins, J.R. Stedinger, Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 36(3), 737–744 (2000)

    Article  Google Scholar 

  • D. McInerney, M. Thyer, D. Kavetski, J. Lerat, G. Kuczera, Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors. Water Resour. Res. 53, 2199–2239 (2017)

    Article  Google Scholar 

  • H. McMillan, B. Jackson, M. Clark, D. Kavetski, R. Woods, Rainfall uncertainty in hydrologic modelling: An evaluation of multiplicative error models. J. Hydrol. 400, 83–94 (2011)

    Article  Google Scholar 

  • M. Merriman, On the history of the method of least squares. Analyst 4(2), 33–36 (1877)

    Article  Google Scholar 

  • D.A. Miller, R.A. White, A conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Earth Interact. 2, 2 (1999)

    Article  Google Scholar 

  • A. Montanari, E. Toth, Calibration of hydrological models in the spectral domain: An opportunity for scarcely gauged basins? Water Resour. Res. 43, W05434 (2007)

    Article  Google Scholar 

  • M. Morawietz, C.-Y. Xu, L. Gottschalk, L.M. Tallaksen, Systematic evaluation of autoregressive error models as post-processors for a probabilistic streamflow forecast system. J. Hydrol. 407(1–4), 58–72 (2011)

    Article  Google Scholar 

  • J.E. Nash, J.V. Sutcliffe, River flow forecasting through conceptual models. Part 1 – A discussion of principles. J. Hydrol. 10, 282–290 (1970)

    Article  Google Scholar 

  • J.C. Neal, P.M. Atkinson, H.C. W, Flood inundation model updating using an ensemble Kalman filter and spatially distributed measurements. J. Hydrol. 336, 401–415 (2007)

    Article  Google Scholar 

  • J. Neal, G. Schumann, P. Bates, A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour. Res. 48, W11506 (2012)

    Article  Google Scholar 

  • D.J. Nott, L. Marshall, J. Brown, Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What's the connection? Water Resour. Res. 48, W12602 (2012)

    Article  Google Scholar 

  • W.L. Oberkampf, J.C. Helton, C.A. Joslyn, S.F. Wojtkiewicz, S. Ferson, Challenge problems: Uncertainty in system response given uncertain parameters. Reliab. Eng. Syst. Saf. 85(1–3), 11–19 (2004)

    Article  Google Scholar 

  • A. O’Hagan, J. Oakley, Probability is perfect, but we can’t elicit it perfectly. Reliab. Eng. Syst. Saf. 85(1–3), 239–248 (2004)

    Article  Google Scholar 

  • F. Pappenberger, K.J. Beven, Ignorance is bliss: Or seven reasons not to use uncertainty analysis. Water Resour. Res. 42, W05302 (2006). https://doi.org/10.1029/2005WR004820

    Article  Google Scholar 

  • C. Perrin, C. Michel, V. Andreassian, Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol. 242(3–4), 275–301 (2001)

    Article  Google Scholar 

  • C. Perrin, C. Michel, V. Andreassian, Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 279(1–4), 275–289 (2003)

    Article  Google Scholar 

  • F. Pianosi, L. Raso, Dynamic modeling of predictive uncertainty by regression on absolute errors. Water Resour. Res. 48, W03516 (2012)

    Article  Google Scholar 

  • W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Fortran-77: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  • R. Pushpalatha, C. Perrin, N.L. Moine, V. Andréassian, A review of efficiency criteria suitable for evaluating low-flow simulations. J. Hydrol. 420, 171–182 (2012)

    Article  Google Scholar 

  • Y. Qin, D. Kavetski, G. Kuczera, A robust Gauss-Newton algorithm for the optimization of hydrological models: 2. Benchmarking against industry-standard algorithms. Water Resour. Res. in review, https://doi.org/10.1029/2017WR022489 (2018)

  • P. Reichert, J. Mieleitner, Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters. Water Resour. Res. 45, W10402 (2009)

