Urinary Tract Infections

  • Daniel J. Reiss
  • Michael D. Engstrom
  • Harry L. T. Mobley
Reference work entry


Urinary tract infections (UTIs) are among the most common bacterial infections and generally occur when uropathogens, normally quiescent residents of the gastrointestinal tract, enter the urinary tract. Cystitis, caused by uropathogens that colonize the lower urinary tract, is usually self-limiting and amenable to antibiotic therapy. In spite of this, uropathogens can gain access to the upper urinary tract, causing pyelonephritis, and may enter the bloodstream from this site, causing potentially fatal urosepsis. The vast majority of UTIs are caused by uropathogenic Escherichia coli (UPEC), a heterogenous group of E. coli strains. Other organisms that cause UTIs include Proteus mirabilis, Klebsiella pneumoniae, and Staphylococcus saprophyticus. All of these organisms have a variety of virulence factors, often encoded on large, horizontally acquired pathogenicity islands, which promote growth in urine, colonization of the host urinary tract, and evasion of the host immune system. These virulence factors include a plethora of distinct fimbrial and non-fimbrial adhesins, flagella, ureases, osmolarity and pH homeostasis factors, nutrient transporters, extracellular polysaccharides, metal scavenging systems, an assortment of toxins, an array of bacteriocins, and envelope damage response systems. Uropathogens also have sophisticated genetic regulatory mechanisms to coordinate expression of these virulence factors. This is especially true between diverse fimbrial operons and between fimbrial and flagella operons. However, no one preeminent set of virulence factors exists among uropathogens, which instead use combinations of the aforementioned virulence factors to facilitate uropathogenesis. Thus, a broad understanding of these virulence factors is necessary to gain a comprehensive understanding of uropathogenesis and UTIs.


Invertible Element Bladder Epithelial Cell Uroepithelial Cell UPEC Strain Iron Acquisition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham SN, Beachey EH (1987) Assembly of a chemically synthesized peptide of Escherichia coli type 1 fimbriae into fimbria-like antigenic structures. J Bacteriol 169(6):2460–2465PubMedGoogle Scholar
  2. Abraham JM, Freitag CS et al (1985) An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci USA 82(17):5724–5727PubMedCrossRefGoogle Scholar
  3. Abraham SN, Goguen JD et al (1988) Hyperadhesive mutant of type 1-fimbriated Escherichia coli associated with formation of FimH organelles (fimbriosomes). Infect Immun 56(5):1023–1029PubMedGoogle Scholar
  4. Adegbola RA, Old DC et al (1983) The adhesins and fimbriae of Proteus mirabilis strains associated with high and low affinity for the urinary tract. J Med Microbiol 16(4):427–431PubMedCrossRefGoogle Scholar
  5. Alamuri P, Mobley HL (2008) A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol Microbiol 68(4):997–1017PubMedCrossRefGoogle Scholar
  6. Alamuri P, Eaton KA et al (2009) Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection. Infect Immun 77(2):632–641PubMedCrossRefGoogle Scholar
  7. Allison C, Coleman N et al (1992) Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60(11):4740–4746PubMedGoogle Scholar
  8. Alteri CJ, Mobley HL (2007) Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75(6):2679–2688PubMedGoogle Scholar
  9. Alteri CJ, Mobley HL (2011) Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15(1):3–9PubMedCrossRefGoogle Scholar
  10. Alteri CJ, Hagan EC et al (2009a) Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog 5(9):e1000586PubMedCrossRefGoogle Scholar
  11. Alteri CJ, Smith SN et al (2009b) Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5(5):e1000448PubMedCrossRefGoogle Scholar
  12. Alteri CJ, Lindner JR et al (2011) The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol 82(1):145–163PubMedCrossRefGoogle Scholar
  13. Altman E, Harrison BA et al (2001) Galectin-3-mediated adherence of Proteus mirabilis to Madin-Darby canine kidney cells. Biochem Cell Biol 79(6):783–788PubMedGoogle Scholar
  14. Anderson GG, Goller CC et al (2010) Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect Immun 78(3):963–975PubMedCrossRefGoogle Scholar
  15. Anfora AT, Welch RA (2006) DsdX is the second d-serine transporter in uropathogenic Escherichia coli clinical isolate CFT073. J Bacteriol 188(18):6622–6628PubMedCrossRefGoogle Scholar
  16. Anfora AT, Haugen BJ et al (2007) Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75(11):5298–5304PubMedCrossRefGoogle Scholar
  17. Aoki SK, Pamma R et al (2005) Contact-dependent inhibition of growth in Escherichia coli. Science 309(5738):1245–1248PubMedCrossRefGoogle Scholar
  18. Aoki SK, Webb JS et al (2009) Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli. J Bacteriol 191(6):1777–1786PubMedCrossRefGoogle Scholar
  19. Autar R, Khan AS et al (2003) Adhesion inhibition of F1C-fimbriated Escherichia coli and Pseudomonas aeruginosa PAK and PAO by multivalent carbohydrate ligands. Chembiochem 4(12):1317–1325PubMedCrossRefGoogle Scholar
  20. Bacheller CD, Bernstein JM (1997) Urinary tract infections. Med Clin North Am 81(3):719–730PubMedCrossRefGoogle Scholar
  21. Backhed F, Alsen B et al (2002) Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J Biol Chem 277(20):18198–18205PubMedCrossRefGoogle Scholar
