Skip to main content

Burn Infections

  • Reference work entry
The Prokaryotes

Abstract

Burns are a common and devastating form of trauma. The incidence of burns worldwide severe enough to require medical attention in 2004 was nearly 11 million people, and ranked fourth in all injuries. Recent data from the USA estimate that approximately 450,000 upwards to 1.1 million burn injuries occurs per annum based on visits to hospital emergency departments. Moderate to severe burn injuries requiring hospitalization account for approximately 45,000 of these cases, of which 20,000 are major burns involving ≥25 % of the total body surface area. Based on selected statistics for admissions to Burn Centers in the USA, the overall survival rate from burn injury was 94.8 % in the past decade (2000–2009). Improved survival is attributed to medical advances in fluid resuscitation; nutritional support; pulmonary care; burn wound care, particularly early excision and wound closure; and use of modern infection control practices. Although approximately 3,500–4,500 patients currently die each year as a direct result of their burn injury, up to 10,000 patients die from burn-related infections, particularly sepsis from burn wound infection, or other sources often associated with inhalation injury. This chapter reviews our current understanding of the mechanism, pathogenesis, immune response, diagnosis, management, and prevention of burn wound infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Burn Association (ABA) (2011) Burn incidence and treatment in the United States: 2011 ABA Fact Sheet

    Google Scholar 

  • Abeyasundara SL, Rajan V et al (2011) The changing pattern of pediatric burns. J Burn Care Res 32(2):178–184

    Article  PubMed  Google Scholar 

  • Agnihotri N, Gupta V et al (2004) Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study. Burns 30(3):241–243

    Article  PubMed  CAS  Google Scholar 

  • Albornoz CR, Villegas J et al (2011) Burns are more aggressive in the elderly: proportion of deep burn area/total burn area might have a role in mortality. Burns 37(6):1058–1061

    Article  PubMed  Google Scholar 

  • Alden NE, Rabbitts A et al (2005) Burn injury in patients with dementia: an impetus for prevention. J Burn Care Rehabil 26(3):267–271

    PubMed  Google Scholar 

  • Alexander JW (1990) Mechanism of immunologic suppression in burn injury. J Trauma 30(12 Suppl):S70–S75

    Article  PubMed  CAS  Google Scholar 

  • Alsbjorn B, Micheels J et al (1984) Laser doppler flowmetry measurements of superficial dermal, deep dermal and sub-dermal burns. Scand J Plast Reconstr Surg 18:75–79

    Article  PubMed  CAS  Google Scholar 

  • Altman LC, Furukawa CT et al (1977) Depressed mononuclear leukocyte chemotaxis in thermally injured patients. J Immunol 119(1):199–205

    PubMed  CAS  Google Scholar 

  • Altoparlak U, Erol S et al (2004) The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients. Burns 30(7):660–664

    Article  PubMed  Google Scholar 

  • Altoparlak U, Koca O et al (2011) Incidence and risk factors of vancomycin-resistant enterococcus colonization in burn unit patients. Burns 37(1):49–53

    Article  PubMed  Google Scholar 

  • Archer NK, Mazaitis MJ et al (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2(5)

    Google Scholar 

  • Arturson G, Mellander S (1964) Acute changes in capillary filtration and diffusion in experimental burn injury. Acta Physiol Scand 62:457–463

    Article  PubMed  CAS  Google Scholar 

  • Atiyeh BS, Hayek SN (2010) Management of war-related burn injuries: lessons learned from recent ongoing conflicts providing exceptional care in unusual places. J Craniofac Surg 21(5):1529–1537

    Article  PubMed  Google Scholar 

  • Atiyeh BS, Amm CA et al (2003) Improved scar quality following primary and secondary healing of cutaneous wounds. Aesthetic Plast Surg 27(5):411–417

    Article  PubMed  Google Scholar 

  • Atiyeh BS, Hayek SN et al (2005) New technologies for burn wound closure and healing—review of the literature. Burns 31(8):944–956

    Article  PubMed  Google Scholar 

  • Avdakoff V (1876) Modifications pathologiques des tissue apres brulures. Vestrik 16:4

    Google Scholar 

  • Backstein R, Peters W et al (1993) Burns in the disabled. Burns 19(3):192–197

    Article  PubMed  CAS  Google Scholar 

  • Bang RL, Gang RK et al (1998) Burn septicaemia: an analysis of 79 patients. Burns 24(4):354–361

    Article  PubMed  CAS  Google Scholar 

  • Barber RC, Chang LY et al (2006) Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res 4(4):250–255

    Article  PubMed  CAS  Google Scholar 

  • Barret JP, Herndon DN (2003) Effects of burn wound excision on bacterial colonization and invasion. Plast Reconstr Surg 111(2):744–750; discussion 751–742

    Article  PubMed  Google Scholar 

  • Barrillo DJ (2009) Diagnosis and treatment of cyanide toxicity. J Burn Care Res 30(1):148–152

    Article  Google Scholar 

  • Becker WK, Cioffi WG Jr et al (1991) Fungal burn wound infection. A 10-year experience. Arch Surg 126(1):44–48

    Article  PubMed  CAS  Google Scholar 

  • Bengtson A, Heideman M (1987) Anaphylatoxin formation in plasma and burn bullae fluid in the thermally injured patient. Burns Incl Therm Inj 13(3):185–189

    Article  PubMed  CAS  Google Scholar 

  • Berkow SG (1924) A method for estimating the extensiveness of lesions (burns and scalds) based on surface area proportions. Arch Surg 8:138–148

    Article  Google Scholar 

  • Bhat S, Milner S (2007) Antimicrobial peptides in burns and wounds. Curr Protein Pept Sci 8(5):506–520

    Article  PubMed  CAS  Google Scholar 

  • Bhatia M (2010) Hydrogen sulfide and substance P in inflammation. Antioxid Redox Signal 12(10):1191–1202

    Article  PubMed  CAS  Google Scholar 

  • Bielecki P, Glik J et al (2008) Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett 30(5):777–790

    Article  PubMed  CAS  Google Scholar 

  • Biffl WL, Moore EE et al (1996) Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg 224(5):647–664

    Article  PubMed  CAS  Google Scholar 

  • Bjornson AB, Bjornson HS et al (1981) Serum-mediated inhibition of polymorphonuclear leukocyte function following burn injury. Ann Surg 194(5):568–575

    Article  PubMed  CAS  Google Scholar 

  • Bohannon J, Fang G et al (2009) Fms-like tyrosine kinase-3 ligand alters antigen-specific responses to infections after severe burn injury. Shock 32(4):435–441

    Article  PubMed  CAS  Google Scholar 

  • Bone RC (1996) Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med 125(8):680–687

    PubMed  CAS  Google Scholar 

  • Bordes J, Gaillard T et al (2011a) Cytomegalovirus infection monitored by quantitative real-time PCR in critically ill patients. Crit Care 15(2):412

    Article  PubMed  Google Scholar 

  • Bordes J, Maslin J et al (2011b) Cytomegalovirus infection in severe burn patients monitoring by real-time polymerase chain reaction: A prospective study. Burns 37(3):434–439

    Article  PubMed  CAS  Google Scholar 

  • Bourdarias B, Perro G et al (1996) Herpes simplex virus infection in burned patients: epidemiology of 11 cases. Burns 22(4):287–290

