Advertisement

Burn Infections

  • Deirdre L. Church
  • Ingrid Slaba
  • Brent W. Winston
  • Robert Lindsay
Reference work entry

Abstract

Burns are a common and devastating form of trauma. The incidence of burns worldwide severe enough to require medical attention in 2004 was nearly 11 million people, and ranked fourth in all injuries. Recent data from the USA estimate that approximately 450,000 upwards to 1.1 million burn injuries occurs per annum based on visits to hospital emergency departments. Moderate to severe burn injuries requiring hospitalization account for approximately 45,000 of these cases, of which 20,000 are major burns involving ≥25 % of the total body surface area. Based on selected statistics for admissions to Burn Centers in the USA, the overall survival rate from burn injury was 94.8 % in the past decade (2000–2009). Improved survival is attributed to medical advances in fluid resuscitation; nutritional support; pulmonary care; burn wound care, particularly early excision and wound closure; and use of modern infection control practices. Although approximately 3,500–4,500 patients currently die each year as a direct result of their burn injury, up to 10,000 patients die from burn-related infections, particularly sepsis from burn wound infection, or other sources often associated with inhalation injury. This chapter reviews our current understanding of the mechanism, pathogenesis, immune response, diagnosis, management, and prevention of burn wound infections.

Keywords

Bacterial Translocation Thermal Injury Blood Stream Infection Total Body Surface Area Electrical Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. American Burn Association (ABA) (2011) Burn incidence and treatment in the United States: 2011 ABA Fact SheetGoogle Scholar
  2. Abeyasundara SL, Rajan V et al (2011) The changing pattern of pediatric burns. J Burn Care Res 32(2):178–184PubMedCrossRefGoogle Scholar
  3. Agnihotri N, Gupta V et al (2004) Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study. Burns 30(3):241–243PubMedCrossRefGoogle Scholar
  4. Albornoz CR, Villegas J et al (2011) Burns are more aggressive in the elderly: proportion of deep burn area/total burn area might have a role in mortality. Burns 37(6):1058–1061PubMedCrossRefGoogle Scholar
  5. Alden NE, Rabbitts A et al (2005) Burn injury in patients with dementia: an impetus for prevention. J Burn Care Rehabil 26(3):267–271PubMedGoogle Scholar
  6. Alexander JW (1990) Mechanism of immunologic suppression in burn injury. J Trauma 30(12 Suppl):S70–S75PubMedCrossRefGoogle Scholar
  7. Alsbjorn B, Micheels J et al (1984) Laser doppler flowmetry measurements of superficial dermal, deep dermal and sub-dermal burns. Scand J Plast Reconstr Surg 18:75–79PubMedCrossRefGoogle Scholar
  8. Altman LC, Furukawa CT et al (1977) Depressed mononuclear leukocyte chemotaxis in thermally injured patients. J Immunol 119(1):199–205PubMedGoogle Scholar
  9. Altoparlak U, Erol S et al (2004) The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients. Burns 30(7):660–664PubMedCrossRefGoogle Scholar
  10. Altoparlak U, Koca O et al (2011) Incidence and risk factors of vancomycin-resistant enterococcus colonization in burn unit patients. Burns 37(1):49–53PubMedCrossRefGoogle Scholar
  11. Archer NK, Mazaitis MJ et al (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2(5)Google Scholar
  12. Arturson G, Mellander S (1964) Acute changes in capillary filtration and diffusion in experimental burn injury. Acta Physiol Scand 62:457–463PubMedCrossRefGoogle Scholar
  13. Atiyeh BS, Hayek SN (2010) Management of war-related burn injuries: lessons learned from recent ongoing conflicts providing exceptional care in unusual places. J Craniofac Surg 21(5):1529–1537PubMedCrossRefGoogle Scholar
  14. Atiyeh BS, Amm CA et al (2003) Improved scar quality following primary and secondary healing of cutaneous wounds. Aesthetic Plast Surg 27(5):411–417PubMedCrossRefGoogle Scholar
  15. Atiyeh BS, Hayek SN et al (2005) New technologies for burn wound closure and healing—review of the literature. Burns 31(8):944–956PubMedCrossRefGoogle Scholar
  16. Avdakoff V (1876) Modifications pathologiques des tissue apres brulures. Vestrik 16:4Google Scholar
  17. Backstein R, Peters W et al (1993) Burns in the disabled. Burns 19(3):192–197PubMedCrossRefGoogle Scholar
  18. Bang RL, Gang RK et al (1998) Burn septicaemia: an analysis of 79 patients. Burns 24(4):354–361PubMedCrossRefGoogle Scholar
  19. Barber RC, Chang LY et al (2006) Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res 4(4):250–255PubMedCrossRefGoogle Scholar
  20. Barret JP, Herndon DN (2003) Effects of burn wound excision on bacterial colonization and invasion. Plast Reconstr Surg 111(2):744–750; discussion 751–742PubMedCrossRefGoogle Scholar
  21. Barrillo DJ (2009) Diagnosis and treatment of cyanide toxicity. J Burn Care Res 30(1):148–152CrossRefGoogle Scholar
  22. Becker WK, Cioffi WG Jr et al (1991) Fungal burn wound infection. A 10-year experience. Arch Surg 126(1):44–48PubMedCrossRefGoogle Scholar
  23. Bengtson A, Heideman M (1987) Anaphylatoxin formation in plasma and burn bullae fluid in the thermally injured patient. Burns Incl Therm Inj 13(3):185–189PubMedCrossRefGoogle Scholar
  24. Berkow SG (1924) A method for estimating the extensiveness of lesions (burns and scalds) based on surface area proportions. Arch Surg 8:138–148CrossRefGoogle Scholar
  25. Bhat S, Milner S (2007) Antimicrobial peptides in burns and wounds. Curr Protein Pept Sci 8(5):506–520PubMedCrossRefGoogle Scholar
  26. Bhatia M (2010) Hydrogen sulfide and substance P in inflammation. Antioxid Redox Signal 12(10):1191–1202PubMedCrossRefGoogle Scholar
  27. Bielecki P, Glik J et al (2008) Towards understanding Pseudomonas aeruginosa burn wound infections by profiling gene expression. Biotechnol Lett 30(5):777–790PubMedCrossRefGoogle Scholar
  28. Biffl WL, Moore EE et al (1996) Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg 224(5):647–664PubMedCrossRefGoogle Scholar
  29. Bjornson AB, Bjornson HS et al (1981) Serum-mediated inhibition of polymorphonuclear leukocyte function following burn injury. Ann Surg 194(5):568–575PubMedCrossRefGoogle Scholar
  30. Bohannon J, Fang G et al (2009) Fms-like tyrosine kinase-3 ligand alters antigen-specific responses to infections after severe burn injury. Shock 32(4):435–441PubMedCrossRefGoogle Scholar