    Article  Google Scholar 

  • P. Reichert, N. Schuwirth, Linking statistical bias description to multiobjective model calibration. Water Resour. Res. 48, W09543 (2012)

    Article  Google Scholar 

  • P. Reichert, S.D. Langhans, J. Lienert, N. Schuwirth, The conceptual foundation of environmental decision support. J. Environ. Manag. 154, 316–332 (2015)

    Article  Google Scholar 

  • R.H. Reichle, Data assimilation methods in the Earth sciences. Adv. Water Resour. 31(11), 1411–1418 (2008)

    Article  Google Scholar 

  • B. Renard, E. Leblois, G. Kuczera, D. Kavetski, M. Thyer, S. Franks, Characterizing errors in areal rainfall estimates: Application to uncertainty quantification and decomposition in hydrologic modelling. H2009: 32nd Hydrology and Water Resources Symposium, Newcastle (Engineers Australia, Barton ACT, 2009), pp. 505–516

    Google Scholar 

  • B. Renard, D. Kavetski, M. Thyer, G. Kuczera, S.W. Franks, Understanding predictive uncertainty in hydrologic modeling: Le challenge of identifying input and structural errors. Water Resour. Res. 46, W05521 (2010). https://doi.org/10.1029/2009WR008328

    Article  Google Scholar 

  • B. Renard, D. Kavetski, E.T. Leblois, M. Thyer, G. Kuczera, S.W. Franks, Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water Resour. Res. 47(11), W11516 (2011)

    Google Scholar 

  • B. Revilla-Romero, N. Wanders, P. Burek, P. Salamon, A. de Roo, Integrating remotely sensed surface water extent into continental scale hydrology. J. Hydrol. 543(Pt B), 659–670 (2016)

    Article  Google Scholar 

  • J.D. Salas, Analysis and modeling of hydrologic time series, in Handbook of Hydrology, ed. by D.R. Maidment (McGraw-Hill, New York, 1993), pp. 19.11–19.72

    Google Scholar 

  • L. Samaniego, R. Kumar, S. Attinger, Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 46(5), W05523 (2010)

    Article  Google Scholar 

  • H.H.G. Savenije, The art of hydrology. Hydrol. Earth Syst. Sci. 13, 157–161 (2009)

    Article  Google Scholar 

  • B. Schaefli, H.V. Gupta, Do Nash values have value? Hydrol. Process. 21(15), 2075–2080 (2007)

    Article  Google Scholar 

  • B. Schaefli, D. Kavetski, Bayesian spectral likelihood for hydrological parameter inference. Water Resour. Res. 53, 6857–6884 (2017)

    Article  Google Scholar 

  • B. Schaefli, D.B. Talamba, A. Musy, Quantifying hydrological modeling errors through a mixture of normal distributions. J. Hydrol. 332, 303–315 (2007)

    Article  Google Scholar 

  • G. Schoups, J.A. Vrugt, A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors. Water Resour. Res. 46, W10531 (2010)

    Google Scholar 

  • D.-J. Seo, H.D. Herr, J.C. Schaake, A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrol. Earth Syst. Sci. 3, 1987–2035 (2006)

    Article  Google Scholar 

  • M. Shafii, B.A. Tolson, Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resour. Res. 51(5), 3796–3814 (2015)

    Article  Google Scholar 

  • V.P. Singh, D.A. Woolhiser, Mathematical modeling of watershed hydrology. J. Hydrol. Eng. 7(4), 270–292 (2002)

    Article  Google Scholar 

  • M. Sivapalan, G. Bloschl, L. Zhang, R. Vertessy, Downward approach to hydrological prediction. Hydrol. Process. 17(11), 2101–2111 (2003a)

    Article  Google Scholar 

  • M. Sivapalan, K. Takeuchi, S.W. Franks, V.K. Gupta, H. Karambiri, V. Lakshmi, X. Liang, J.J. McDonnell, E.M. Mendiondo, P.E. O’Connell, T. Oki, J.W. Pomeroy, D. Schertzer, S. Uhlenbrook, E. Zehe, IAHS decade on predictions in ungauged basins (PUB). Hydrol. Sci. J. 48(6), 857–880 (2003b)