    Article  PubMed  CAS  Google Scholar 

  • Brandt SJ, Tribble CG et al (1985) Herpes simplex burn wound infections: epidemiology of a case cluster and responses to acyclovir therapy. Surgery 98(2):338–343

    PubMed  CAS  Google Scholar 

  • Branski LK, Al-Mousawi A et al (2009) Emerging infections in burns. Surg Infect 10(5):389–397

    Article  Google Scholar 

  • Buchanan K, Heimbach DM et al (1986) Comparison of quantitative and semiquantitative culture techniques for burn biopsy. J Clin Microbiol 23(2):258–261

    PubMed  CAS  Google Scholar 

  • Burke JF, Bondoc CC et al (1974) Primary burn excision and immediate grafting: a method shortening illness. J Trauma 14(5):389–395

    Article  PubMed  CAS  Google Scholar 

  • Burleson DG, Mason AD Jr et al (1988) Lymphoid subpopulation changes after thermal injury and thermal injury with infection in an experimental model. Ann Surg 207(2):208–212

    Article  PubMed  CAS  Google Scholar 

  • Cairns BA, Barnes CM et al (2008) Toll-like receptor 2 and 4 ligation results in complex altered cytokine profiles early and late after burn injury. J Trauma 64(4):1069–1077; discussion 1077–1068

    Article  PubMed  CAS  Google Scholar 

  • Capoor MR, Gupta S et al (2012) Epidemiological and clinico-mycological profile of fungal wound infection from largest burn centre in Asia. Mycoses 55(2):181–188

    PubMed  Google Scholar 

  • Carlson DL, Horton JW (2006) Cardiac molecular signaling after burn trauma. J Burn Care Res 27(5):669–675

    Article  PubMed  Google Scholar 

  • Cartotto R, Musgrave MA et al (2000) Minimizing blood loss in surgery. J Trauma 49(6):1034–1039

    Article  PubMed  CAS  Google Scholar 

  • Casson P, Solowey AC et al (1966) Delayed hypersensitivity status of burned patients. Surg Forum 17:268–270

    PubMed  CAS  Google Scholar 

  • Center for Disease Control and Prevention (CDC) (2011) Mass casualties: burns. http://emergency.cdc.gov.masscasulaties/burns.asp

  • Chalya PL, Ssentongo R et al (2011) HIV seroprevalence and its effect on outcome of moderate to severe burn injuries: A Ugandan experience. J Trauma Manag Outcomes 5(1):8

    Article  PubMed  Google Scholar 

  • Chang KC, Ma H et al (2010) The optimal time for early burn wound excision to reduce pro-inflammatory cytokine production in a murine burn injury model. Burns 36(7):1059–1066

    Article  PubMed  Google Scholar 

  • Chaudry IH, Ayala A (1993) Mechanism of increased susceptibility to infection following hemorrhage. Am J Surg 165(2A Suppl):59S–67S

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Smith GA et al (2007) Incidence and pattern of burn injuries among children with disabilities. J Trauma 62(3):682–686

    Article  PubMed  Google Scholar 

  • Chen LW, Chang WJ et al (2010a) Commensal microflora induce host defense and decrease bacterial translocation in burn mice through toll-like receptor 4. J Biomed Sci 17:48

    Article  PubMed  CAS  Google Scholar 

  • Chen XL, Xia ZF et al (2010b) Effects of early excision and grafting on cytokines and insulin resistance in burned rats. Burns 36(7):1122–1128

    Article  PubMed  Google Scholar 

  • Cheron A, Monneret G et al (2010) Low monocytic HLA-DR expression and risk of secondary infection. Ann Fr Anesth Reanim 29(5):368–376

    Article  PubMed  CAS  Google Scholar 

  • Chipp E, Milner CS et al (2010) Sepsis in burns: a review of current practice and future therapies. Ann Plast Surg 65(2):228–236

    Article  PubMed  CAS  Google Scholar 

  • Choudhry MA, Li X et al (2006) A role for corticosterone in impaired intestinal immunity and barrier function in a rodent model of acute alcohol intoxication and burn injury. J Neuroimmune Pharmacol 1(4):428–434

    Article  PubMed  Google Scholar 

  • Church D, Elsayed S et al (2006) Burn wound infections. Clin Microbiol Rev 19(2):403–434

    Article  PubMed  Google Scholar 

  • Citron DM (1984) Specimen collection and transport, anaerobic culture techniques, and identification of anaerobes. Rev Infect Dis 6(Suppl 1):S51–S58

    Article  PubMed  Google Scholar 

  • Clark NM, Hershberger E et al (2003) Antimicrobial resistance among gram-positive organisms in the intensive care unit. Curr Opin Crit Care 9(5):403–412

    Article  PubMed  Google Scholar 

  • Cohen J, Brun-Buisson C et al (2004) Diagnosis of infection in sepsis: an evidence-based review. Crit Care Med 32(11 Suppl):S466–S494

    Article  PubMed  Google Scholar 

  • Collart MA, Belin D et al (1986) Gamma interferon enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. J Exp Med 164(6):2113–2118

    Article  PubMed  CAS  Google Scholar 

  • Colohan SM (2010) Predicting prognosis in thermal burns with associated inhalation injury: A systematic review of prognostic factors in adult burn victims. J Burn Care Res 31(4):529–539

    Article  PubMed  Google Scholar 

  • Cooper ML, Boyce ST et al (1990) Cytotoxicity to cultured human keratinocytes of topical antimicrobial agents. J Surg Res 48(3):190–195

    Article  PubMed  CAS  Google Scholar 

  • Cooter RD, Lim IS et al (1990) Burn wound zygomycosis caused by Apophysomyces elegans. J Clin Microbiol 28(9):2151–2153

    PubMed  CAS  Google Scholar 

  • Crabtree SJ, Robertson JL et al (2011) Clostridium difficile infections in patients with severe burns. Burns 37(1):42–48

    Article  PubMed  Google Scholar 

  • Culbertson TA, Kalliainen LK et al (2004) Tetanus and the plastic surgeon. Ann Plast Surg 53(2):162–165

    Article  PubMed  Google Scholar 

  • D’Arpa N, Accardo-Palumbo A et al (2009) Circulating dendritic cells following burn. Burns 35(4):513–518

    Article  PubMed  Google Scholar 

  • D’Avignon LC, Hogan BK et al (2010) Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: an autopsy series. Burns 36(6):773–779

    Article  PubMed  Google Scholar 

  • D’Avignon LC, Chung KK et al (2011) Prevention of infections associated with combat-related burn injuries. J Trauma 71(2 Suppl 2):S282–S289

    Article  PubMed  CAS  Google Scholar 

  • Dai T, Huang YY et al (2010) Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov 5(2):124–151

    Article  PubMed  CAS  Google Scholar 

  • Darling GE, Keresteci MA et al (1996) Pulmonary complications in inhalation injuries with associated cutaneous burn. J Trauma 40:83

    Article  PubMed  CAS  Google Scholar 

  • de Smet AM, Kluytmans JA et al (2009) Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 360(1):20–31