  31. Bone RC (1996) Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med 125(8):680–687PubMedGoogle Scholar
  32. Bordes J, Gaillard T et al (2011a) Cytomegalovirus infection monitored by quantitative real-time PCR in critically ill patients. Crit Care 15(2):412PubMedCrossRefGoogle Scholar
  33. Bordes J, Maslin J et al (2011b) Cytomegalovirus infection in severe burn patients monitoring by real-time polymerase chain reaction: A prospective study. Burns 37(3):434–439PubMedCrossRefGoogle Scholar
  34. Bourdarias B, Perro G et al (1996) Herpes simplex virus infection in burned patients: epidemiology of 11 cases. Burns 22(4):287–290PubMedCrossRefGoogle Scholar
  35. Brandt SJ, Tribble CG et al (1985) Herpes simplex burn wound infections: epidemiology of a case cluster and responses to acyclovir therapy. Surgery 98(2):338–343PubMedGoogle Scholar
  36. Branski LK, Al-Mousawi A et al (2009) Emerging infections in burns. Surg Infect 10(5):389–397CrossRefGoogle Scholar
  37. Buchanan K, Heimbach DM et al (1986) Comparison of quantitative and semiquantitative culture techniques for burn biopsy. J Clin Microbiol 23(2):258–261PubMedGoogle Scholar
  38. Burke JF, Bondoc CC et al (1974) Primary burn excision and immediate grafting: a method shortening illness. J Trauma 14(5):389–395PubMedCrossRefGoogle Scholar
  39. Burleson DG, Mason AD Jr et al (1988) Lymphoid subpopulation changes after thermal injury and thermal injury with infection in an experimental model. Ann Surg 207(2):208–212PubMedCrossRefGoogle Scholar
  40. Cairns BA, Barnes CM et al (2008) Toll-like receptor 2 and 4 ligation results in complex altered cytokine profiles early and late after burn injury. J Trauma 64(4):1069–1077; discussion 1077–1068PubMedCrossRefGoogle Scholar
  41. Capoor MR, Gupta S et al (2012) Epidemiological and clinico-mycological profile of fungal wound infection from largest burn centre in Asia. Mycoses 55(2):181–188PubMedGoogle Scholar
  42. Carlson DL, Horton JW (2006) Cardiac molecular signaling after burn trauma. J Burn Care Res 27(5):669–675PubMedCrossRefGoogle Scholar
  43. Cartotto R, Musgrave MA et al (2000) Minimizing blood loss in surgery. J Trauma 49(6):1034–1039PubMedCrossRefGoogle Scholar
  44. Casson P, Solowey AC et al (1966) Delayed hypersensitivity status of burned patients. Surg Forum 17:268–270PubMedGoogle Scholar
  45. Center for Disease Control and Prevention (CDC) (2011) Mass casualties: burns. http://emergency.cdc.gov.masscasulaties/burns.asp
  46. Chalya PL, Ssentongo R et al (2011) HIV seroprevalence and its effect on outcome of moderate to severe burn injuries: A Ugandan experience. J Trauma Manag Outcomes 5(1):8PubMedCrossRefGoogle Scholar
  47. Chang KC, Ma H et al (2010) The optimal time for early burn wound excision to reduce pro-inflammatory cytokine production in a murine burn injury model. Burns 36(7):1059–1066PubMedCrossRefGoogle Scholar
  48. Chaudry IH, Ayala A (1993) Mechanism of increased susceptibility to infection following hemorrhage. Am J Surg 165(2A Suppl):59S–67SPubMedCrossRefGoogle Scholar
  49. Chen G, Smith GA et al (2007) Incidence and pattern of burn injuries among children with disabilities. J Trauma 62(3):682–686PubMedCrossRefGoogle Scholar
  50. Chen LW, Chang WJ et al (2010a) Commensal microflora induce host defense and decrease bacterial translocation in burn mice through toll-like receptor 4. J Biomed Sci 17:48PubMedCrossRefGoogle Scholar
  51. Chen XL, Xia ZF et al (2010b) Effects of early excision and grafting on cytokines and insulin resistance in burned rats. Burns 36(7):1122–1128PubMedCrossRefGoogle Scholar
  52. Cheron A, Monneret G et al (2010) Low monocytic HLA-DR expression and risk of secondary infection. Ann Fr Anesth Reanim 29(5):368–376PubMedCrossRefGoogle Scholar
  53. Chipp E, Milner CS et al (2010) Sepsis in burns: a review of current practice and future therapies. Ann Plast Surg 65(2):228–236PubMedCrossRefGoogle Scholar
  54. Choudhry MA, Li X et al (2006) A role for corticosterone in impaired intestinal immunity and barrier function in a rodent model of acute alcohol intoxication and burn injury. J Neuroimmune Pharmacol 1(4):428–434PubMedCrossRefGoogle Scholar
  55. Church D, Elsayed S et al (2006) Burn wound infections. Clin Microbiol Rev 19(2):403–434PubMedCrossRefGoogle Scholar
  56. Citron DM (1984) Specimen collection and transport, anaerobic culture techniques, and identification of anaerobes. Rev Infect Dis 6(Suppl 1):S51–S58PubMedCrossRefGoogle Scholar
  57. Clark NM, Hershberger E et al (2003) Antimicrobial resistance among gram-positive organisms in the intensive care unit. Curr Opin Crit Care 9(5):403–412PubMedCrossRefGoogle Scholar
  58. Cohen J, Brun-Buisson C et al (2004) Diagnosis of infection in sepsis: an evidence-based review. Crit Care Med 32(11 Suppl):S466–S494PubMedCrossRefGoogle Scholar
  59. Collart MA, Belin D et al (1986) Gamma interferon enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. J Exp Med 164(6):2113–2118PubMedCrossRefGoogle Scholar
  60. Colohan SM (2010) Predicting prognosis in thermal burns with associated inhalation injury: A systematic review of prognostic factors in adult burn victims. J Burn Care Res 31(4):529–539PubMedCrossRefGoogle Scholar
  61. Cooper ML, Boyce ST et al (1990) Cytotoxicity to cultured human keratinocytes of topical antimicrobial agents. J Surg Res 48(3):190–195PubMedCrossRefGoogle Scholar
  62. Cooter RD, Lim IS et al (1990) Burn wound zygomycosis caused by Apophysomyces elegans. J Clin Microbiol 28(9):2151–2153PubMedGoogle Scholar
  63. Crabtree SJ, Robertson JL et al (2011) Clostridium difficile infections in patients with severe burns. Burns 37(1):42–48PubMedCrossRefGoogle Scholar
  64. Culbertson TA, Kalliainen LK et al (2004) Tetanus and the plastic surgeon. Ann Plast Surg 53(2):162–165PubMedCrossRefGoogle Scholar
  65. D’Arpa N, Accardo-Palumbo A et al (2009) Circulating dendritic cells following burn. Burns 35(4):513–518PubMedCrossRefGoogle Scholar
  66. D’Avignon LC, Hogan BK et al (2010) Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: an autopsy series. Burns 36(6):773–779PubMedCrossRefGoogle Scholar
  67. D’Avignon LC, Chung KK et al (2011) Prevention of infections associated with combat-related burn injuries. J Trauma 71(2 Suppl 2):S282–S289PubMedCrossRefGoogle Scholar
  68. Dai T, Huang YY et al (2010) Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov 5(2):124–151PubMedCrossRefGoogle Scholar