    Article  Google Scholar 

  • B.E. Skahill, J. Doherty, Efficient accommodation of local minima in watershed model calibration. J. Hydrol. 329, 122 (2006). in press

    Article  Google Scholar 

  • P. Smith, K.J. Beven, J.A. Tawn, Informal likelihood measures in model assessment: Theoretic development and investigation. Adv. Water Resour. 31(8), 1087–1100 (2008)

    Article  Google Scholar 

  • T. Smith, A. Sharma, L. Marshall, R. Mehrotra, S. Sisson, Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments. Water Resour. Res. 46(12), W12551 (2010). https://doi.org/10.1029/2010WR009514

    Article  Google Scholar 

  • S. Sorooshian, J.A. Dracup, Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases. Water Resour. Res. 16(2), 430–442 (1980)

    Article  Google Scholar 

  • J.R. Stedinger, R.M. Vogel, S.U. Lee, R. Batchelder, Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour. Res. 44, W00B06 (2008)

    Article  Google Scholar 

  • V.L. Streeter, E.B. Wylie, Fluid Mechanics, First SI Metric Edition. (McGraw-Hill, Singapore, 1983)

    Google Scholar 

  • L.M. Tallaksen, A review of baseflow recession analysis. J. Hydrol. 165, 349–370 (1995)

    Article  Google Scholar 

  • A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, Philadelphia, 2005)

    Book  Google Scholar 

  • M. Thyer, G. Kuczera, Q.J. Wang, Quantifying parameter uncertainty in stochastic models using the Box-Cox transformation. J. Hydrol. 265(1–4), 246–257 (2002)

    Article  Google Scholar 

  • M. Thyer, B. Renard, D. Kavetski, G. Kuczera, S. Franks, S. Srikanthan, Critical evaluation of parameter consistency and predictive uncertainty in hydrological modelling: A case study using Bayesian total error analysis. Water Resour. Res. 45, W00B14 (2009)

    Google Scholar 

  • B.A. Tolson, C.A. Shoemaker, Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour. Res. 43, W01413 (2007)

    Article  Google Scholar 

  • A.F.B. Tompson, R. Ababou, L.W. Gelhar, Implementation of the 3-dimensional turning bands random field generator. Water Resour. Res. 25(10), 2227–2243 (1989)

    Article  Google Scholar 

  • T. Toni, D. Welch, N. Strelkowa, A. Ipsen, M.P.H. Stumpf, Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6(31), 187–202 (2009)

    Article  Google Scholar 

  • N.K. Tuteja, D. Shin, R. Laugesen, U. Khan, Q. Shao, E. Wang, M. Li, H. Zheng, G. Kuczera, D. Kavetski, G. Evin, M. Thyer, A. MacDonald, T. Chia, B. Le, Experimental Evaluation of the Dynamic Seasonal Streamflow Forecasting Approach (Australian Bureau of Meteorology, Melbourne, 2011)

    Google Scholar 

  • N.K. Tuteja, S. Zhou, J. Lerat, Q.J. Wang, D. Shin, D.E. Robertson, Overview of communication strategies for uncertainty in hydrological forecasting in Australia, in Handbook of Hydrometeorological Ensemble Forecasting, ed. by Q. Duan, F. Pappenberger, J. Thielen, A. Wood, H.L. Cloke, J.C. Schaake (Springer, Berlin/Heidelberg, 2017), pp. 1–19

    Google Scholar 

  • R.M. Vogel, Stochastic watershed models for hydrologic risk management. Water Secur. 1, 28–35 (2017)

    Article  Google Scholar 

  • J.A. Vrugt, B.A. Robinson, Improved evolutionary optimization from genetically adaptive multimethod search. Proc. Natl. Acad. Sci. U. S. A. 104(3), 708–711 (2007)