    Article  PubMed  Google Scholar 

  • Deitch EA, Wheelahan TM et al (1983) Hypertrophic burn scars: analysis of variables. J Trauma 23(10):895–898

    Article  PubMed  CAS  Google Scholar 

  • Dellinger RP, Carlet JM et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32(3):858–873

    Article  PubMed  Google Scholar 

  • Deng HP, Chai JK (2009) The effects and mechanisms of insulin on systemic inflammatory response and immune cells in severe trauma, burn injury, and sepsis. Int Immunopharmacol 9(11):1251–1259

    Article  PubMed  CAS  Google Scholar 

  • DiPiro JT, Howdieshell TR et al (1995) Association of interleukin-4 plasma levels with traumatic injury and clinical course. Arch Surg 130(11):1159–1162; discussion 1162–1153

    Article  PubMed  CAS  Google Scholar 

  • Dissanaike S, Rahimi M (2009) Epidemiology of burn injuries: highlighting cultural and socio-demographic aspects. Int Rev Psychiatry 21(6):505–511

    Article  PubMed  Google Scholar 

  • Djurickovic S, Snelling CF et al (2001) Tourniquet and subcutaneous epinephrine reduce blood loss during burn excision and immediate grafting. J Burn Care Rehabil 22(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Doig CJ, Sutherland LR et al (1998) Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med 158(2):444–451

    PubMed  CAS  Google Scholar 

  • Donnelly RP, Fenton MJ et al (1991) IL-1 expression in human monocytes is transcriptionally and posttranscriptionally regulated by IL-4. J Immunol 146(10):3431–3436

    PubMed  CAS  Google Scholar 

  • Duan X, Yarmush D et al (2008) Burn-induced immunosuppression: attenuated T cell signaling independent of IFN-gamma- and nitric oxide-mediated pathways. J Leukoc Biol 83(2):305–313

    Article  PubMed  CAS  Google Scholar 

  • Dunser MW, Ohlbauer M et al (2004) Critical care management of major hydrofluoric acid burns: A case report, review of the literature and recommendation for therapy. Burns 30(4):391–398

    Article  PubMed  Google Scholar 

  • Durtschi MB, Orgain C et al (1982) A prospective study of prophylactic penicillin in acutely burned hospitalized patients. J Trauma 22(1):11–14

    Article  PubMed  CAS  Google Scholar 

  • Edge JM, Van der Merwe AE et al (2001) Clinical outcome of HIV positive patients with moderate to severe burns. Burns 27(2):111–114

    Article  PubMed  CAS  Google Scholar 

  • Ekenna O, Sherertz RJ et al (1993) Natural history of bloodstream infections in a burn patient population: the importance of candidemia. Am J Infect Control 21(4):189–195

    Article  PubMed  CAS  Google Scholar 

  • Elsayed S, Gregson DB et al (2003) Utility of Gram stain for the microbiological analysis of burn wound surfaces. Arch Pathol Lab Med 127(11):1485–1488

    PubMed  Google Scholar 

  • Emori TG, Culver DH et al (1991) National nosocomial infections surveillance system (NNIS): description of surveillance methods. Am J Infect Control 19(1):19–35

    Article  PubMed  CAS  Google Scholar 

  • Ernst A, Zibrak JD (1998) Carbon monoxide poisoning. N Engl J Med 339:1603

    Article  PubMed  CAS  Google Scholar 

  • Erol S, Altoparlak U et al (2004) Changes of microbial flora and wound colonization in burned patients. Burns 30(4):357–361

    Article  PubMed  Google Scholar 

  • Essner R, Rhoades K et al (1989) IL-4 down-regulates IL-1 and TNF gene expression in human monocytes. J Immunol 142(11):3857–3861

    PubMed  CAS  Google Scholar 

  • Evers LH, Bhavsar D et al (2010) The biology of burn injury. Exp Dermatol 19(9):777–783

    Article  PubMed  Google Scholar 

  • Faist E, Kupper TS et al (1986) Depression of cellular immunity after major injury. Its association with posttraumatic complications and its reversal with immunomodulation. Arch Surg 121(9):1000–1005

    Article  PubMed  CAS  Google Scholar 

  • Fazal N, Al-Ghoul WM (2007) Thermal injury-plus-sepsis contributes to a substantial deletion of intestinal mesenteric lymph node CD4 T cell via apoptosis. Int J Biol Sci 3(6):393–401

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Shen R et al (2007) The study of inhibiting systematic inflammatory response syndrome by applying xenogenic (porcine) acellular dermal matrix on second-degree burns. Burns 33(4):477–479

    Article  PubMed  Google Scholar 

  • Fikrig SM, Karl SC et al (1977) Neutrophil chemotaxis in patients with burns. Ann Surg 186(6):746–748

    Article  PubMed  CAS  Google Scholar 

  • Fiorentino DF, Zlotnik A et al (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822

    PubMed  CAS  Google Scholar 

  • Fitzwater J, Purdue GF et al (2003) The risk factors and time course of sepsis and organ dysfunction after burn trauma. J Trauma 54(5):959–966

    Article  PubMed  Google Scholar 

  • Flierl MA, Stahel PF et al (2009) Bench-to-bedside review: Burn-induced cerebral inflammation–a neglected entity? Crit Care 13(3):215

    Article  PubMed  Google Scholar 

  • Foldi V, Lantos J et al (2010) Effects of fluid resuscitation methods on the pro- and anti-inflammatory cytokines and expression of adhesion molecules after burn injury. J Burn Care Res 31(3):480–491

    Article  PubMed  Google Scholar 

  • Foster TJ (2004) The Staphylococcus aureus “superbug”. J Clin Invest 114(12):1693–1696

    PubMed  CAS  Google Scholar 

  • Fuchs P, Kopp J et al (2002) MRSA-retrospective analysis of an outbreak in the burn centre Aachen. Burns 28(6):575–578

    Article  PubMed  Google Scholar 

  • Gallagher WF (1970) Burn-wound infection with viruses. N Engl J Med 282(22):1272

    PubMed  CAS  Google Scholar 

  • Gallinaro R, Cheadle WG et al (1992) The role of the complement system in trauma and infection. Surg Gynecol Obstet 174(5):435–440

    PubMed  CAS  Google Scholar 

  • Gamelli RL, He LK et al (1994) Marrow granulocyte-macrophage progenitor cell response to burn injury as modified by endotoxin and indomethacin. J Trauma 37(3):339–346

    Article  PubMed  CAS  Google Scholar 

  • Garrel D, Patenaude J et al (2003) Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med 31(10):2444–2449

    Article  PubMed  CAS  Google Scholar 

  • Gauglitz GG, Toliver-Kinsky TE et al (2010) Insulin increases resistance to burn wound infection-associated sepsis. Crit Care Med 38(1):202–208

    Article  PubMed  CAS  Google Scholar 

  • Gaynes RP (1997) Surveillance of nosocomial infections: a fundamental ingredient for quality. Infect Control Hosp Epidemiol 18(7):475–478

    Article  PubMed  CAS  Google Scholar 

  • Gaynes RP, Culver DH et al (2001) Surgical site infection (SSI) rates in the United States, 1992–1998: the National Nosocomial Infections Surveillance System basic SSI risk index. Clin Infect Dis 33(Suppl 2):S69–S77

    Article  PubMed  Google Scholar 

  • Goebel A, Kavanagh E et al (2000) Injury induces deficient interleukin-12 production, but interleukin-12 therapy after injury restores resistance to infection. Ann Surg 231(2):253–261

    Article  PubMed  CAS  Google Scholar 

  • Gosain A, Gamelli RL (2005) A primer in cytokines. J Burn Care Rehabil 26(1):7–12

    Article  PubMed  Google Scholar 

  • Greenhalgh DG, Saffle JR et al (2007) American Burn Association consensus conference to define sepsis and infection in burns. J Burn Care Res 28(6):776–790

    Article  PubMed  Google Scholar 

  • Grieb G, Simons D et al (2010) Macrophage migration inhibitory factor-A potential diagnostic tool in severe burn injuries? Burns 36(3):335–342

    Article  PubMed  Google Scholar 

  • Griswold JA (1993) White blood cell response to burn injury. Semin Nephrol 13(4):409–415

    PubMed  CAS  Google Scholar 

  • Grogan JB (1976) Altered neutrophil phagocytic function in burn patients. J Trauma 16(9):734–738

    Article  PubMed  CAS  Google Scholar 

  • Grogan JB, Miller RC (1973) Impaired function of polymorphonuclear leukocytes in patients with burns and other trauma. Surg Gynecol Obstet 137(5):784–788

    PubMed  CAS  Google Scholar 

  • Guggenheim M, Zbinden R et al (2009) Changes in bacterial isolates from burn wounds and their antibiograms: a 20-year study (1986–2005). Burns 35(4):553–560

    Article  PubMed  Google Scholar 

  • Guo Y, Dickerson C et al (1990) Increased levels of circulating interleukin 6 in burn patients. Clin Immunol Immunopathol 54(3):361–371

    Article  PubMed  CAS  Google Scholar 

  • Ha U, Jin S (1999) Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of burn wounds in mice and is required to cause efficient bacteremia. Infect Immun 67(10):5324–5331

    PubMed  CAS  Google Scholar 

  • Ha UH, Kim J et al (2004) An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol 54(2):307–320

    Article  PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW et al (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  PubMed  CAS  Google Scholar 

  • Haraga I, Nomura S et al (2002) Emergence of vancomycin resistance during therapy against methicillin-resistant Staphylococcus aureus in a burn patient–importance of low-level resistance to vancomycin. Int J Infect Dis 6(4):302–308

    Article  PubMed  Google Scholar 

  • Harrison-Balestra C, Cazzaniga AL et al (2003) A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. J Dermatol Surg 29(6):631–635

    Article  Google Scholar 

  • Hayes MP, Freeman SL et al (1995) IFN-gamma priming of monocytes enhances LPS-induced TNF production by augmenting both transcription and MRNA stability. Cytokine 7(5):427–435

    Article  PubMed  CAS  Google Scholar 

  • Heideman M, Bengtsson A (1992) The immunologic response to thermal injury. World J Surg 16(1):53–56

    Article  PubMed  CAS  Google Scholar 

  • Heimbach DM (1987) Early burn excision and grafting. Surg Clin North Am 67(1):93–107

    PubMed  CAS  Google Scholar 

  • Hendon DN, Barrow RE (1989) A comparison of conservative versus early excision therapies in severely burned patients. Ann Surg 209:547–553

    Article  Google Scholar 

  • Herndon DN, Spies M (2001) Modern burn care. Semin Pediatr Surg 10(1):28–31

    Article  PubMed  CAS  Google Scholar 

  • Hodle AE, Richter KP et al. (2006) Infection control practices in U.S. burn units. J Burn Care Res 27:142–151

    Article  PubMed  Google Scholar 

  • Hoeksema H, Van de Sijpe K et al (2009) Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns 35(1):36–45

    Article  PubMed  Google Scholar 

  • Hoesel LM, Niederbichler AD et al (2007) C5a-blockade improves burn-induced cardiac dysfunction. J Immunol 178(12):7902–7910

    PubMed  CAS  Google Scholar 

  • Hoiby N, Bjarnsholt T et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332

    Article  PubMed  CAS  Google Scholar 

  • Horgan AF, Mendez MV et al (1994) Altered gene transcription after burn injury results in depressed T-lymphocyte activation. Ann Surg 220(3):342–351; discussion 351–342

    Article  PubMed  CAS  Google Scholar 

  • Horner BM, Ahmadi H et al (2005) Case-controlled study of patients with self-inflicted burns. Burns 31(4):471–475

    Article  PubMed  CAS  Google Scholar 

  • Hugli TE (1984) Complement and cellular triggering reactions. Introductory remarks. Fed Proc 43(10):2540–2542

    PubMed  CAS  Google Scholar 

  • Hunt JL, Purdue GF (1992) The elderly burn patient. Am J Surg 164(5):472–476

    Article  PubMed  CAS  Google Scholar 

  • Hunt JL, McGranahan BG et al (1973) Burn-wound management. Heart Lung 2(5):690–695

    PubMed  CAS  Google Scholar 

  • Hunt JL, Mason AD et al (1976) The pathophysiology of acute electrical burns. J Trauma 16:335–340

    Article  PubMed  CAS  Google Scholar 

  • Ipaktchi K, Mattar A et al (2006) Attenuating burn wound inflammatory signaling reduces systemic inflammation and acute lung injury. J Immunol 177(11):8065–8071

    PubMed  CAS  Google Scholar 

  • Jackson DM (1953) The diagnostic of the depth of burning. Br J Surg 40:558–596

    Article  Google Scholar 

  • Janzekovic Z (1970) A new concept in the early excision and immediate grafting of burns. J Trauma 10(12):1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Jaskille AD, Ramella-Roman JC et al (2010) Critical review of burn depth assessment techniques; paA 11: review of laser Doppler technology. J Burn Care Res 31(1):151–157

    Article  PubMed  Google Scholar 

  • Jeschke MG, Kulp GA et al (2010) Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med 182(3):351–359

    Article  PubMed  CAS  Google Scholar 

  • Kagan RJ, Naraqi S et al (1985) Herpes simplex virus and cytomegalovirus infections in burned patients. J Trauma 25(1):40–45

    Article  PubMed  CAS  Google Scholar 

  • Kaiser M, Yafi A et al (2011a) Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities. Burns 37(3):377–386

    Article  PubMed  Google Scholar 

  • Kaiser ML, Thompson DJ et al (2011b) Epidemiology and risk factors for hospital-acquired methicillin-resistant Staphylococcus aureus among burn patients. J Burn Care Res 32(3):429–434

    Article  PubMed  Google Scholar 

  • Kay GD (1957) Prolonged survival of a skin homograft in a patient with very extensive burns. Ann N Y Acad Sci 64(5):767–774

    Article  PubMed  CAS  Google Scholar 

  • Keen EF 3rd, Murray CK et al (2010a) Changes in the incidences of multidrug-resistant and extensively drug-resistant organisms isolated in a military medical center. Infect Control Hosp Epidemiol 31(7):728–732

    Article  PubMed  Google Scholar 

  • Keen EF 3rd, Robinson BJ et al (2010b) Prevalence of multidrug-resistant organisms recovered at a military burn center. Burns 36(6):819–825

    Article  PubMed  Google Scholar 

  • Kennedy P, Brammah S et al (2010) Burns, biofilm and a new appraisal of burn wound sepsis. Burns 36(1):49–56

    Article  PubMed  Google Scholar 

  • Kim LH, Ward D et al (2010) The impact of laser Doppler imaging on time to grafting decisions in pediatric burns. J Burn Care Res 31(2):328–332

    Article  PubMed  Google Scholar 

  • Kowalske KJ (2011) Burn wound care. Phys Med Rehabil Clin N Am 22(2):213–227, v

    Article  PubMed  Google Scholar 

  • Kurmis R, Parker A et al (2010) The use of immunonutrition in burn injury care: where are we? J Burn Care Res 31(5):677–691

    Article  PubMed  Google Scholar 

  • Kuroda T, Harada T et al (1997) Hypernatremic suppression of neutrophils. Burns 23(4):338–340

    Article  PubMed  CAS  Google Scholar 

  • Ladak A, Tredget EE (2009) Pathophysiology and management of the burn scar. Clin Plast Surg 36(4):661–674

    Article  PubMed  Google Scholar 

  • Lansdown AB (2002a) Silver. 2: toxicity in mammals and how its products aid wound repair. J Wound Care 11(5):173–177

    PubMed  CAS  Google Scholar 

  • Lansdown AB (2002b) Silver. I: its antibacterial properties and mechanism of action. J Wound Care 11(4):125–130

    PubMed  CAS  Google Scholar 

  • Lansdown AB, Williams A et al (2005) Silver absorption and antibacterial efficacy of silver dressings. J Wound Care 14(4):155–160

    PubMed  CAS  Google Scholar 

  • Laupland KB, Parkins MD et al (2005) Population-based epidemiological study of infections caused by carbapenem-resistant Pseudomonas aeruginosa in the Calgary health region: importance of metallo-beta-lactamase (MBL)-producing strains. J Infect Dis 192(9):1606–1612

    Article  PubMed  Google Scholar 

  • Lavaud P, Mathieu J et al (1988) Modulation of leucocyte activation in the early phase of the rabbit burn injury. Burns Incl Therm Inj 14(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Lavrentieva A, Kontakiotis T et al (2007) Inflammatory markers in patients with severe burn injury. What is the best indicator of sepsis? Burns 33(2):189–194

    Article  PubMed  Google Scholar 

  • Lederer JA, Rodrick ML et al (1999) The effects of injury on the adaptive immune response. Shock 11(3):153–159

    Article  PubMed  CAS  Google Scholar 

  • Lee RC, Capelli-Schellpfeffer M (1998) Electrical and lightning injuries. In: Lee RC (ed) Current surgical therapy. Mosby, St. Louis, pp 1021–1023

    Google Scholar 

  • Levine NS, Lindberg RB et al (1976) The quantitative swab culture and smear: a quick, simple method for determining the number of viable aerobic bacteria on open wounds. J Trauma 16(2):89–94

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM, Warner M et al (2011) What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 37(5):415–419

    Article  PubMed  CAS  Google Scholar 

  • Loebl EC, Marvin JA et al (1974a) The method of quantitative burn-wound biopsy cultures and its routine use in the care of the burned patient. Am J Clin Pathol 61(1):20–24

    PubMed  CAS  Google Scholar 

  • Loebl EC, Marvin JA et al (1974b) The use of quantitative biopsy cultures in bacteriologic monitoring of burn patients. J Surg Res 16(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Lund T (1999) The 1999 Everett Idris Evans Memorial lecture: edema generation following thermal injury: an update. J Burn Care Rehabil 20:445–452

    Article  PubMed  CAS  Google Scholar 

  • Lund CC, Browder NC (1944) The estimation of areas of burns. Surg Gynecol Obstet 798:352–358

    Google Scholar 

  • Lund T, Wiig H et al (1988) Acute post-burn edema: role of strongly negative intersititial fluid pressure. Am J Physiol 255:H1069–H1074

    PubMed  CAS  Google Scholar 

  • Lyons A, Kelly JL et al (1997) Major injury induces increased production of interleukin-10 by cells of the immune system with a negative impact on resistance to infection. Ann Surg 226(4):450–458; discussion 458–460

    Article  PubMed  CAS  Google Scholar 

  • Majetschak M, Zedler S et al (2008) Systemic ubiquitin release after blunt trauma and burns: association with injury severity, posttraumatic complications, and survival. J Trauma 64(3):586–596; discussion 596–588

    Article  PubMed  Google Scholar 

  • Manson WL, Coenen JM et al (1992a) Intestinal bacterial translocation in experimentally burned mice with wounds colonized by Pseudomonas aeruginosa. J Trauma 33(5):654–658

    Article  PubMed  CAS  Google Scholar 

  • Manson WL, Klasen HJ et al (1992b) Selective intestinal decontamination for prevention of wound colonization in severely burned patients: a retrospective analysis. Burns 18(2):98–102

    Article  PubMed  CAS  Google Scholar 

  • Manson WL, Pernot PC et al (1992c) Colonization of burns and the duration of hospital stay of severely burned patients. J Hosp Infect 22(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Mayhall CG (2003) The epidemiology of burn wound infections: then and now. Clin Infect Dis 37(4):543–550

    Article  PubMed  Google Scholar 

  • McCampbell B, Wasif N et al (2002) Diabetes and burns: retrospective cohort study. J Burn Care Rehabil 23(3):157–166

    Article  PubMed  Google Scholar 

  • McGill V, Kowal-Vern A et al (2000) Outcome for older burn patients. Arch Surg 135(3):320–325

    Article  PubMed  CAS  Google Scholar 

  • McLoughlin GA, Wu AV et al (1979) Correlation between anergy and a circulating immunosuppressive factor following major surgical trauma. Ann Surg 190(3):297–304

    Article  PubMed  CAS  Google Scholar 

  • McManus AT, Kim SH et al (1987) Comparison of quantitative microbiology and histopathology in divided burn-wound biopsy specimens. Arch Surg 122(1):74–76

    Article  PubMed  CAS  Google Scholar 

  • Meier TO, Guggenheim M et al (2011) Microvascular regeneration in meshed skin transplants after severe burns. Burns 37(6):1010–1014

    Article  PubMed  CAS  Google Scholar 

  • Meka VG, Pillai SK et al (2004) Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis 190(2):311–317

    Article  PubMed  CAS  Google Scholar 

  • Mitchell V, Galizia JP et al (1989) Precise diagnosis of infection in burn wound biopsy specimens. Combination of histologic technique, acridine orange staining, and culture. J Burn Care Rehabil 10(3):195–202

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki H, Kinoshita M et al (2011) Augmented bacterial elimination by Kupffer cells after IL-18 pretreatment via IFN-gamma produced from NK cells in burn-injured mice. Burns 37(7):1208–1215

    Article  PubMed  Google Scholar 

  • Monstrey SM, Hoeksema H et al (2011) Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation. Burns 37(2):249–256

    Article  PubMed  CAS  Google Scholar 

  • Moore EC, Padiglione AA et al (2010) Candida in burns: risk factors and outcomes. J Burn Care Res 31(2):257–263

    Article  PubMed  Google Scholar 

  • Morrow SE, Smith DL et al (1996) Etiology and outcome of pediatric burns. J Pediatr Surg 31(3):329–333

    Article  PubMed  CAS  Google Scholar 

  • Mosier MJ, Gibran NS (2009) Surgical excision of the burn wound. Clin Plast Surg 36(4):617–625

    Article  PubMed  Google Scholar 

  • Mousa HA, al-Bader SM (2001) Yeast infection of burns. Mycoses 44(5):147–149

    Article  PubMed  CAS  Google Scholar 

  • Mozingo DW, Smith AA et al (1988) Chemical burns. J Trauma 28(5):642–647

    Article  PubMed  CAS  Google Scholar 

  • Mozingo DW, McManus AT et al (1997) Incidence of bacteremia after burn wound manipulation in the early postburn period. J Trauma 42(6):1006–1010; discussion 1010–1001

    Article  PubMed  CAS  Google Scholar 

  • Munster AM, Smith-Meek M et al. (1994) The effect of early surgical intervention on mortality and cost-effectiveness in burn care, 1978–91. Burns 20(1):61–64.

    Article  PubMed  CAS  Google Scholar 

  • Murphy KD, Lee JO et al (2003) Current pharmacotherapy for the treatment of severe burns. Expert Opin Pharmacother 4(3):369–384

    Article  PubMed  CAS  Google Scholar 

  • Mzezewa S, Jonsson K et al (2003) HIV infection reduces skin graft survival in burn injuries: a prospective study. Br J Plast Surg 56(8):740–745

    Article  PubMed  CAS  Google Scholar 

  • Nadler EP, Upperman JS et al (1999) Nitric oxide and intestinal barrier failure. Semin Pediatr Surg 8(3):148–154

    PubMed  CAS  Google Scholar 

  • National SafeKids Burn Campaign (2004) Burn injury fact sheet. Washington, DC

    Google Scholar 

  • Ninnemann JL, Fisher JC et al (1978) Prolonged survival of human skin allografts following thermal injury. Transplantation 25(2):69–72

    Article  PubMed  CAS  Google Scholar 

  • Nohr CW, Christou NV et al (1984) In vivo and in vitro humoral immunity in surgical patients. Ann Surg 200(3):373–380

    Article  PubMed  CAS  Google Scholar 

  • O’Mahony JB, Wood JJ et al (1985) Changes in T lymphocyte subsets following injury. Assessment by flow cytometry and relationship to sepsis. Ann Surg 202(5):580–586

    Article  PubMed  Google Scholar 

  • O’Mara MS, Goel A et al (2002) The use of tourniquets in the excision of unexsanguinated extremity burn wounds. Burns 28(7):684–687

    Article  PubMed  Google Scholar 

  • Ong YS, Samuel M et al (2006) Meta-analysis of early excision of burns. Burns 32(2):145–150

    Article  PubMed  Google Scholar 

  • Oswald IP, Wynn TA et al (1992) Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc Natl Acad Sci USA 89(18):8676–8680

    Article  PubMed  CAS  Google Scholar 

  • Palao R, Mange I (2010) Chemical burns: pathophysiology and treatment. Burns 36(3):295–304

    Article  PubMed  CAS  Google Scholar 

  • Parihar A, Parihar MS et al (2008) Oxidative stress and anti-oxidative mobilization in burn injury. Burns 34(1):6–17

    Article  PubMed  Google Scholar 

  • Patenaude J, D’Elia M et al (2010) Selective effect of burn injury on splenic CD11c(+) dendritic cells and CD8alpha(+)CD4(−)CD11c(+) dendritic cell subsets. Cell Mol Life Sci 67(8):1315–1329

    Article  PubMed  CAS  Google Scholar 

  • Peck MD (2011) Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns 37(7):1087–1100

    Article  PubMed  Google Scholar 

  • Peck MD, Weber J et al (1998) Surveillance of burn wound infections: a proposal for definitions. J Burn Care Rehabil 19(5):386–389

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa AF, Rodrigues AG (2011) Candidemia in burn patients: figures and facts. J Trauma 70(2):498–506

    Article  PubMed  Google Scholar 

  • Peng X, Yan H et al (2006) Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients. Burns 32(5):589–593

    Article  PubMed  Google Scholar 

  • Peppercorn A, Veit L et al (2010) Overwhelming disseminated herpes simplex virus type 2 infection in a patient with severe burn injury: case report and literature review. J Burn Care Res 31(3):492–498

    Article  PubMed  Google Scholar 

  • Pirnay JP, De Vos D et al (2000) Quantitation of Pseudomonas aeruginosa in wound biopsy samples: from bacterial culture to rapid ‘real-time’ polymerase chain reaction. Crit Care 4(4):255–261

    Article  PubMed  CAS  Google Scholar 

  • Plackett TP, Oz OK et al (2006) Lack of aromatase improves cell-mediated immune response after burn. Burns 32(5):577–582

    Article  PubMed  Google Scholar 

  • Polderman KH, Girbes AR (2004) Drug intervention trials in sepsis: divergent results. Lancet 363(9422):1721–1723

    Article  PubMed  CAS  Google Scholar 

  • Posluszny JA Jr, Conrad P et al (2011) Surgical burn wound infections and their clinical implications. J Burn Care Res 32(2):324–333

    Article  PubMed  Google Scholar 

  • Pruitt BA Jr, McManus AT (1992) The changing epidemiology of infection in burn patients. World J Surg 16(1):57–67

    Article  PubMed  Google Scholar 

  • Pruitt BA Jr, Wolf SE (2009) An historical perspective on advances in burn care over the past 100 years. Clin Plast Surg 36(4):527–545

    Article  PubMed  Google Scholar 

  • Purdue GF, Arnoldo BD et al (2011) Acute assessment and management of burn injuries. Phys Med Rehabil Clin N Am 22(2):201–212, v

    Article  PubMed  Google Scholar 

  • Rafla K, Tredget EE (2011) Infection control in the burn unit. Burns 37(1):5–15

    Article  PubMed  Google Scholar 

  • Ramirez F, Fowell DJ et al (1996) Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J Immunol 156(7):2406–2412

    PubMed  CAS  Google Scholar 

  • Ramzy PI, Herndon DN et al (1998) Comparison of wound culture and bronchial lavage in the severely burned child: implications for antimicrobial therapy. Arch Surg 133(12):1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Rashid A, Brown AP et al (2005) On the use of prophylactic antibiotics in prevention of toxic shock syndrome. Burns 31(8):981–985

    Article  PubMed  Google Scholar 

  • Rezaei E, Safari H et al (2011) Common pathogens in burn wound and changes in their drug sensitivity. Burns 37(5):805–807

    Article  PubMed  Google Scholar 

  • Ribeiro NF, Heath CH et al (2010) Burn wounds infected by contaminated water: case reports, review of the literature and recommendations for treatment. Burns 36(1):9–22

    Article  PubMed  Google Scholar 

  • Riordan CL, McDonough M et al (2003) Noncontact laser Doppler imaging in burn depth analysis of the extremities. J Burn Care Rehabil 24(4):177–186

    Article  PubMed  Google Scholar 

  • Rosenbach AE, Koria P et al (2011) Microfluidics for T- lymphocyte cell separation and inflammation monitoring in burn patients. Clin Transl Sci 4(1):63–68

    Article  PubMed  CAS  Google Scholar 

  • Roth JJ, Hughes WB (2004) The essential burn unit handbook. Quality Medical Publishers, St. Louis

    Google Scholar 

  • Rozenbaum D, Baruchin AM et al (1991) Chemical Burns of the eye with special reference to alkali burns. Burns 17(2):136–140

    Article  PubMed  CAS  Google Scholar 

  • Rumbaugh KP, Griswold JA et al (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2(14):1721–1731

    Article  PubMed  CAS  Google Scholar 

  • Salo M (1992) Effects of anaesthesia and surgery on the immune response. Acta Anaesthesiol Scand 36(3):201–220

    Article  PubMed  CAS  Google Scholar 

  • Sanders VM, Baker RA et al (1997) Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol 158(9):4200–4210

    PubMed  CAS  Google Scholar 

  • Sasaki JR, Zhang Q et al (2011) Burn induces a Th-17 inflammatory response at the injury site. Burns 37(4):646–651

    Article  PubMed  Google Scholar 

  • Scalfani MT, Chan DM et al (2007) Acute ethanol exposure combined with burn injury enhances IL-6 levels in the murine ileum. Alcohol Clin Exp Res 31(10):1731–1737

    Article  PubMed  CAS  Google Scholar 

  • Schaber JA, Triffo WJ et al (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75(8):3715–3721

    Article  PubMed  CAS  Google Scholar 

  • Schildt BE (1970) Function of the RES after thermal and mechanical trauma in mice. Acta Chir Scand 136(5):359–364

    PubMed  CAS  Google Scholar 

  • Schofield CM, Murray CK et al (2007) Correlation of culture with histopathology in fungal burn wound colonization and infection. Burns 33(3):341–346

    Article  PubMed  Google Scholar 

  • Schwacha MG (2009) Gammadelta T-cells: potential regulators of the post-burn inflammatory response. Burns 35(3):318–326

    Article  PubMed  Google Scholar 

  • Schwartz SB, Rothrock M et al (2011) Impact of diabetes on burn injury: preliminary results from prospective study. J Burn Care Res 32(3):435–441

    Article  PubMed  Google Scholar 

  • Sevitt S (1957) Burns pathology and therapeutic applications. Buttersworth, London

    Google Scholar 

  • Shankar R, Melstrom KA Jr et al (2007) Inflammation and sepsis: past, present, and the future. J Burn Care Res 28(4):566–571

    Article  PubMed  Google Scholar 

  • Sharma VP, O’ Boyle CP et al (2011) Man or machine? The clinimetric properties of laser Doppler imagining in burn depth assessment. J Burn Care Res 32(1):143–149

    Article  PubMed  Google Scholar 

  • Sheridan R (2009) Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clin Plast Surg 36(4):643–651

    Article  PubMed  Google Scholar 

  • Sheridan RL, Tompkins RG et al (1994) Management of burn wounds with prompt excision and immediate closure. J Intensive Care Med 9(1):6–17

    PubMed  CAS  Google Scholar 

  • Sheridan RL, Weber JM et al (1999) A 15-year experience with Varicella infections in a pediatric burn unit. Burns 25(4):353–356

    Article  PubMed  CAS  Google Scholar 

  • Sheridan RL, Schulz JT et al (2000) Cutaneous herpetic infections complicating burns. Burns 26(7):621–624

    Article  PubMed  CAS  Google Scholar 

  • Sherman RT (1970) The prevention and treatment of tetanus in the burn patient. Surg Clin North Am 50(6):1277–1281

    PubMed  CAS  Google Scholar 

  • Sherry RM, Cue JI et al (1996) Interleukin-10 is associated with the development of sepsis in trauma patients. J Trauma 40(4):613–616; discussion 616–617

    Article  PubMed  CAS  Google Scholar 

  • Shigematsu K, Asai A et al (2009) Enterococcus faecalis translocation in mice with severe burn injury: a pathogenic role of CCL2 and alternatively activated macrophages (M2aMphi and M2cMphi). J Leukoc Biol 86(4):999–1005

    Article  PubMed  CAS  Google Scholar 

  • Shupp JW, Pavlovich AR et al (2010) Epidemiology of bloodstream infections in burn-injured patients: a review of the national burn repository. J Burn Care Res 31(4):521–528

    Article  PubMed  Google Scholar 

  • Sikora JP, Kuzanski W et al (2009) Soluble cytokine receptors sTNFR I and sTNFR II, receptor antagonist IL-1ra, and anti-inflammatory cytokines IL-10 and IL-13 in the pathogenesis of systemic inflammatory response syndrome in the course of burns in children. Med Sci Monit 15(1):CR26–CR31

    PubMed  CAS  Google Scholar 

  • Singer AJ, McClain SA (2002) Persistent wound infection delays epidermal maturation and increases scarring in thermal burns. Wound Repair Regen 10(6):372–377

    Article  PubMed  Google Scholar 

  • Sio SW, Puthia MK et al (2008) The neuropeptide substance P is a critical mediator of burn-induced acute lung injury. J Immunol 180(12):8333–8341

    PubMed  CAS  Google Scholar 

  • Sjoberg T, Mzezewa S et al (2004) Immune response in burn patients in relation to HIV infection and sepsis. Burns 30(7):670–674

    Article  PubMed  CAS  Google Scholar 

  • Solowey AC, Rapaport FT (1966) The immunologic response to repeated individual-specific skin allografts. Transplantation 4(2):178–181

    Article  PubMed  CAS  Google Scholar 

  • Steer JA, Papini RP et al (1996a) Quantitative microbiology in the management of burn patients. I. Correlation between quantitative and qualitative burn wound biopsy culture and surface alginate swab culture. Burns 22(3):173–176

    Article  PubMed  CAS  Google Scholar 

  • Steer JA, Papini RP et al (1996b) Quantitative microbiology in the management of burn patients. II. Relationship between bacterial counts obtained by burn wound biopsy culture and surface alginate swab culture, with clinical outcome following burn surgery and change of dressings. Burns 22(3):177–181

    Article  PubMed  CAS  Google Scholar 

  • Steinmann J, Kaase M et al (2011) Outbreak due to a Klebsiella pneumoniae strain harbouring KPC-2 and VIM-1 in a German university hospital, July 2010 to January 2011. Euro Surveill 16(33):1–6

    Google Scholar 

  • Steinstraesser L (2004) Sepsis–new strategies with host defense peptides? Crit Care Med 32(12):2555–2556

    Article  PubMed  Google Scholar 

  • Steinstraesser L, Oezdogan Y et al (2004) Host defense peptides in burns. Burns 30(7):619–627

    Article  PubMed  CAS  Google Scholar 

  • Stephan RN, Ayala A et al (1989) Mechanism of immunosuppression following hemorrhage: defective antigen presentation by macrophages. J Surg Res 46(6):553–556

    Article  PubMed  CAS  Google Scholar 

  • Stone HH, Cuzzell JZ et al (1979) Aspergillus infection of the burn wound. J Trauma 19(10):765–767

    Article  PubMed  CAS  Google Scholar 

  • Struck MF, Illert T et al (2010) Basilar artery occlusion after multifactor coagulopathy including Rhizopus oryzae infection in burns. J Burn Care Res 31(6):955–958

    Article  PubMed  Google Scholar 

  • Summer GJ, Romero-Sandoval EA et al (2008) Proinflammatory cytokines mediating burn-injury pain. Pain 135(1–2):98–107

    Article  PubMed  CAS  Google Scholar 

  • Sun BW, Sun Y et al (2008) CO liberated from CORM-2 modulates the inflammatory response in the liver of thermally injured mice. World J Gastroenterol 14(4):547–553

    Article  PubMed  CAS  Google Scholar 

  • Taddonio TE, Thomson PD et al (1988) Rapid quantification of bacterial and fungal growth in burn wounds: biopsy homogenate Gram stain versus microbial culture results. Burns Incl Therm Inj 14(3):180–184

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Wang W (1998) Successful cure of an extensive burn injury complicated with Mucor wound sepsis. Burns 24(1):72–73

    Article  PubMed  CAS  Google Scholar 

  • Teare L, Shelley OP et al (2010) Outbreak of Panton-Valentine leucocidin-positive methicillin-resistant Staphylococcus aureus in a regional burns unit. J Hosp Infect 76(3):220–224

    Article  PubMed  CAS  Google Scholar 

  • Thombs BD, Singh VA et al (2007) The effects of preexisting medical comorbidities on mortality and length of hospital stay in acute burn injury: evidence from a national sample of 31,338 adult patients. Ann Surg 245(4):629–634

    Article  PubMed  Google Scholar 

  • Thompson PB, Henderson DN et al (1986) Effect on mortality of inhalation injury. J Trauma 26:163–165

    Article  PubMed  CAS  Google Scholar 

  • Thompson JT, Meredith JW et al (2002) The effect of burn nursing units on burn wound infections. J Burn Care Rehabil 23(4):281–286; discussion 280

    Article  PubMed  Google Scholar 

  • Tredget EE, Shankowsky HA et al (1990) The role of inhalation injury in burn trauma: a Canadian experience. Ann Surg 212:720

    Article  PubMed  CAS  Google Scholar 

  • Tredget EE, Shankowsky HA et al (2004) Pseudomonas infections in the thermally injured patient. Burns 30(1):3–26

    Article  PubMed  Google Scholar 

  • Tsuda Y, Kobayashi M et al (2008) Impairment of the host’s antibacterial resistance by norepinephrine activated neutrophils. Burns 34(4):460–466

    Article  PubMed  Google Scholar 

  • Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4(4):551–560

    Article  PubMed  Google Scholar 

  • van Duijn PJ, Dautzenberg MJ et al (2011) Recent trends in antibiotic resistance in European ICUs. Curr Opin Crit Care 17(6):658–665

    Article  PubMed  Google Scholar 

  • van Saene HK, Taylor N et al (2008) Microbial gut overgrowth guarantees increased spontaneous mutation leading to polyclonality and antibiotic resistance in the critically ill. Curr Drug Targets 9(5):419–421

    Article  PubMed  Google Scholar 

  • Vannier E, Miller LC et al (1992) Coordinated antiinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA 89(9):4076–4080

    Article  PubMed  CAS  Google Scholar 

  • Vlachou E, Gosling P et al (2010) Hydroxyethylstarch supplementation in burn resuscitation—a prospective randomised controlled trial. Burns 36(7):984–991

    Article  PubMed  CAS  Google Scholar 

  • Walsh TR, Toleman MA et al (2005) Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 18(2):306–325

    Article  PubMed  CAS  Google Scholar 

  • Watts AM, Tyler MP et al (2001) Burn depth and its histological measurement. Burns 27(2):154–160

    Article  PubMed  CAS  Google Scholar 

  • Weber J, McManus A (2004) Infection control in burn patients. Burns 30(8):A16–A24

    Article  PubMed  Google Scholar 

  • Webster RO, Hong SR et al (1980) Biological effects of the human complement fragments C5a and C5ades Arg on neutrophil function. Immunopharmacology 2(3):201–219

    Article  PubMed  CAS  Google Scholar 

  • Weissman C (1990) The metabolic response to stress: an overview and update. Anesthesiology 73(2):308–327

    Article  PubMed  CAS  Google Scholar 

  • Wertheim G (1868) Uber die Vesandesungen bui vesbrennungen. Weiner Medical Press, Vienna

    Google Scholar 

  • White CE, Park MS et al (2007) Burn center treatment of patients with severe anhydrous ammonia injury: case reports and literature review. J Burn Care Res 28(6):922–928

    Article  PubMed  Google Scholar 

  • Wibbenmeyer LA, Amelon MJ et al (2001) Predicting survival in an elderly burn patient population. Burns 27(6):583–590

    Article  PubMed  CAS  Google Scholar 

  • Wibbenmeyer L, Appelgate D et al (2009) Effectiveness of universal screening for vancomycin-resistant Enterococcus and methicillin-resistant Staphylococcus aureus on admission to a burn-trauma step-down unit. J Burn Care Res 30(4):648–656

    Article  PubMed  Google Scholar 

  • Williams FN, Herndon DN et al (2009) The leading causes of death after burn injury in a single pediatric burn center. Crit Care 13(6):R183

    Article  PubMed  Google Scholar 

  • Wolfe JH, Wu AV et al (1982) Anergy, immunosuppressive serum, and impaired lymphocyte blastogenesis in burn patients. Arch Surg 117(10):1266–1271

    Article  PubMed  CAS  Google Scholar 

  • Wood JJ, Rodrick ML et al (1984) Inadequate interleukin 2 production. A fundamental immunological deficiency in patients with major burns. Ann Surg 200(3):311–320

    Article  PubMed  CAS  Google Scholar 

  • Xing Z, Gauldie J et al (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 101(2):311–320

    Article  PubMed  CAS  Google Scholar 

  • Yurt RW, Pruitt BA Jr (1986) Base-line and postthermal injury plasma histamine in rats. J Appl Physiol 60(5):1782–1788

    PubMed  CAS  Google Scholar 

  • Zaragoza R, Artero A et al (2003) The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect 9(5):412–418

    Article  PubMed  CAS  Google Scholar 

  • Zavascki AP, Carvalhaes CG et al (2010) Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther 8(1):71–93

    Article  PubMed  CAS  Google Scholar 

  • Zhang LT, Yao YM et al (2008) Relationship between high-mobility group box 1 protein release and T-cell suppression in rats after thermal injury. Shock 30(4):449–455

    Article  PubMed  CAS  Google Scholar 

  • Zhao XD, Yao YM et al (2007) Effects of intensive insulin therapy on serum immunoglobulin, complement levels and phagocytosis of monocytes in patients with severe trauma. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 19(5):279–282

    PubMed  Google Scholar 

  • Zhu XM, Yao YM et al (2011) High mobility group box-1 protein regulate immunosuppression of regulatory T cells through toll-like receptor 4. Cytokine 54(3):296–304

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirdre L. Church .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Church, D.L., Slaba, I., Winston, B.W., Lindsay, R. (2013). Burn Infections. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30144-5_102

Download citation

Publish with us

Policies and ethics