  69. Darling GE, Keresteci MA et al (1996) Pulmonary complications in inhalation injuries with associated cutaneous burn. J Trauma 40:83PubMedCrossRefGoogle Scholar
  70. de Smet AM, Kluytmans JA et al (2009) Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 360(1):20–31PubMedCrossRefGoogle Scholar
  71. Deitch EA, Wheelahan TM et al (1983) Hypertrophic burn scars: analysis of variables. J Trauma 23(10):895–898PubMedCrossRefGoogle Scholar
  72. Dellinger RP, Carlet JM et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32(3):858–873PubMedCrossRefGoogle Scholar
  73. Deng HP, Chai JK (2009) The effects and mechanisms of insulin on systemic inflammatory response and immune cells in severe trauma, burn injury, and sepsis. Int Immunopharmacol 9(11):1251–1259PubMedCrossRefGoogle Scholar
  74. DiPiro JT, Howdieshell TR et al (1995) Association of interleukin-4 plasma levels with traumatic injury and clinical course. Arch Surg 130(11):1159–1162; discussion 1162–1153PubMedCrossRefGoogle Scholar
  75. Dissanaike S, Rahimi M (2009) Epidemiology of burn injuries: highlighting cultural and socio-demographic aspects. Int Rev Psychiatry 21(6):505–511PubMedCrossRefGoogle Scholar
  76. Djurickovic S, Snelling CF et al (2001) Tourniquet and subcutaneous epinephrine reduce blood loss during burn excision and immediate grafting. J Burn Care Rehabil 22(1):1–5PubMedCrossRefGoogle Scholar
  77. Doig CJ, Sutherland LR et al (1998) Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med 158(2):444–451PubMedGoogle Scholar
  78. Donnelly RP, Fenton MJ et al (1991) IL-1 expression in human monocytes is transcriptionally and posttranscriptionally regulated by IL-4. J Immunol 146(10):3431–3436PubMedGoogle Scholar
  79. Duan X, Yarmush D et al (2008) Burn-induced immunosuppression: attenuated T cell signaling independent of IFN-gamma- and nitric oxide-mediated pathways. J Leukoc Biol 83(2):305–313PubMedCrossRefGoogle Scholar
  80. Dunser MW, Ohlbauer M et al (2004) Critical care management of major hydrofluoric acid burns: A case report, review of the literature and recommendation for therapy. Burns 30(4):391–398PubMedCrossRefGoogle Scholar
  81. Durtschi MB, Orgain C et al (1982) A prospective study of prophylactic penicillin in acutely burned hospitalized patients. J Trauma 22(1):11–14PubMedCrossRefGoogle Scholar
  82. Edge JM, Van der Merwe AE et al (2001) Clinical outcome of HIV positive patients with moderate to severe burns. Burns 27(2):111–114PubMedCrossRefGoogle Scholar
  83. Ekenna O, Sherertz RJ et al (1993) Natural history of bloodstream infections in a burn patient population: the importance of candidemia. Am J Infect Control 21(4):189–195PubMedCrossRefGoogle Scholar
  84. Elsayed S, Gregson DB et al (2003) Utility of Gram stain for the microbiological analysis of burn wound surfaces. Arch Pathol Lab Med 127(11):1485–1488PubMedGoogle Scholar
  85. Emori TG, Culver DH et al (1991) National nosocomial infections surveillance system (NNIS): description of surveillance methods. Am J Infect Control 19(1):19–35PubMedCrossRefGoogle Scholar
  86. Ernst A, Zibrak JD (1998) Carbon monoxide poisoning. N Engl J Med 339:1603PubMedCrossRefGoogle Scholar
  87. Erol S, Altoparlak U et al (2004) Changes of microbial flora and wound colonization in burned patients. Burns 30(4):357–361PubMedCrossRefGoogle Scholar
  88. Essner R, Rhoades K et al (1989) IL-4 down-regulates IL-1 and TNF gene expression in human monocytes. J Immunol 142(11):3857–3861PubMedGoogle Scholar
  89. Evers LH, Bhavsar D et al (2010) The biology of burn injury. Exp Dermatol 19(9):777–783PubMedCrossRefGoogle Scholar
  90. Faist E, Kupper TS et al (1986) Depression of cellular immunity after major injury. Its association with posttraumatic complications and its reversal with immunomodulation. Arch Surg 121(9):1000–1005PubMedCrossRefGoogle Scholar
  91. Fazal N, Al-Ghoul WM (2007) Thermal injury-plus-sepsis contributes to a substantial deletion of intestinal mesenteric lymph node CD4 T cell via apoptosis. Int J Biol Sci 3(6):393–401PubMedCrossRefGoogle Scholar
  92. Feng X, Shen R et al (2007) The study of inhibiting systematic inflammatory response syndrome by applying xenogenic (porcine) acellular dermal matrix on second-degree burns. Burns 33(4):477–479PubMedCrossRefGoogle Scholar
  93. Fikrig SM, Karl SC et al (1977) Neutrophil chemotaxis in patients with burns. Ann Surg 186(6):746–748PubMedCrossRefGoogle Scholar
  94. Fiorentino DF, Zlotnik A et al (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822PubMedGoogle Scholar
  95. Fitzwater J, Purdue GF et al (2003) The risk factors and time course of sepsis and organ dysfunction after burn trauma. J Trauma 54(5):959–966PubMedCrossRefGoogle Scholar
  96. Flierl MA, Stahel PF et al (2009) Bench-to-bedside review: Burn-induced cerebral inflammation–a neglected entity? Crit Care 13(3):215PubMedCrossRefGoogle Scholar
  97. Foldi V, Lantos J et al (2010) Effects of fluid resuscitation methods on the pro- and anti-inflammatory cytokines and expression of adhesion molecules after burn injury. J Burn Care Res 31(3):480–491PubMedCrossRefGoogle Scholar
  98. Foster TJ (2004) The Staphylococcus aureus “superbug”. J Clin Invest 114(12):1693–1696PubMedGoogle Scholar
  99. Fuchs P, Kopp J et al (2002) MRSA-retrospective analysis of an outbreak in the burn centre Aachen. Burns 28(6):575–578PubMedCrossRefGoogle Scholar
  100. Gallagher WF (1970) Burn-wound infection with viruses. N Engl J Med 282(22):1272PubMedGoogle Scholar
  101. Gallinaro R, Cheadle WG et al (1992) The role of the complement system in trauma and infection. Surg Gynecol Obstet 174(5):435–440PubMedGoogle Scholar
  102. Gamelli RL, He LK et al (1994) Marrow granulocyte-macrophage progenitor cell response to burn injury as modified by endotoxin and indomethacin. J Trauma 37(3):339–346PubMedCrossRefGoogle Scholar
  103. Garrel D, Patenaude J et al (2003) Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med 31(10):2444–2449PubMedCrossRefGoogle Scholar
  104. Gauglitz GG, Toliver-Kinsky TE et al (2010) Insulin increases resistance to burn wound infection-associated sepsis. Crit Care Med 38(1):202–208PubMedCrossRefGoogle Scholar
  105. Gaynes RP (1997) Surveillance of nosocomial infections: a fundamental ingredient for quality. Infect Control Hosp Epidemiol 18(7):475–478PubMedCrossRefGoogle Scholar
  106. Gaynes RP, Culver DH et al (2001) Surgical site infection (SSI) rates in the United States, 1992–1998: the National Nosocomial Infections Surveillance System basic SSI risk index. Clin Infect Dis 33(Suppl 2):S69–S77PubMedCrossRefGoogle Scholar
  107. Goebel A, Kavanagh E et al (2000) Injury induces deficient interleukin-12 production, but interleukin-12 therapy after injury restores resistance to infection. Ann Surg 231(2):253–261PubMedCrossRefGoogle Scholar
  108. Gosain A, Gamelli RL (2005) A primer in cytokines. J Burn Care Rehabil 26(1):7–12PubMedCrossRefGoogle Scholar
  109. Greenhalgh DG, Saffle JR et al (2007) American Burn Association consensus conference to define sepsis and infection in burns. J Burn Care Res 28(6):776–790PubMedCrossRefGoogle Scholar
  110. Grieb G, Simons D et al (2010) Macrophage migration inhibitory factor-A potential diagnostic tool in severe burn injuries? Burns 36(3):335–342PubMedCrossRefGoogle Scholar
  111. Griswold JA (1993) White blood cell response to burn injury. Semin Nephrol 13(4):409–415PubMedGoogle Scholar
  112. Grogan JB (1976) Altered neutrophil phagocytic function in burn patients. J Trauma 16(9):734–738PubMedCrossRefGoogle Scholar
  113. Grogan JB, Miller RC (1973) Impaired function of polymorphonuclear leukocytes in patients with burns and other trauma. Surg Gynecol Obstet 137(5):784–788PubMedGoogle Scholar
  114. Guggenheim M, Zbinden R et al (2009) Changes in bacterial isolates from burn wounds and their antibiograms: a 20-year study (1986–2005). Burns 35(4):553–560PubMedCrossRefGoogle Scholar
  115. Guo Y, Dickerson C et al (1990) Increased levels of circulating interleukin 6 in burn patients. Clin Immunol Immunopathol 54(3):361–371PubMedCrossRefGoogle Scholar
  116. Ha U, Jin S (1999) Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of burn wounds in mice and is required to cause efficient bacteremia. Infect Immun 67(10):5324–5331PubMedGoogle Scholar
  117. Ha UH, Kim J et al (2004) An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol Microbiol 54(2):307–320PubMedCrossRefGoogle Scholar
  118. Hall-Stoodley L, Costerton JW et al (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108PubMedCrossRefGoogle Scholar
  119. Haraga I, Nomura S et al (2002) Emergence of vancomycin resistance during therapy against methicillin-resistant Staphylococcus aureus in a burn patient–importance of low-level resistance to vancomycin. Int J Infect Dis 6(4):302–308PubMedCrossRefGoogle Scholar
  120. Harrison-Balestra C, Cazzaniga AL et al (2003) A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. J Dermatol Surg 29(6):631–635CrossRefGoogle Scholar
  121. Hayes MP, Freeman SL et al (1995) IFN-gamma priming of monocytes enhances LPS-induced TNF production by augmenting both transcription and MRNA stability. Cytokine 7(5):427–435PubMedCrossRefGoogle Scholar
  122. Heideman M, Bengtsson A (1992) The immunologic response to thermal injury. World J Surg 16(1):53–56PubMedCrossRefGoogle Scholar
  123. Heimbach DM (1987) Early burn excision and grafting. Surg Clin North Am 67(1):93–107PubMedGoogle Scholar
  124. Hendon DN, Barrow RE (1989) A comparison of conservative versus early excision therapies in severely burned patients. Ann Surg 209:547–553CrossRefGoogle Scholar
  125. Herndon DN, Spies M (2001) Modern burn care. Semin Pediatr Surg 10(1):28–31PubMedCrossRefGoogle Scholar
  126. Hodle AE, Richter KP et al. (2006) Infection control practices in U.S. burn units. J Burn Care Res 27:142–151PubMedCrossRefGoogle Scholar
  127. Hoeksema H, Van de Sijpe K et al (2009) Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns 35(1):36–45PubMedCrossRefGoogle Scholar
  128. Hoesel LM, Niederbichler AD et al (2007) C5a-blockade improves burn-induced cardiac dysfunction. J Immunol 178(12):7902–7910PubMedGoogle Scholar
  129. Hoiby N, Bjarnsholt T et al (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332PubMedCrossRefGoogle Scholar
  130. Horgan AF, Mendez MV et al (1994) Altered gene transcription after burn injury results in depressed T-lymphocyte activation. Ann Surg 220(3):342–351; discussion 351–342PubMedCrossRefGoogle Scholar
  131. Horner BM, Ahmadi H et al (2005) Case-controlled study of patients with self-inflicted burns. Burns 31(4):471–475PubMedCrossRefGoogle Scholar
  132. Hugli TE (1984) Complement and cellular triggering reactions. Introductory remarks. Fed Proc 43(10):2540–2542PubMedGoogle Scholar
  133. Hunt JL, Purdue GF (1992) The elderly burn patient. Am J Surg 164(5):472–476PubMedCrossRefGoogle Scholar
  134. Hunt JL, McGranahan BG et al (1973) Burn-wound management. Heart Lung 2(5):690–695PubMedGoogle Scholar
  135. Hunt JL, Mason AD et al (1976) The pathophysiology of acute electrical burns. J Trauma 16:335–340PubMedCrossRefGoogle Scholar
  136. Ipaktchi K, Mattar A et al (2006) Attenuating burn wound inflammatory signaling reduces systemic inflammation and acute lung injury. J Immunol 177(11):8065–8071PubMedGoogle Scholar
  137. Jackson DM (1953) The diagnostic of the depth of burning. Br J Surg 40:558–596CrossRefGoogle Scholar
  138. Janzekovic Z (1970) A new concept in the early excision and immediate grafting of burns. J Trauma 10(12):1103–1108PubMedCrossRefGoogle Scholar
  139. Jaskille AD, Ramella-Roman JC et al (2010) Critical review of burn depth assessment techniques; paA 11: review of laser Doppler technology. J Burn Care Res 31(1):151–157PubMedCrossRefGoogle Scholar
  140. Jeschke MG, Kulp GA et al (2010) Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med 182(3):351–359PubMedCrossRefGoogle Scholar
  141. Kagan RJ, Naraqi S et al (1985) Herpes simplex virus and cytomegalovirus infections in burned patients. J Trauma 25(1):40–45PubMedCrossRefGoogle Scholar
  142. Kaiser M, Yafi A et al (2011a) Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities. Burns 37(3):377–386PubMedCrossRefGoogle Scholar
  143. Kaiser ML, Thompson DJ et al (2011b) Epidemiology and risk factors for hospital-acquired methicillin-resistant Staphylococcus aureus among burn patients. J Burn Care Res 32(3):429–434PubMedCrossRefGoogle Scholar
  144. Kay GD (1957) Prolonged survival of a skin homograft in a patient with very extensive burns. Ann N Y Acad Sci 64(5):767–774PubMedCrossRefGoogle Scholar
  145. Keen EF 3rd, Murray CK et al (2010a) Changes in the incidences of multidrug-resistant and extensively drug-resistant organisms isolated in a military medical center. Infect Control Hosp Epidemiol 31(7):728–732PubMedCrossRefGoogle Scholar
  146. Keen EF 3rd, Robinson BJ et al (2010b) Prevalence of multidrug-resistant organisms recovered at a military burn center. Burns 36(6):819–825PubMedCrossRefGoogle Scholar
  147. Kennedy P, Brammah S et al (2010) Burns, biofilm and a new appraisal of burn wound sepsis. Burns 36(1):49–56PubMedCrossRefGoogle Scholar
  148. Kim LH, Ward D et al (2010) The impact of laser Doppler imaging on time to grafting decisions in pediatric burns. J Burn Care Res 31(2):328–332PubMedCrossRefGoogle Scholar
  149. Kowalske KJ (2011) Burn wound care. Phys Med Rehabil Clin N Am 22(2):213–227, vPubMedCrossRefGoogle Scholar
  150. Kurmis R, Parker A et al (2010) The use of immunonutrition in burn injury care: where are we? J Burn Care Res 31(5):677–691PubMedCrossRefGoogle Scholar
  151. Kuroda T, Harada T et al (1997) Hypernatremic suppression of neutrophils. Burns 23(4):338–340PubMedCrossRefGoogle Scholar
  152. Ladak A, Tredget EE (2009) Pathophysiology and management of the burn scar. Clin Plast Surg 36(4):661–674PubMedCrossRefGoogle Scholar
  153. Lansdown AB (2002a) Silver. 2: toxicity in mammals and how its products aid wound repair. J Wound Care 11(5):173–177PubMedGoogle Scholar
  154. Lansdown AB (2002b) Silver. I: its antibacterial properties and mechanism of action. J Wound Care 11(4):125–130PubMedGoogle Scholar
  155. Lansdown AB, Williams A et al (2005) Silver absorption and antibacterial efficacy of silver dressings. J Wound Care 14(4):155–160PubMedGoogle Scholar
  156. Laupland KB, Parkins MD et al (2005) Population-based epidemiological study of infections caused by carbapenem-resistant Pseudomonas aeruginosa in the Calgary health region: importance of metallo-beta-lactamase (MBL)-producing strains. J Infect Dis 192(9):1606–1612PubMedCrossRefGoogle Scholar
  157. Lavaud P, Mathieu J et al (1988) Modulation of leucocyte activation in the early phase of the rabbit burn injury. Burns Incl Therm Inj 14(1):15–20PubMedCrossRefGoogle Scholar
  158. Lavrentieva A, Kontakiotis T et al (2007) Inflammatory markers in patients with severe burn injury. What is the best indicator of sepsis? Burns 33(2):189–194PubMedCrossRefGoogle Scholar
  159. Lederer JA, Rodrick ML et al (1999) The effects of injury on the adaptive immune response. Shock 11(3):153–159PubMedCrossRefGoogle Scholar
  160. Lee RC, Capelli-Schellpfeffer M (1998) Electrical and lightning injuries. In: Lee RC (ed) Current surgical therapy. Mosby, St. Louis, pp 1021–1023Google Scholar
  161. Levine NS, Lindberg RB et al (1976) The quantitative swab culture and smear: a quick, simple method for determining the number of viable aerobic bacteria on open wounds. J Trauma 16(2):89–94PubMedCrossRefGoogle Scholar
  162. Livermore DM, Warner M et al (2011) What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 37(5):415–419PubMedCrossRefGoogle Scholar
  163. Loebl EC, Marvin JA et al (1974a) The method of quantitative burn-wound biopsy cultures and its routine use in the care of the burned patient. Am J Clin Pathol 61(1):20–24PubMedGoogle Scholar
  164. Loebl EC, Marvin JA et al (1974b) The use of quantitative biopsy cultures in bacteriologic monitoring of burn patients. J Surg Res 16(1):1–5PubMedCrossRefGoogle Scholar
  165. Lund T (1999) The 1999 Everett Idris Evans Memorial lecture: edema generation following thermal injury: an update. J Burn Care Rehabil 20:445–452PubMedCrossRefGoogle Scholar
  166. Lund CC, Browder NC (1944) The estimation of areas of burns. Surg Gynecol Obstet 798:352–358Google Scholar
  167. Lund T, Wiig H et al (1988) Acute post-burn edema: role of strongly negative intersititial fluid pressure. Am J Physiol 255:H1069–H1074PubMedGoogle Scholar
  168. Lyons A, Kelly JL et al (1997) Major injury induces increased production of interleukin-10 by cells of the immune system with a negative impact on resistance to infection. Ann Surg 226(4):450–458; discussion 458–460PubMedCrossRefGoogle Scholar
  169. Majetschak M, Zedler S et al (2008) Systemic ubiquitin release after blunt trauma and burns: association with injury severity, posttraumatic complications, and survival. J Trauma 64(3):586–596; discussion 596–588PubMedCrossRefGoogle Scholar
  170. Manson WL, Coenen JM et al (1992a) Intestinal bacterial translocation in experimentally burned mice with wounds colonized by Pseudomonas aeruginosa. J Trauma 33(5):654–658PubMedCrossRefGoogle Scholar
  171. Manson WL, Klasen HJ et al (1992b) Selective intestinal decontamination for prevention of wound colonization in severely burned patients: a retrospective analysis. Burns 18(2):98–102PubMedCrossRefGoogle Scholar
  172. Manson WL, Pernot PC et al (1992c) Colonization of burns and the duration of hospital stay of severely burned patients. J Hosp Infect 22(1):55–63PubMedCrossRefGoogle Scholar
  173. Mayhall CG (2003) The epidemiology of burn wound infections: then and now. Clin Infect Dis 37(4):543–550PubMedCrossRefGoogle Scholar
  174. McCampbell B, Wasif N et al (2002) Diabetes and burns: retrospective cohort study. J Burn Care Rehabil 23(3):157–166PubMedCrossRefGoogle Scholar
  175. McGill V, Kowal-Vern A et al (2000) Outcome for older burn patients. Arch Surg 135(3):320–325PubMedCrossRefGoogle Scholar
  176. McLoughlin GA, Wu AV et al (1979) Correlation between anergy and a circulating immunosuppressive factor following major surgical trauma. Ann Surg 190(3):297–304PubMedCrossRefGoogle Scholar
  177. McManus AT, Kim SH et al (1987) Comparison of quantitative microbiology and histopathology in divided burn-wound biopsy specimens. Arch Surg 122(1):74–76PubMedCrossRefGoogle Scholar
  178. Meier TO, Guggenheim M et al (2011) Microvascular regeneration in meshed skin transplants after severe burns. Burns 37(6):1010–1014PubMedCrossRefGoogle Scholar
  179. Meka VG, Pillai SK et al (2004) Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis 190(2):311–317PubMedCrossRefGoogle Scholar
  180. Mitchell V, Galizia JP et al (1989) Precise diagnosis of infection in burn wound biopsy specimens. Combination of histologic technique, acridine orange staining, and culture. J Burn Care Rehabil 10(3):195–202PubMedCrossRefGoogle Scholar
  181. Miyazaki H, Kinoshita M et al (2011) Augmented bacterial elimination by Kupffer cells after IL-18 pretreatment via IFN-gamma produced from NK cells in burn-injured mice. Burns 37(7):1208–1215PubMedCrossRefGoogle Scholar
  182. Monstrey SM, Hoeksema H et al (2011) Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation. Burns 37(2):249–256PubMedCrossRefGoogle Scholar
  183. Moore EC, Padiglione AA et al (2010) Candida in burns: risk factors and outcomes. J Burn Care Res 31(2):257–263PubMedCrossRefGoogle Scholar
  184. Morrow SE, Smith DL et al (1996) Etiology and outcome of pediatric burns. J Pediatr Surg 31(3):329–333PubMedCrossRefGoogle Scholar
  185. Mosier MJ, Gibran NS (2009) Surgical excision of the burn wound. Clin Plast Surg 36(4):617–625PubMedCrossRefGoogle Scholar
  186. Mousa HA, al-Bader SM (2001) Yeast infection of burns. Mycoses 44(5):147–149PubMedCrossRefGoogle Scholar
  187. Mozingo DW, Smith AA et al (1988) Chemical burns. J Trauma 28(5):642–647PubMedCrossRefGoogle Scholar
  188. Mozingo DW, McManus AT et al (1997) Incidence of bacteremia after burn wound manipulation in the early postburn period. J Trauma 42(6):1006–1010; discussion 1010–1001PubMedCrossRefGoogle Scholar
  189. Munster AM, Smith-Meek M et al. (1994) The effect of early surgical intervention on mortality and cost-effectiveness in burn care, 1978–91. Burns 20(1):61–64.PubMedCrossRefGoogle Scholar
  190. Murphy KD, Lee JO et al (2003) Current pharmacotherapy for the treatment of severe burns. Expert Opin Pharmacother 4(3):369–384PubMedCrossRefGoogle Scholar
  191. Mzezewa S, Jonsson K et al (2003) HIV infection reduces skin graft survival in burn injuries: a prospective study. Br J Plast Surg 56(8):740–745PubMedCrossRefGoogle Scholar
  192. Nadler EP, Upperman JS et al (1999) Nitric oxide and intestinal barrier failure. Semin Pediatr Surg 8(3):148–154PubMedGoogle Scholar
  193. National SafeKids Burn Campaign (2004) Burn injury fact sheet. Washington, DCGoogle Scholar
  194. Ninnemann JL, Fisher JC et al (1978) Prolonged survival of human skin allografts following thermal injury. Transplantation 25(2):69–72PubMedCrossRefGoogle Scholar
  195. Nohr CW, Christou NV et al (1984) In vivo and in vitro humoral immunity in surgical patients. Ann Surg 200(3):373–380PubMedCrossRefGoogle Scholar
  196. O’Mahony JB, Wood JJ et al (1985) Changes in T lymphocyte subsets following injury. Assessment by flow cytometry and relationship to sepsis. Ann Surg 202(5):580–586PubMedCrossRefGoogle Scholar
  197. O’Mara MS, Goel A et al (2002) The use of tourniquets in the excision of unexsanguinated extremity burn wounds. Burns 28(7):684–687PubMedCrossRefGoogle Scholar
  198. Ong YS, Samuel M et al (2006) Meta-analysis of early excision of burns. Burns 32(2):145–150PubMedCrossRefGoogle Scholar
  199. Oswald IP, Wynn TA et al (1992) Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc Natl Acad Sci USA 89(18):8676–8680PubMedCrossRefGoogle Scholar
  200. Palao R, Mange I (2010) Chemical burns: pathophysiology and treatment. Burns 36(3):295–304PubMedCrossRefGoogle Scholar
  201. Parihar A, Parihar MS et al (2008) Oxidative stress and anti-oxidative mobilization in burn injury. Burns 34(1):6–17PubMedCrossRefGoogle Scholar
  202. Patenaude J, D’Elia M et al (2010) Selective effect of burn injury on splenic CD11c(+) dendritic cells and CD8alpha(+)CD4(−)CD11c(+) dendritic cell subsets. Cell Mol Life Sci 67(8):1315–1329PubMedCrossRefGoogle Scholar
  203. Peck MD (2011) Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns 37(7):1087–1100PubMedCrossRefGoogle Scholar
  204. Peck MD, Weber J et al (1998) Surveillance of burn wound infections: a proposal for definitions. J Burn Care Rehabil 19(5):386–389PubMedCrossRefGoogle Scholar
  205. Pedrosa AF, Rodrigues AG (2011) Candidemia in burn patients: figures and facts. J Trauma 70(2):498–506PubMedCrossRefGoogle Scholar
  206. Peng X, Yan H et al (2006) Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients. Burns 32(5):589–593PubMedCrossRefGoogle Scholar
  207. Peppercorn A, Veit L et al (2010) Overwhelming disseminated herpes simplex virus type 2 infection in a patient with severe burn injury: case report and literature review. J Burn Care Res 31(3):492–498PubMedCrossRefGoogle Scholar
  208. Pirnay JP, De Vos D et al (2000) Quantitation of Pseudomonas aeruginosa in wound biopsy samples: from bacterial culture to rapid ‘real-time’ polymerase chain reaction. Crit Care 4(4):255–261PubMedCrossRefGoogle Scholar
  209. Plackett TP, Oz OK et al (2006) Lack of aromatase improves cell-mediated immune response after burn. Burns 32(5):577–582PubMedCrossRefGoogle Scholar
  210. Polderman KH, Girbes AR (2004) Drug intervention trials in sepsis: divergent results. Lancet 363(9422):1721–1723PubMedCrossRefGoogle Scholar
  211. Posluszny JA Jr, Conrad P et al (2011) Surgical burn wound infections and their clinical implications. J Burn Care Res 32(2):324–333PubMedCrossRefGoogle Scholar
  212. Pruitt BA Jr, McManus AT (1992) The changing epidemiology of infection in burn patients. World J Surg 16(1):57–67PubMedCrossRefGoogle Scholar
  213. Pruitt BA Jr, Wolf SE (2009) An historical perspective on advances in burn care over the past 100 years. Clin Plast Surg 36(4):527–545PubMedCrossRefGoogle Scholar
  214. Purdue GF, Arnoldo BD et al (2011) Acute assessment and management of burn injuries. Phys Med Rehabil Clin N Am 22(2):201–212, vPubMedCrossRefGoogle Scholar
  215. Rafla K, Tredget EE (2011) Infection control in the burn unit. Burns 37(1):5–15PubMedCrossRefGoogle Scholar
  216. Ramirez F, Fowell DJ et al (1996) Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J Immunol 156(7):2406–2412PubMedGoogle Scholar
  217. Ramzy PI, Herndon DN et al (1998) Comparison of wound culture and bronchial lavage in the severely burned child: implications for antimicrobial therapy. Arch Surg 133(12):1275–1280PubMedCrossRefGoogle Scholar
  218. Rashid A, Brown AP et al (2005) On the use of prophylactic antibiotics in prevention of toxic shock syndrome. Burns 31(8):981–985PubMedCrossRefGoogle Scholar
  219. Rezaei E, Safari H et al (2011) Common pathogens in burn wound and changes in their drug sensitivity. Burns 37(5):805–807PubMedCrossRefGoogle Scholar
  220. Ribeiro NF, Heath CH et al (2010) Burn wounds infected by contaminated water: case reports, review of the literature and recommendations for treatment. Burns 36(1):9–22PubMedCrossRefGoogle Scholar
  221. Riordan CL, McDonough M et al (2003) Noncontact laser Doppler imaging in burn depth analysis of the extremities. J Burn Care Rehabil 24(4):177–186PubMedCrossRefGoogle Scholar
  222. Rosenbach AE, Koria P et al (2011) Microfluidics for T- lymphocyte cell separation and inflammation monitoring in burn patients. Clin Transl Sci 4(1):63–68PubMedCrossRefGoogle Scholar
  223. Roth JJ, Hughes WB (2004) The essential burn unit handbook. Quality Medical Publishers, St. LouisGoogle Scholar
  224. Rozenbaum D, Baruchin AM et al (1991) Chemical Burns of the eye with special reference to alkali burns. Burns 17(2):136–140PubMedCrossRefGoogle Scholar
  225. Rumbaugh KP, Griswold JA et al (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2(14):1721–1731PubMedCrossRefGoogle Scholar
  226. Salo M (1992) Effects of anaesthesia and surgery on the immune response. Acta Anaesthesiol Scand 36(3):201–220PubMedCrossRefGoogle Scholar
  227. Sanders VM, Baker RA et al (1997) Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol 158(9):4200–4210PubMedGoogle Scholar
  228. Sasaki JR, Zhang Q et al (2011) Burn induces a Th-17 inflammatory response at the injury site. Burns 37(4):646–651PubMedCrossRefGoogle Scholar
  229. Scalfani MT, Chan DM et al (2007) Acute ethanol exposure combined with burn injury enhances IL-6 levels in the murine ileum. Alcohol Clin Exp Res 31(10):1731–1737PubMedCrossRefGoogle Scholar
  230. Schaber JA, Triffo WJ et al (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cell-to-cell signaling. Infect Immun 75(8):3715–3721PubMedCrossRefGoogle Scholar
  231. Schildt BE (1970) Function of the RES after thermal and mechanical trauma in mice. Acta Chir Scand 136(5):359–364PubMedGoogle Scholar
  232. Schofield CM, Murray CK et al (2007) Correlation of culture with histopathology in fungal burn wound colonization and infection. Burns 33(3):341–346PubMedCrossRefGoogle Scholar
  233. Schwacha MG (2009) Gammadelta T-cells: potential regulators of the post-burn inflammatory response. Burns 35(3):318–326PubMedCrossRefGoogle Scholar
  234. Schwartz SB, Rothrock M et al (2011) Impact of diabetes on burn injury: preliminary results from prospective study. J Burn Care Res 32(3):435–441PubMedCrossRefGoogle Scholar
  235. Sevitt S (1957) Burns pathology and therapeutic applications. Buttersworth, LondonGoogle Scholar
  236. Shankar R, Melstrom KA Jr et al (2007) Inflammation and sepsis: past, present, and the future. J Burn Care Res 28(4):566–571PubMedCrossRefGoogle Scholar
  237. Sharma VP, O’ Boyle CP et al (2011) Man or machine? The clinimetric properties of laser Doppler imagining in burn depth assessment. J Burn Care Res 32(1):143–149PubMedCrossRefGoogle Scholar
  238. Sheridan R (2009) Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clin Plast Surg 36(4):643–651PubMedCrossRefGoogle Scholar
  239. Sheridan RL, Tompkins RG et al (1994) Management of burn wounds with prompt excision and immediate closure. J Intensive Care Med 9(1):6–17PubMedGoogle Scholar
  240. Sheridan RL, Weber JM et al (1999) A 15-year experience with Varicella infections in a pediatric burn unit. Burns 25(4):353–356PubMedCrossRefGoogle Scholar
  241. Sheridan RL, Schulz JT et al (2000) Cutaneous herpetic infections complicating burns. Burns 26(7):621–624PubMedCrossRefGoogle Scholar
  242. Sherman RT (1970) The prevention and treatment of tetanus in the burn patient. Surg Clin North Am 50(6):1277–1281PubMedGoogle Scholar
  243. Sherry RM, Cue JI et al (1996) Interleukin-10 is associated with the development of sepsis in trauma patients. J Trauma 40(4):613–616; discussion 616–617PubMedCrossRefGoogle Scholar
  244. Shigematsu K, Asai A et al (2009) Enterococcus faecalis translocation in mice with severe burn injury: a pathogenic role of CCL2 and alternatively activated macrophages (M2aMphi and M2cMphi). J Leukoc Biol 86(4):999–1005PubMedCrossRefGoogle Scholar
  245. Shupp JW, Pavlovich AR et al (2010) Epidemiology of bloodstream infections in burn-injured patients: a review of the national burn repository. J Burn Care Res 31(4):521–528PubMedCrossRefGoogle Scholar
  246. Sikora JP, Kuzanski W et al (2009) Soluble cytokine receptors sTNFR I and sTNFR II, receptor antagonist IL-1ra, and anti-inflammatory cytokines IL-10 and IL-13 in the pathogenesis of systemic inflammatory response syndrome in the course of burns in children. Med Sci Monit 15(1):CR26–CR31PubMedGoogle Scholar
  247. Singer AJ, McClain SA (2002) Persistent wound infection delays epidermal maturation and increases scarring in thermal burns. Wound Repair Regen 10(6):372–377PubMedCrossRefGoogle Scholar
  248. Sio SW, Puthia MK et al (2008) The neuropeptide substance P is a critical mediator of burn-induced acute lung injury. J Immunol 180(12):8333–8341PubMedGoogle Scholar
  249. Sjoberg T, Mzezewa S et al (2004) Immune response in burn patients in relation to HIV infection and sepsis. Burns 30(7):670–674PubMedCrossRefGoogle Scholar
  250. Solowey AC, Rapaport FT (1966) The immunologic response to repeated individual-specific skin allografts. Transplantation 4(2):178–181PubMedCrossRefGoogle Scholar
  251. Steer JA, Papini RP et al (1996a) Quantitative microbiology in the management of burn patients. I. Correlation between quantitative and qualitative burn wound biopsy culture and surface alginate swab culture. Burns 22(3):173–176PubMedCrossRefGoogle Scholar
  252. Steer JA, Papini RP et al (1996b) Quantitative microbiology in the management of burn patients. II. Relationship between bacterial counts obtained by burn wound biopsy culture and surface alginate swab culture, with clinical outcome following burn surgery and change of dressings. Burns 22(3):177–181PubMedCrossRefGoogle Scholar
  253. Steinmann J, Kaase M et al (2011) Outbreak due to a Klebsiella pneumoniae strain harbouring KPC-2 and VIM-1 in a German university hospital, July 2010 to January 2011. Euro Surveill 16(33):1–6Google Scholar
  254. Steinstraesser L (2004) Sepsis–new strategies with host defense peptides? Crit Care Med 32(12):2555–2556PubMedCrossRefGoogle Scholar
  255. Steinstraesser L, Oezdogan Y et al (2004) Host defense peptides in burns. Burns 30(7):619–627PubMedCrossRefGoogle Scholar
  256. Stephan RN, Ayala A et al (1989) Mechanism of immunosuppression following hemorrhage: defective antigen presentation by macrophages. J Surg Res 46(6):553–556PubMedCrossRefGoogle Scholar
  257. Stone HH, Cuzzell JZ et al (1979) Aspergillus infection of the burn wound. J Trauma 19(10):765–767PubMedCrossRefGoogle Scholar
  258. Struck MF, Illert T et al (2010) Basilar artery occlusion after multifactor coagulopathy including Rhizopus oryzae infection in burns. J Burn Care Res 31(6):955–958PubMedCrossRefGoogle Scholar
  259. Summer GJ, Romero-Sandoval EA et al (2008) Proinflammatory cytokines mediating burn-injury pain. Pain 135(1–2):98–107PubMedCrossRefGoogle Scholar
  260. Sun BW, Sun Y et al (2008) CO liberated from CORM-2 modulates the inflammatory response in the liver of thermally injured mice. World J Gastroenterol 14(4):547–553PubMedCrossRefGoogle Scholar
  261. Taddonio TE, Thomson PD et al (1988) Rapid quantification of bacterial and fungal growth in burn wounds: biopsy homogenate Gram stain versus microbial culture results. Burns Incl Therm Inj 14(3):180–184PubMedCrossRefGoogle Scholar
  262. Tang D, Wang W (1998) Successful cure of an extensive burn injury complicated with Mucor wound sepsis. Burns 24(1):72–73PubMedCrossRefGoogle Scholar
  263. Teare L, Shelley OP et al (2010) Outbreak of Panton-Valentine leucocidin-positive methicillin-resistant Staphylococcus aureus in a regional burns unit. J Hosp Infect 76(3):220–224PubMedCrossRefGoogle Scholar
  264. Thombs BD, Singh VA et al (2007) The effects of preexisting medical comorbidities on mortality and length of hospital stay in acute burn injury: evidence from a national sample of 31,338 adult patients. Ann Surg 245(4):629–634PubMedCrossRefGoogle Scholar
  265. Thompson PB, Henderson DN et al (1986) Effect on mortality of inhalation injury. J Trauma 26:163–165PubMedCrossRefGoogle Scholar
  266. Thompson JT, Meredith JW et al (2002) The effect of burn nursing units on burn wound infections. J Burn Care Rehabil 23(4):281–286; discussion 280PubMedCrossRefGoogle Scholar
  267. Tredget EE, Shankowsky HA et al (1990) The role of inhalation injury in burn trauma: a Canadian experience. Ann Surg 212:720PubMedCrossRefGoogle Scholar
  268. Tredget EE, Shankowsky HA et al (2004) Pseudomonas infections in the thermally injured patient. Burns 30(1):3–26PubMedCrossRefGoogle Scholar
  269. Tsuda Y, Kobayashi M et al (2008) Impairment of the host’s antibacterial resistance by norepinephrine activated neutrophils. Burns 34(4):460–466PubMedCrossRefGoogle Scholar
  270. Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4(4):551–560PubMedCrossRefGoogle Scholar
  271. van Duijn PJ, Dautzenberg MJ et al (2011) Recent trends in antibiotic resistance in European ICUs. Curr Opin Crit Care 17(6):658–665PubMedCrossRefGoogle Scholar
  272. van Saene HK, Taylor N et al (2008) Microbial gut overgrowth guarantees increased spontaneous mutation leading to polyclonality and antibiotic resistance in the critically ill. Curr Drug Targets 9(5):419–421PubMedCrossRefGoogle Scholar
  273. Vannier E, Miller LC et al (1992) Coordinated antiinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA 89(9):4076–4080PubMedCrossRefGoogle Scholar
  274. Vlachou E, Gosling P et al (2010) Hydroxyethylstarch supplementation in burn resuscitation—a prospective randomised controlled trial. Burns 36(7):984–991PubMedCrossRefGoogle Scholar
  275. Walsh TR, Toleman MA et al (2005) Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 18(2):306–325PubMedCrossRefGoogle Scholar
  276. Watts AM, Tyler MP et al (2001) Burn depth and its histological measurement. Burns 27(2):154–160PubMedCrossRefGoogle Scholar
  277. Weber J, McManus A (2004) Infection control in burn patients. Burns 30(8):A16–A24PubMedCrossRefGoogle Scholar
  278. Webster RO, Hong SR et al (1980) Biological effects of the human complement fragments C5a and C5ades Arg on neutrophil function. Immunopharmacology 2(3):201–219PubMedCrossRefGoogle Scholar
  279. Weissman C (1990) The metabolic response to stress: an overview and update. Anesthesiology 73(2):308–327PubMedCrossRefGoogle Scholar
  280. Wertheim G (1868) Uber die Vesandesungen bui vesbrennungen. Weiner Medical Press, ViennaGoogle Scholar
  281. White CE, Park MS et al (2007) Burn center treatment of patients with severe anhydrous ammonia injury: case reports and literature review. J Burn Care Res 28(6):922–928PubMedCrossRefGoogle Scholar
  282. Wibbenmeyer LA, Amelon MJ et al (2001) Predicting survival in an elderly burn patient population. Burns 27(6):583–590PubMedCrossRefGoogle Scholar
  283. Wibbenmeyer L, Appelgate D et al (2009) Effectiveness of universal screening for vancomycin-resistant Enterococcus and methicillin-resistant Staphylococcus aureus on admission to a burn-trauma step-down unit. J Burn Care Res 30(4):648–656PubMedCrossRefGoogle Scholar
  284. Williams FN, Herndon DN et al (2009) The leading causes of death after burn injury in a single pediatric burn center. Crit Care 13(6):R183PubMedCrossRefGoogle Scholar
  285. Wolfe JH, Wu AV et al (1982) Anergy, immunosuppressive serum, and impaired lymphocyte blastogenesis in burn patients. Arch Surg 117(10):1266–1271PubMedCrossRefGoogle Scholar
  286. Wood JJ, Rodrick ML et al (1984) Inadequate interleukin 2 production. A fundamental immunological deficiency in patients with major burns. Ann Surg 200(3):311–320PubMedCrossRefGoogle Scholar
  287. Xing Z, Gauldie J et al (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 101(2):311–320PubMedCrossRefGoogle Scholar
  288. Yurt RW, Pruitt BA Jr (1986) Base-line and postthermal injury plasma histamine in rats. J Appl Physiol 60(5):1782–1788PubMedGoogle Scholar
  289. Zaragoza R, Artero A et al (2003) The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect 9(5):412–418PubMedCrossRefGoogle Scholar
  290. Zavascki AP, Carvalhaes CG et al (2010) Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther 8(1):71–93PubMedCrossRefGoogle Scholar
  291. Zhang LT, Yao YM et al (2008) Relationship between high-mobility group box 1 protein release and T-cell suppression in rats after thermal injury. Shock 30(4):449–455PubMedCrossRefGoogle Scholar
  292. Zhao XD, Yao YM et al (2007) Effects of intensive insulin therapy on serum immunoglobulin, complement levels and phagocytosis of monocytes in patients with severe trauma. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 19(5):279–282PubMedGoogle Scholar
  293. Zhu XM, Yao YM et al (2011) High mobility group box-1 protein regulate immunosuppression of regulatory T cells through toll-like receptor 4. Cytokine 54(3):296–304PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Deirdre L. Church
    • 1
    • 2
    • 5
  • Ingrid Slaba
    • 3
  • Brent W. Winston
    • 3
  • Robert Lindsay
    • 4
  1. 1.Departments of Pathology and Laboratory MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Departments of MedicineUniversity of CalgaryCalgaryCanada
  3. 3.Departments of Critical CareUniversity of CalgaryCalgaryCanada
  4. 4.Departments of Surgery, Faculty of MedicineUniversity of CalgaryCalgaryCanada
  5. 5.Division of MicrobiologyCalgary Laboratory ServicesCalgaryCanada

Personalised recommendations