    Article  Google Scholar 

  • J.A. Vrugt, M. Sadegh, Toward diagnostic model calibration and evaluation: Approximate Bayesian computation. Water Resour. Res. 49(7), 4335–4345 (2013)

    Article  Google Scholar 

  • J.A. Vrugt, H.V. Gupta, L.A. Bastidas, W. Bouten, S. Sorooshian, Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res. 39(8), 1214 (2003)

    Google Scholar 

  • J.A. Vrugt, C.G.H. Diks, H.V. Gupta, W. Bouten, J.M. Verstraten, Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resour. Res. 41(1), W01017 (2005)

    Google Scholar 

  • J.A. Vrugt, C.J.F. ter Braak, M.P. Clark, J.M. Hyman, B.A. Robinson, Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 44, W00B09 (2008)

    Google Scholar 

  • J.A. Vrugt, C.J.F. ter Braak, C.G.H. Diks, B.A. Robinson, J.M. Hyman, D. Higdon, Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 10(3), 273–290 (2009a)

    Article  Google Scholar 

  • J.A. Vrugt, C.J.F. ter Braak, H.V. Gupta, B.A. Robinson, Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch. Env. Res. Risk A. 23(7), 1011–1026 (2009b)

    Article  Google Scholar 

  • J.A. Vrugt, C.J.F. ter Braak, C.G.H. Diks, G. Schoups, Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications. Adv. Water Resour. 51, 457–478 (2013)

    Article  Google Scholar 

  • Q.J. Wang, D.E. Robertson, Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences. Water Resour. Res. 47, W02546 (2011)

    Google Scholar 

  • Q.J. Wang, D.E. Robertson, F.H.S. Chiew, A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res. 45(5), W05407 (2009)

    Article  Google Scholar 

  • A.H. Weerts, G.Y.H. El Serafy, Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res. 42, W09403 (2006)

    Article  Google Scholar 

  • W.D. Welsh, J. Vaze, D. Dutta, D. Rassam, J.M. Rahman, I.D. Jolly, P. Wallbrink, G.M. Podger, M. Bethune, M.J. Hardy, J. Teng, J. Lerat, An integrated modelling framework for regulated river systems. Environ. Model Softw. 39, 81–102 (2013)

    Article  Google Scholar 

  • I. Westerberg, J.-L. Guerrero, J. Seibert, K.J. Beven, S. Halldin, Stage-discharge uncertainty derived with a non-stationary rating curve in the Choluteca River, Honduras. Hydrol. Process. 25(4), 603–613 (2010)

    Article  Google Scholar 

  • I.K. Westerberg, H.K. McMillan, Uncertainty in hydrological signatures. Hydrol. Earth Syst. Sci. 19(9), 3951–3968 (2015)

    Article  Google Scholar 

  • S. Westra, M. Thyer, M. Leonard, D. Kavetski, M. Lambert, A strategy for diagnosing and interpreting hydrological model nonstationarity, Water Resources Research, 50(6), 5090–5113 (2014)

    Article  Google Scholar 

  • D.P. Wright, M. Thyer, S. Westra, Influential point detection diagnostics in the context of hydrological model calibration. J. Hydrol. 527, 1161–1172 (2015)

    Article  Google Scholar 

  • K.K. Yilmaz, H.V. Gupta, T. Wagener, A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resour. Res. 44, W09417 (2008)

    Article  Google Scholar 

  • P. Young, Data-based mechanistic modelling of environmental, ecological, economic and engineering systems. Environ. Model Softw. 13(2), 105–122 (1998)

    Article  Google Scholar 

  • P.C. Young, M. Ratto, A unified approach to environmental systems modeling. Stoch. Env. Res. Risk A. 23(7), 1037–1057 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Kavetski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kavetski, D. (2018). Parameter Estimation and Predictive Uncertainty Quantification in Hydrological Modelling. In: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40457-3_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40457-3_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40457-3

  • Online ISBN: 978-3-642-40457-3

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics