Skip to main content

Review and Implications of Inputs for Seismic Hazard Analysis

  • Reference work entry
  • First Online:
Encyclopedia of Earthquake Engineering
  • 117 Accesses

Synonyms

Critique on seismic hazard analysis; Limitations on seismic hazard analysis; Preference of DSHA over PSHA; Problems with probabilistic seismic hazard analysis

Introduction

In earthquake-prone regions of the world, it is a common practice to assess anticipated hazard severity for land-use planning, emergency management, and structural design load considerations for public safety applications. Generally, strong ground motion hazards would impact a large area, and displacement hazards could affect a relatively small area localized along the fault trace of surface-faulting earthquakes. This section will review inputs for obtaining a generic ground motion as the most pervasive earthquake hazard and that without site-specific considerations. Note that soft soil sites are generally more hazardous than stiff soil or rock sites, and such site-specific conditions should be characterized realistically in practice for ground response analysis.

Implicationsof the inputs for seismic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson NA, Silva WJ (2008) Summary of the Abrahamson and Silva NGA ground motion relations. Earthq Spectra 24:67–97

    Article  Google Scholar 

  • Aki K, Richards P (2002) Quantitative seismology: second edition. University Science, Sausalito

    Google Scholar 

  • Bizzari A, Crupi P (2013) Linking the recurrence time of earthquake to source parameters: a dream of a real possibility? Pure Appl Geophys. doi:10.1007/s00024-013-0743-1

    Google Scholar 

  • Bonilla MG, Mark RK, Lienkaemper JJ (1984) Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement. Bull Seismol Soc Am 74:2379–2411

    Google Scholar 

  • Boore DM, Atkinson GM (2008) Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthq Spectra 24:99–138

    Article  Google Scholar 

  • Campbell KW (1981) Near-source attenuation of peak horizontal acceleration. Bull Seismol Soc Am 71:2039–2070

    Google Scholar 

  • Campbell KW, Bozorgnia Y (2008) NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5 % damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthq Spectra 24:139–171

    Article  Google Scholar 

  • Chiou B, Youngs RR (2008) Chiou-Youngs NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters. Earthq Spectra 24:173–215

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Idriss IM (2008) An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthq Spectra 24:217–242

    Article  Google Scholar 

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake. Bull Seismol Soc Am 71:2011–2038

    Google Scholar 

  • Klügel J-U (2005) Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants. Eng Geol 78:285–307

    Article  Google Scholar 

  • Klügel J-U (2007) Error inflation in probabilistic seismic hazard analysis. Eng Geol 90:186–192

    Article  Google Scholar 

  • Kossobokov V, Nekrasova A (2012) Global seismic hazard assessment program maps are erroneous. Seism Instrum 48:162–170

    Article  Google Scholar 

  • McCalpin JP (ed) (1996) Paleoseismology. Academic, San Diego

    Google Scholar 

  • Mualchin L, Jones AL (1992) Peak acceleration from maximum credible earthquakes in California. California Division of Mines & Geology Open File Report 92–01 and Maps

    Google Scholar 

  • Nekrasova A, Kossobokov V, Peresan A, Magrin A (2013) The comparison of the NDSHA, PSHA seismic hazard maps and real seismicity for the Italian territory. Nat Hazards 68. doi:10.1007/s11069-013-0832-6

    Google Scholar 

  • Panza GF, La Mura C, Peresan A, Romanelli F, Vaccari F (2012) Seismic hazard scenarios as preventive tools for a disaster resilient society. Adv Geophys 53:93–165

    Article  Google Scholar 

  • Panza GF, Peresan A, La Mura C (2013) Seismic hazard and strong ground motion: an operational neo-deterministic approach from national to local scale. Geophysics and geochemistry. In: UNESCO-EOLSS Joint Committee (ed) Encyclopedia of life support systems (EOLSS). Developed under the auspices of the UNESCO. Eolss Publishers, Oxford

    Google Scholar 

  • Reiter L (1990) Earthquake hazard analysis: issues and insights. Columbia University Press, New York

    Google Scholar 

  • Richter CF (1958) Elementary seismology. W. H. Freeman, San Francisco

    Google Scholar 

  • Sadigh K, Chang C-Y, Egan JA, Makdisi F, Youngs RR (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismol Res Lett 68:180–189

    Article  Google Scholar 

  • Schnabel PB, Seed HB (1973) Acceleration in rock for earthquakes in the western United States. Bull Seismol Soc Am 63:501–516

    Google Scholar 

  • Stasser FO, Abrahamson NA, Bommer JJ (2009) Sigma: issues, insights, and challenges. Seismol Res Lett 80:40–56

    Article  Google Scholar 

  • Wallace RE (1970) Earthquake recurrence intervals on the San Andreas fault. Geol Soc Am Bull 81:2875–2890

    Article  Google Scholar 

  • Wang Z (2011) Seismic hazard assessment: issues and alternatives. Pure Appl Geophys 168:11–25

    Article  Google Scholar 

  • Wang Z, Cobb JC (2012) A critique of probabilistic versus deterministic seismic hazard analysis with special reference to the New Madrid Seismic Zone. In: Cox RT, Tuttle MP, Boyd OS, Locat J (eds) Recent advances in North American paleoseismology and neotectonics east of the Rockies. Geological Society of America special paper, vol 493. pp 259–275

    Google Scholar 

  • Wells DL, Coppersmith K (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wyss M (1979) Estimating maximum expectable magnitude of earthquakes from fault dimensions. Geology 7:336–340

    Article  Google Scholar 

  • Wyss M, Nekrasova A, Kossobokov V (2012) Errors in expected human losses due to incorrect seismic hazard estimates. Nat Hazards 62:927–935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalliana Mualchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Mualchin, L. (2015). Review and Implications of Inputs for Seismic Hazard Analysis. In: Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, SK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35344-4_101

Download citation

Publish with us

Policies and ethics