  22. Baga M, Goransson M et al (1985) Transcriptional activation of a pap pilus virulence operon from uropathogenic Escherichia coli. EMBO J 4(13B):3887–3893PubMedGoogle Scholar
  23. Bahrani FK, Johnson DE et al (1991) Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Infect Immun 59(10):3574–3580PubMedGoogle Scholar
  24. Bahrani FK, Massad G et al (1994) Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun 62(8):3363–3371PubMedGoogle Scholar
  25. Bahrani-Mougeot FK, Buckles EL et al (2002) Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 45(4):1079–1093PubMedCrossRefGoogle Scholar
  26. Barisani D, Conte D (2002) Transferrin receptor 1 (TfR1) and putative stimulator of Fe transport (SFT) expression in iron deficiency and overload: an overview. Blood Cells Mol Dis 29(3):498–505PubMedCrossRefGoogle Scholar
  27. Bauer RJ, Zhang L et al (2002) Molecular epidemiology of 3 putative virulence genes for Escherichia coli urinary tract infection-usp, iha, and iroN(E. coli). J Infect Dis 185(10):1521–1524PubMedCrossRefGoogle Scholar
  28. Benabdelhak H, Kiontke S et al (2003) A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. J Mol Biol 327(5):1169–1179PubMedCrossRefGoogle Scholar
  29. Bent S, Nallamothu BK et al (2002) Does this woman have an acute uncomplicated urinary tract infection? J Am Med Assoc 287(20):2701–2710CrossRefGoogle Scholar
  30. Benz R, Dobereiner A et al (1992) Haemolysin of Escherichia coli: comparison of pore-forming properties between chromosome and plasmid-encoded haemolysins. FEMS Microbiol Immunol 5(1–3):55–62PubMedCrossRefGoogle Scholar
  31. Bergsten G, Samuelsson M et al (2004) PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189(9):1734–1742PubMedCrossRefGoogle Scholar
  32. Bhakdi S, Mackman N et al (1986) Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun 52(1):63–69PubMedGoogle Scholar
  33. Bichler KH, Eipper E et al (2002) Urinary infection stones. Int J Antimicrob Agents 19(6):488–498PubMedCrossRefGoogle Scholar
  34. Bidet P, Bonacorsi S et al (2005) Multiple insertional events, restricted by the genetic background, have led to acquisition of pathogenicity island IIJ96-like domains among Escherichia coli strains of different clinical origins. Infect Immun 73(7):4081–4087PubMedCrossRefGoogle Scholar
  35. Bijlsma IG, van Dijk L et al (1995) Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains. Microbiology 141(Pt 6):1349–1357PubMedGoogle Scholar
  36. Blum G, Ott M et al (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62(2):606–614PubMedGoogle Scholar
  37. Blum G, Falbo V et al (1995) Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and alpha-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett 126(2):189–195PubMedGoogle Scholar
  38. Boehm DF, Welch RA et al (1990) Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect Immun 58(6):1951–1958PubMedGoogle Scholar
  39. Boretti FS, Buehler PW et al (2009) Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J Clin Invest 119(8):2271–2280PubMedGoogle Scholar
  40. Braaten BA, Nou X et al (1994) Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76(3):577–588PubMedCrossRefGoogle Scholar
  41. Braude AI, Siemienski J (1960) Role of bacterial urease in experimental pyelonephritis. J Bacteriol 80:171–179PubMedGoogle Scholar
  42. Braun V, Focareta T (1991) Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol 18(2):115–158PubMedCrossRefGoogle Scholar
  43. Brinton CC Jr (1965) The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci 27(8):1003–1054PubMedCrossRefGoogle Scholar
  44. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24(3):203–206PubMedCrossRefGoogle Scholar
  45. Bryan A, Roesch P et al (2006) Regulation of type 1 fimbriae by unlinked FimB- and FimE-like recombinases in uropathogenic Escherichia coli strain CFT073. Infect Immun 74(2):1072–1083PubMedCrossRefGoogle Scholar
  46. Brzuszkiewicz E, Bruggemann H et al (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103(34):12879–12884PubMedCrossRefGoogle Scholar
  47. Buckles EL, Wang X et al (2006) PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152(Pt 1):153–160PubMedCrossRefGoogle Scholar
  48. Buckles EL, Wang X et al (2009) Role of the K2 capsule in Escherichia coli urinary tract infection and serum resistance. J Infect Dis 199(11):1689–1697PubMedCrossRefGoogle Scholar
  49. Burns SM, Hull SI (1998) Comparison of loss of serum resistance by defined lipopolysaccharide mutants and an acapsular mutant of uropathogenic Escherichia coli O75:K5. Infect Immun 66(9):4244–4253PubMedGoogle Scholar
  50. Burns SM, Hull SI (1999) Loss of resistance to ingestion and phagocytic killing by O(−) and K(−) mutants of a uropathogenic Escherichia coli O75:K5 strain. Infect Immun 67(8):3757–3762PubMedGoogle Scholar
  51. Campos MA, Vargas MA et al (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72(12):7107–7114PubMedCrossRefGoogle Scholar
  52. Camprubi S, Merino S et al (1993) The role of the O-antigen lipopolysaccharide and capsule on an experimental Klebsiella pneumoniae infection of the rat urinary tract. FEMS Microbiol Lett 111(1):9–13PubMedCrossRefGoogle Scholar
  53. Caprioli A, Falbo V et al (1983) Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 39(3):1300–1306PubMedGoogle Scholar
  54. Carbonetti NH, Boonchai S et al (1986) Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infect Immun 51(3):966–968PubMedGoogle Scholar
  55. Castelain M, Ehlers S et al (2011) Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers. Eur Biophys J 40(3):305–316PubMedCrossRefGoogle Scholar
  56. Chen YT, Chang HY et al (2004) Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189–198PubMedCrossRefGoogle Scholar
  57. Cheng HY, Chen YS et al (2010) RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol 192(12):3144–3158PubMedCrossRefGoogle Scholar
  58. Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64(4):694–708PubMedCrossRefGoogle Scholar
  59. Choudhury D, Thompson A et al (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285(5430):1061–1066PubMedCrossRefGoogle Scholar
  60. Clegg S, Wilson J et al (2011) More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway. J Bacteriol 193(9):2081–2088PubMedCrossRefGoogle Scholar
  61. Collins CM, Gutman DM et al (1993) Identification of a nitrogen-regulated promoter controlling expression of Klebsiella pneumoniae urease genes. Mol Microbiol 8(1):187–198PubMedCrossRefGoogle Scholar
  62. Connell I, Agace W et al (1996) Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci USA 93(18):9827–9832PubMedCrossRefGoogle Scholar
  63. Cross AS, Kim KS et al (1986) Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of Escherichia coli. J Infect Dis 154(3):497–503PubMedCrossRefGoogle Scholar
  64. Culham DE, Dalgado C et al (1998) Osmoregulatory transporter ProP influences colonization of the urinary tract by Escherichia coli. Microbiology 144(Pt 1):91–102PubMedCrossRefGoogle Scholar
  65. Culham DE, Lu A et al (2001) The osmotic stress response and virulence in pyelonephritis isolates of Escherichia coli: contributions of RpoS, ProP, ProU and other systems. Microbiology 147(Pt 6):1657–1670PubMedGoogle Scholar
  66. Czaja CA, Scholes D et al (2007) Population-based epidemiologic analysis of acute pyelonephritis. Clin Infect Dis 45(3):273–280PubMedCrossRefGoogle Scholar
  67. Czaja CA, Stamm WE et al (2009) Prospective cohort study of microbial and inflammatory events immediately preceding Escherichia coli recurrent urinary tract infection in women. J Infect Dis 200(4):528–536PubMedCrossRefGoogle Scholar
  68. Das M, Hart-Van Tassell A et al (2005) Hydrophilic domain II of Escherichia coli Dr fimbriae facilitates cell invasion. Infect Immun 73(9):6119–6126PubMedCrossRefGoogle Scholar
  69. Davis JM, Carvalho HM et al (2006) Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun 74(8):4401–4408PubMedCrossRefGoogle Scholar
  70. de Ree JM, van den Bosch JF (1987) Serological response to the P fimbriae of uropathogenic Escherichia coli in pyelonephritis. Infect Immun 55(9):2204–2207PubMedGoogle Scholar
  71. De Rycke J, Gonzalez EA et al (1990) Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol 28(4):694–699PubMedGoogle Scholar
  72. Dhakal BK, Mulvey MA (2012) The UPEC pore-forming toxin alpha-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 11(1):58–69PubMedCrossRefGoogle Scholar
  73. Dlugaszek M, Kaszczuk M et al (2011) Magnesium, calcium, and trace elements excretion in 24-h urine. Biol Trace Elem Res 142(1):1–10PubMedCrossRefGoogle Scholar
  74. Dobrindt U, Blum-Oehler G et al (2002) Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect Immun 70(11):6365–6372PubMedCrossRefGoogle Scholar
  75. Dobrindt U, Agerer F et al (2003) Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185(6):1831–1840PubMedCrossRefGoogle Scholar
  76. Dodson KW, Jacob-Dubuisson F et al (1993) Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc Natl Acad Sci USA 90(8):3670–3674PubMedCrossRefGoogle Scholar
  77. Dodson KW, Pinkner JS et al (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105(6):733–743PubMedCrossRefGoogle Scholar
  78. Donnelly MA, Steiner TS (2002) Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J Biol Chem 277(43):40456–40461PubMedCrossRefGoogle Scholar
  79. Donnenberg MS, Welch RA (1996) Virulence determinants of uropathogenic Escherichia coli. In: Mobley HL, Warren JW (eds) Urinary tract infections: molecular pathogenesis and clinical management. ASM Press, Washington, DCGoogle Scholar
  80. Dowling KJ, Roberts JA et al (1987) P-fimbriated Escherichia coli urinary tract infection: a clinical correlation. South Med J 80(12):1533–1536PubMedCrossRefGoogle Scholar
  81. Doye A, Mettouchi A et al (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111(4):553–564PubMedCrossRefGoogle Scholar
  82. Drechsel H, Thieken A et al (1993) Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol 175(9):2727–2733PubMedGoogle Scholar
  83. Duguid JP, Gillies RR (1958) Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus and Chromobacterium. J Pathol Bacteriol 75(2):519–520Google Scholar
  84. Duguid JP, Clegg S et al (1979) The fimbrial and non-fimbrial haemagglutinins of Escherichia coli. J Med Microbiol 12(2):213–227PubMedCrossRefGoogle Scholar
  85. Dutta PR, Cappello R et al (2002) Functional comparison of serine protease autotransporters of enterobacteriaceae. Infect Immun 70(12):7105–7113PubMedCrossRefGoogle Scholar
  86. Echols RM, Tosiello RL et al (1999) Demographic, clinical, and treatment parameters influencing the outcome of acute cystitis. Clin Infect Dis 29(1):113–119PubMedCrossRefGoogle Scholar
  87. Eden CS, Hansson HA (1978) Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells. Infect Immun 21(1):229–237PubMedGoogle Scholar
  88. Eden CS, Hanson LA et al (1976) Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet 1(7984):490–492PubMedGoogle Scholar
  89. Eguchi Y, Ishii E et al (2011) Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J Bacteriol 193(5):1222–1228PubMedCrossRefGoogle Scholar
  90. Eisenstein BI (1981) Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science 214(4518):337–339PubMedCrossRefGoogle Scholar
  91. El-Labany S, Sohanpal BK et al (2003) Distant cis-active sequences and sialic acid control the expression of fimB in Escherichia coli K-12. Mol Microbiol 49(4):1109–1118PubMedCrossRefGoogle Scholar
  92. Evanylo LP, Kadis S et al (1984) Siderophore production by Proteus mirabilis. Can J Microbiol 30(8):1046–1051PubMedCrossRefGoogle Scholar
  93. Fader RC, Davis CP (1980) Effect of piliation on Klebsiella pneumoniae infection in rat bladders. Infect Immun 30(2):554–561PubMedGoogle Scholar
  94. Fader RC, Avots-Avotins AE et al (1979) Evidence for pili-mediated adherence of Klebsiella pneumoniae to rat bladder epithelial cells in vitro. Infect Immun 25(2):729–737PubMedGoogle Scholar
  95. Fader RC, Duffy LK et al (1982) Purification and chemical characterization of type 1 pili isolated from Klebsiella pneumoniae. J Biol Chem 257(6):3301–3305PubMedGoogle Scholar
  96. Fairley KF, Carson NE et al (1971) Site of infection in acute urinary-tract infection in general practice. Lancet 2(7725):615–618PubMedCrossRefGoogle Scholar
  97. Falzano L, Fiorentini C et al (1993) Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol Microbiol 9(6):1247–1254PubMedCrossRefGoogle Scholar
  98. Faro S, Fenner DE (1998) Urinary tract infections. Clin Obstet Gynecol 41(3):744–754PubMedCrossRefGoogle Scholar
  99. Favre-Bonte S, Joly B et al (1999) Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect Immun 67(2):554–561PubMedGoogle Scholar
  100. Felmlee T, Welch RA (1988) Alterations of amino acid repeats in the Escherichia coli hemolysin affect cytolytic activity and secretion. Proc Natl Acad Sci USA 85(14):5269–5273PubMedCrossRefGoogle Scholar
  101. Felmlee T, Pellett S et al (1985a) Escherichia coli hemolysin is released extracellularly without cleavage of a signal peptide. J Bacteriol 163(1):88–93PubMedGoogle Scholar
  102. Felmlee T, Pellett S et al (1985b) Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163(1):94–105PubMedGoogle Scholar
  103. Fiorentini C, Donelli G et al (1995) Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase. Infect Immun 63(10):3936–3944PubMedGoogle Scholar
  104. Flahaut S, Vinogradov E et al (2008) Structural and biological characterization of a capsular polysaccharide produced by Staphylococcus haemolyticus. J Bacteriol 190(5):1649–1657PubMedCrossRefGoogle Scholar
  105. Flannery EL, Mody L et al (2009) Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun 77(11):4887–4894PubMedCrossRefGoogle Scholar
  106. Flannery EL, Antczak SM et al (2011) Self-transmissibility of the integrative and conjugative element ICEPm1 between clinical isolates requires a functional integrase, relaxase, and type IV secretion system. J Bacteriol 193(16):4104–4112PubMedCrossRefGoogle Scholar
  107. Flatau G, Lemichez E et al (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387(6634):729–733PubMedCrossRefGoogle Scholar
  108. Fowler JE Jr (1985) Staphylococcus saprophyticus as the cause of infected urinary calculus. Ann Intern Med 102(3):342–343PubMedGoogle Scholar
  109. Fung CP, Chang FY et al (2011) Immune response and pathophysiological features of Klebsiella pneumoniae liver abscesses in an animal model. Lab Invest 91(7):1029–1039PubMedCrossRefGoogle Scholar
  110. Gadeberg OV, Orskov I (1984) In vitro cytotoxic effect of alpha-hemolytic Escherichia coli on human blood granulocytes. Infect Immun 45(1):255–260PubMedGoogle Scholar
  111. Gadeberg OV, Orskov I et al (1983) Cytotoxic effect of an alpha-hemolytic Escherichia coli strain on human blood monocytes and granulocytes in vitro. Infect Immun 41(1):358–364PubMedGoogle Scholar
  112. Gally DL, Bogan JA et al (1993) Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 175(19):6186–6193PubMedGoogle Scholar
  113. Gally DL, Rucker TJ et al (1994) The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol 176(18):5665–5672PubMedGoogle Scholar
  114. Ganz T (2006) Molecular pathogenesis of anemia of chronic disease. Pediatr Blood Cancer 46(5):554–557PubMedCrossRefGoogle Scholar
  115. Garcia EC, Brumbaugh AR et al (2011) Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 79(3):1225–1235PubMedCrossRefGoogle Scholar
  116. Gatermann S, Marre R (1989) Cloning and expression of Staphylococcus saprophyticus urease gene sequences in Staphylococcus carnosus and contribution of the enzyme to virulence. Infect Immun 57(10):2998–3002PubMedGoogle Scholar
  117. Gatermann S, Meyer HG (1994) Staphylococcus saprophyticus hemagglutinin binds fibronectin. Infect Immun 62(10):4556–4563PubMedGoogle Scholar
  118. Gatermann S, Marre R et al (1988) Hemagglutinating and adherence properties of Staphylococcus saprophyticus: epidemiology and virulence in experimental urinary tract infection of rats. FEMS Microbiol Immunol 1(3):179–185PubMedCrossRefGoogle Scholar
  119. Gatermann S, John J et al (1989) Staphylococcus saprophyticus urease: characterization and contribution to uropathogenicity in unobstructed urinary tract infection of rats. Infect Immun 57(1):110–116PubMedGoogle Scholar
  120. Gerlach JH, Endicott JA et al (1986) Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 324(6096):485–489PubMedCrossRefGoogle Scholar
  121. Gerlach GF, Clegg S et al (1989) Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol 171(3):1262–1270PubMedGoogle Scholar
  122. Gillespie WA, Sellin MA et al (1978) Urinary tract infection in young women, with special reference to Staphylococcus saprophyticus. J Clin Pathol 31(4):348–350PubMedCrossRefGoogle Scholar
  123. Goller CC, Seed PC (2010) High-throughput identification of chemical inhibitors of E. coli Group 2 capsule biogenesis as anti-virulence agents. PLoS One 5(7):e11642PubMedCrossRefGoogle Scholar
  124. Goluszko P, Moseley SL et al (1997) Development of experimental model of chronic pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae: mutation in the dra region prevented tubulointerstitial nephritis. J Clin Invest 99(7):1662–1672PubMedCrossRefGoogle Scholar
  125. Gordon DM, Riley MA (1992) A theoretical and experimental analysis of bacterial growth in the bladder. Mol Microbiol 6(4):555–562PubMedCrossRefGoogle Scholar
  126. Gray L, Mackman N et al (1986) The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin from Escherichia coli. Mol Gen Genet 205(1):127–133PubMedCrossRefGoogle Scholar
  127. Gunther NW IV, Lockatell V et al (2001) In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect Immun 69(5):2838–2846PubMedCrossRefGoogle Scholar
  128. Gunther NW IV, Snyder JA et al (2002) Assessment of virulence of uropathogenic Escherichia coli type 1 fimbrial mutants in which the invertible element is phase-locked on or off. Infect Immun 70(7):3344–3354PubMedCrossRefGoogle Scholar
  129. Gupta K, Hooton TM et al (1999) The prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in young women. Int J Antimicrob Agents 11(3–4):305–308PubMedCrossRefGoogle Scholar
  130. Gupta K, Hooton TM et al (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52(5):e103–e120PubMedCrossRefGoogle Scholar
  131. Guyer DM, Kao JS et al (1998) Genomic analysis of a pathogenicity island in uropathogenic Escherichia coli CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis, and Catheter-associated bacteriuria and from fecal samples. Infect Immun 66(9):4411–4417PubMedGoogle Scholar
  132. Guyer DM, Henderson IR et al (2000) Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol 38(1):53–66PubMedCrossRefGoogle Scholar
  133. Guyer DM, Radulovic S et al (2002) Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun 70(8):4539–4546PubMedCrossRefGoogle Scholar
  134. Hacker J, Bender L et al (1990) Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 8(3):213–225PubMedCrossRefGoogle Scholar
  135. Hagan EC, Mobley HL (2009) Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol 71(1):79–91PubMedCrossRefGoogle Scholar
  136. Hagan EC, Lloyd AL et al (2010) Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6(11):e1001187PubMedCrossRefGoogle Scholar
  137. Hagberg L, Jodal U et al (1981) Adhesion, hemagglutination, and virulence of Escherichia coli causing urinary tract infections. Infect Immun 31(2):564–570PubMedGoogle Scholar
  138. Hahn PF, Bale WF et al (1939) Radioactive iron and its excretion in urine, bile, and feces. J Exp Med 70(5):443–451PubMedCrossRefGoogle Scholar
  139. Hancock V, Vejborg RM et al (2010) Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Mol Genet Genomics 284(6):437–454PubMedCrossRefGoogle Scholar
  140. Hannan TJ, Mysorekar IU et al (2008) LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis. Mol Microbiol 67(1):116–128PubMedGoogle Scholar
  141. Hardie KR, Issartel JP et al (1991) In vitro activation of Escherichia coli prohaemolysin to the mature membrane-targeted toxin requires HlyC and a low molecular-weight cytosolic polypeptide. Mol Microbiol 5(7):1669–1679PubMedCrossRefGoogle Scholar
  142. Harshey RM, Toguchi A (1996) Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol 4(6):226–231PubMedCrossRefGoogle Scholar
  143. Haugen BJ, Pellett S et al (2007) In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 75(1):278–289PubMedCrossRefGoogle Scholar
  144. Hedblom ML, Adler J (1980) Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J Bacteriol 144(3):1048–1060PubMedGoogle Scholar
  145. Heimer SR, Rasko DA et al (2004) Autotransporter genes pic and tsh are associated with Escherichia coli strains that cause acute pyelonephritis and are expressed during urinary tract infection. Infect Immun 72(1):593–597PubMedCrossRefGoogle Scholar
  146. Hell W, Meyer HG et al (1998) Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 29(3):871–881PubMedCrossRefGoogle Scholar
  147. Henderson IR, Navarro-Garcia F et al (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68(4):692–744PubMedCrossRefGoogle Scholar
  148. Henderson JP, Crowley JR et al (2009) Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog 5(2):e1000305PubMedCrossRefGoogle Scholar
  149. Hennequin C, Forestier C (2007) Influence of capsule and extended-spectrum beta-lactamases encoding plasmids upon Klebsiella pneumoniae adhesion. Res Microbiol 158(4):339–347PubMedCrossRefGoogle Scholar
  150. Heptinstall RH (1983) Pathology of the kidney. Little, Brown, BostonGoogle Scholar
  151. Herlax V, Mate S et al (2009) Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J Biol Chem 284(37):25199–25210PubMedCrossRefGoogle Scholar
  152. Higgins CF, Hiles ID et al (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323(6087):448–450PubMedCrossRefGoogle Scholar
  153. Higgs PI, Myers PS et al (1998) Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J Bacteriol 180(22):6031–6038PubMedGoogle Scholar
  154. Himpsl SD, Pearson MM et al (2010) Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol Microbiol 78(1):138–157PubMedGoogle Scholar
  155. Hofman P, Le Negrate G et al (2000) Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J Leukoc Biol 68(4):522–528PubMedGoogle Scholar
  156. Holland IB, Schmitt L et al (2005) Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 22(1–2):29–39PubMedCrossRefGoogle Scholar
  157. Hooton TM (2001) Recurrent urinary tract infection in women. Int J Antimicrob Agents 17(4):259–268PubMedCrossRefGoogle Scholar
  158. Hornick DB, Allen BL et al (1992) Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products. Infect Immun 60(4):1577–1588PubMedGoogle Scholar
  159. Horwitz MA, Silverstein SC (1980) Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J Clin Invest 65(1):82–94PubMedCrossRefGoogle Scholar
  160. Hsieh PF, Lin TL et al (2008) Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 197(12):1717–1727PubMedCrossRefGoogle Scholar
  161. Hughes C, Issartel JP et al (1992) Activation of Escherichia coli prohemolysin to the membrane-targetted toxin by HlyC-directed ACP-dependent fatty acylation. FEMS Microbiol Immunol 5(1–3):37–43PubMedCrossRefGoogle Scholar
  162. Hughes KT, Gillen KL et al (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262(5137):1277–1280PubMedCrossRefGoogle Scholar
  163. Hull RA, Hull SI (1997) Nutritional requirements for growth of uropathogenic Escherichia coli in human urine. Infect Immun 65(5):1960–1961PubMedGoogle Scholar
  164. Hull RA, Gill RE et al (1981) Construction and expression of recombinant plasmids encoding type 1 or d-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 33(3):933–938PubMedGoogle Scholar
  165. Hultgren SJ, Schwan WR et al (1986) Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun 54(3):613–620PubMedGoogle Scholar
  166. Hultgren SJ, Normark S et al (1991) Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45:383–415PubMedCrossRefGoogle Scholar
  167. Hultgren SJ, Abraham S et al (1993) Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73(5):887–901PubMedCrossRefGoogle Scholar
  168. Hung CS, Bouckaert J et al (2002) Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44(4):903–915PubMedCrossRefGoogle Scholar
  169. Ikaheimo R, Siitonen A et al (1994) Community-acquired pyelonephritis in adults: characteristics of E. coli isolates in bacteremic and non-bacteremic patients. Scand J Infect Dis 26(3):289–296PubMedCrossRefGoogle Scholar
  170. Issartel JP, Koronakis V et al (1991) Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351(6329):759–761PubMedCrossRefGoogle Scholar
  171. Jacob-Dubuisson F, Locht C et al (2001) Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40(2):306–313PubMedCrossRefGoogle Scholar
  172. Jacobsen SH, Lins LE et al (1985) P fimbriated Escherichia coli in adults with acute pyelonephritis. J Infect Dis 152(2):426–427PubMedCrossRefGoogle Scholar
  173. Jacobsen SM, Lane MC et al (2008) The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection. FEMS Immunol Med Microbiol 52(2):180–193PubMedCrossRefGoogle Scholar
  174. Jansen AM, Lockatell CV et al (2003) Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun 71(6):3607–3613PubMedCrossRefGoogle Scholar
  175. Jansen AM, Lockatell V et al (2004) Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect Immun 72(12):7294–7305PubMedCrossRefGoogle Scholar
  176. Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4(1):80–128PubMedGoogle Scholar
  177. Johnson DE, Russell RG (1996) Animal models of urinary tract infection. In: Mobley HL, Warren JW (eds) Urinary tract infections: molecular pathogenesis and clinical management. ASM Press, Washington, DC, pp 377–403Google Scholar
  178. Johnson JR, Roberts PL et al (1987) P fimbriae and other virulence factors in Escherichia coli urosepsis: association with patients’ characteristics. J Infect Dis 156(1):225–229PubMedCrossRefGoogle Scholar
  179. Johnson JR, Moseley SL et al (1988) Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun 56(2):405–412PubMedGoogle Scholar
  180. Johnson JR, Goullet P et al (1991) Association of carboxylesterase B electrophoretic pattern with presence and expression of urovirulence factor determinants and antimicrobial resistance among strains of Escherichia coli that cause urosepsis. Infect Immun 59(7):2311–2315PubMedGoogle Scholar
  181. Johnson DE, Russell RG et al (1993) Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection. Infect Immun 61(7):2748–2754PubMedGoogle Scholar
  182. Johnson DE, Drachenberg C et al (2000) The role of cytotoxic necrotizing factor-1 in colonization and tissue injury in a murine model of urinary tract infection. FEMS Immunol Med Microbiol 28(1):37–41PubMedCrossRefGoogle Scholar
  183. Johnson JR, Jelacic S et al (2005) The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect Immun 73(2):965–971PubMedCrossRefGoogle Scholar
  184. Jones BD, Mobley HL (1988) Proteus mirabilis urease: genetic organization, regulation, and expression of structural genes. J Bacteriol 170(8):3342–3349PubMedGoogle Scholar
  185. Jones BD, Lockatell CV et al (1990) Construction of a urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection. Infect Immun 58(4):1120–1123PubMedGoogle Scholar
  186. Jones CH, Pinkner JS et al (1993) FimC is a periplasmic PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc Natl Acad Sci USA 90(18):8397–8401PubMedCrossRefGoogle Scholar
  187. Jones CH, Pinkner JS et al (1995) FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 92(6):2081–2085PubMedCrossRefGoogle Scholar
  188. Jones BV, Young R et al (2004) Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun 72(7):3941–3950PubMedCrossRefGoogle Scholar
  189. Jordan PA, Iravani A et al (1980) Urinary tract infection caused by Staphylococcus saprophyticus. J Infect Dis 142(4):510–515PubMedCrossRefGoogle Scholar
  190. Kalir S, McClure J et al (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292(5524):2080–2083PubMedCrossRefGoogle Scholar
  191. Kallenius G, Mollby R et al (1980) Identification of a carbohydrate receptor recognized by uropathogenic Escherichia coli. Infection 8(Suppl 3):288–293PubMedCrossRefGoogle Scholar
  192. Kallenius G, Mollby R et al (1981a) Occurrence of P-fimbriated Escherichia coli in urinary tract infections. Lancet 2(8260–61):1369–1372PubMedCrossRefGoogle Scholar
  193. Kallenius G, Svenson S et al (1981b) Structure of carbohydrate part of receptor on human uroepithelial cells for pyelonephritogenic Escherichia coli. Lancet 2(8247):604–606PubMedCrossRefGoogle Scholar
  194. Kammler M, Schon C et al (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175(19):6212–6219PubMedGoogle Scholar
  195. Kanamaru S, Kurazono H et al (2003) Distribution and genetic association of putative uropathogenic virulence factors iroN, iha, kpsMT, ompT and usp in Escherichia coli isolated from urinary tract infections in Japan. J Urol 170(6 Pt 1):2490–2493PubMedCrossRefGoogle Scholar
  196. Kao JS, Stucker DM et al (1997) Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains. Infect Immun 65(7):2812–2820PubMedGoogle Scholar
  197. Kaye D (1968) Antibacterial activity of human urine. J Clin Invest 47(10):2374–2390PubMedCrossRefGoogle Scholar
  198. King NP, Beatson SA et al (2011) UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology 157(Pt 4):1161–1175PubMedCrossRefGoogle Scholar
  199. Kisielius PV, Schwan WR et al (1989) In vivo expression and variation of Escherichia coli type 1 and P pili in the urine of adults with acute urinary tract infections. Infect Immun 57(6):1656–1662PubMedGoogle Scholar
  200. Klemm P (1985) Fimbrial adhesions of Escherichia coli. Rev Infect Dis 7(3):321–340PubMedCrossRefGoogle Scholar
  201. Klemm P (1986) Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5(6):1389–1393PubMedGoogle Scholar
  202. Kline KA, Dodson KW et al (2010a) A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol 18(5):224–232PubMedCrossRefGoogle Scholar
  203. Kline KA, Ingersoll MA et al (2010b) Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect Immun 78(5):1943–1951PubMedCrossRefGoogle Scholar
  204. Knapp S, Hacker J et al (1986) Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J Bacteriol 168(1):22–30PubMedGoogle Scholar
  205. Komeda Y (1982) Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol 150(1):16–26PubMedGoogle Scholar
  206. Komeda Y (1986) Transcriptional control of flagellar genes in Escherichia coli K-12. J Bacteriol 168(3):1315–1318PubMedGoogle Scholar
  207. Kondoh H, Ball CB et al (1979) Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc Natl Acad Sci USA 76(1):260–264PubMedCrossRefGoogle Scholar
  208. Korhonen TK, Vaisanen V et al (1982) P-antigen-recognizing fimbriae from human uropathogenic Escherichia coli strains. Infect Immun 37(1):286–291PubMedGoogle Scholar
  209. Korhonen TK, Virkola R et al (1986) Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect Immun 54(2):328–332PubMedGoogle Scholar
  210. Korhonen TK, Virkola R et al (1990) Tissue tropism of Escherichia coli adhesins in human extraintestinal infections. Curr Top Microbiol Immunol 151:115–127PubMedCrossRefGoogle Scholar
  211. Koronakis V, Cross M et al (1989a) Transcription antitermination in an Escherichia coli haemolysin operon is directed progressively by cis-acting DNA sequences upstream of the promoter region. Mol Microbiol 3(10):1397–1404PubMedCrossRefGoogle Scholar
  212. Koronakis V, Koronakis E et al (1989b) Isolation and analysis of the C-terminal signal directing export of Escherichia coli hemolysin protein across both bacterial membranes. EMBO J 8(2):595–605PubMedGoogle Scholar
  213. Koronakis V, Stanley P et al (1992) The HlyB/HlyD-dependent secretion of toxins by gram-negative bacteria. FEMS Microbiol Immunol 5(1–3):45–53PubMedCrossRefGoogle Scholar
  214. Koronakis V, Hughes C et al (1993) ATPase activity and ATP/ADP-induced conformational change in the soluble domain of the bacterial protein translocator HlyB. Mol Microbiol 8(6):1163–1175PubMedCrossRefGoogle Scholar
  215. Kostakioti M, Stathopoulos C (2004) Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain. Infect Immun 72(10):5548–5554PubMedCrossRefGoogle Scholar
  216. Kouokam JC, Wai SN et al (2006) Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect Immun 74(4):2022–2030PubMedCrossRefGoogle Scholar
  217. Krogfelt KA, Bergmans H et al (1990) Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect Immun 58(6):1995–1998PubMedGoogle Scholar
  218. Kuehn MJ, Normark S et al (1991) Immunoglobulin-like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits. Proc Natl Acad Sci USA 88(23):10586–10590PubMedCrossRefGoogle Scholar
  219. Kuehn MJ, Heuser J et al (1992) P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356(6366):252–255PubMedCrossRefGoogle Scholar
  220. Kunin CM (1997) Urinary tract infections: detection, prevention, and management. Williams & Wilkins, BaltimoreGoogle Scholar
  221. Kurazono H, Nakano M et al (2003) Distribution of the usp gene in uropathogenic Escherichia coli isolated from companion animals and correlation with serotypes and size-variations of the pathogenicity island. Microbiol Immunol 47(10):797–802PubMedGoogle Scholar
  222. Kuroda M, Yamashita A et al (2005) Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci USA 102(37):13272–13277PubMedCrossRefGoogle Scholar
  223. Kutsukake K, Iino T (1994) Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J Bacteriol 176(12):3598–3605PubMedGoogle Scholar
  224. Kutsukake K, Ohya Y et al (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172(2):741–747PubMedGoogle Scholar
  225. Lai YC, Peng HL et al (2003) RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185(3):788–800PubMedCrossRefGoogle Scholar
  226. Landraud L, Gauthier M et al (2000) Frequency of Escherichia coli strains producing the cytotoxic necrotizing factor (CNF1) in nosocomial urinary tract infections. Lett Appl Microbiol 30(3):213–216PubMedCrossRefGoogle Scholar
  227. Lane MC, Lockatell V et al (2005) Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73(11):7644–7656PubMedCrossRefGoogle Scholar
  228. Lane MC, Lloyd AL et al (2006) Uropathogenic Escherichia coli strains generally lack functional Trg and Tap chemoreceptors found in the majority of E. coli strains strictly residing in the gut. J Bacteriol 188(15):5618–5625PubMedCrossRefGoogle Scholar
  229. Lane MC, Alteri CJ et al (2007) Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci USA 104(42):16669–16674PubMedCrossRefGoogle Scholar
  230. Langermann S, Palaszynski S et al (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276(5312):607–611PubMedCrossRefGoogle Scholar
  231. Langermann S, Mollby R et al (2000) Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181(2):774–778PubMedCrossRefGoogle Scholar
  232. Langstraat J, Bohse M et al (2001) Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 69(9):5805–5812PubMedCrossRefGoogle Scholar
  233. Larsson A, Ohlsson J et al (2003) Quantitative studies of the binding of the class II PapG adhesin from uropathogenic Escherichia coli to oligosaccharides. Bioorg Med Chem 11(10):2255–2261PubMedCrossRefGoogle Scholar
  234. Latham RH, Stamm WE (1984) Role of fimbriated Escherichia coli in urinary tract infections in adult women: correlation with localization studies. J Infect Dis 149(6):835–840PubMedCrossRefGoogle Scholar
  235. Lee KK, Harrison BA et al (2000) The binding of Proteus mirabilis nonagglutinating fimbriae to ganglio-series asialoglycolipids and lactosyl ceramide. Can J Microbiol 46(10):961–966PubMedGoogle Scholar
  236. Lerm M, Selzer J et al (1999) Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect Immun 67(2):496–503PubMedGoogle Scholar
  237. Li X, Rasko DA et al (2001) Repression of bacterial motility by a novel fimbrial gene product. EMBO J 20(17):4854–4862PubMedCrossRefGoogle Scholar
  238. Li X, Lockatell CV et al (2002a) Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol 45(3):865–874PubMedCrossRefGoogle Scholar
  239. Li X, Zhao H et al (2002b) Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun 70(1):389–394PubMedCrossRefGoogle Scholar
  240. Li X, Erbe JL et al (2004) Use of translational fusion of the MrpH fimbrial adhesin-binding domain with the cholera toxin A2 domain, coexpressed with the cholera toxin B subunit, as an intranasal vaccine to prevent experimental urinary tract infection by Proteus mirabilis. Infect Immun 72(12):7306–7310PubMedCrossRefGoogle Scholar
  241. Lievin-Le Moal V, Comenge Y et al (2011) Secreted autotransporter toxin (Sat) triggers autophagy in epithelial cells that relies on cell detachment. Cell Microbiol 13(7):992–1013PubMedCrossRefGoogle Scholar
  242. Lim JK, Gunther NW IV et al (1998) In vivo phase variation of Escherichia coli type 1 fimbrial genes in women with urinary tract infection. Infect Immun 66(7):3303–3310PubMedGoogle Scholar
  243. Lima A, Zunino P et al (2007) An iron-regulated outer-membrane protein of Proteus mirabilis is a haem receptor that plays an important role in urinary tract infection and in in vivo growth. J Med Microbiol 56(Pt 12):1600–1607PubMedCrossRefGoogle Scholar
  244. Lin JC, Siu LK et al (2006) Impaired phagocytosis of capsular serotypes K1 or K2 Klebsiella pneumoniae in type 2 diabetes mellitus patients with poor glycemic control. J Clin Endocrinol Metab 91(8):3084–3087PubMedCrossRefGoogle Scholar
  245. Lin WH, Wang MC et al (2010) Clinical and microbiological characteristics of Klebsiella pneumoniae isolates causing community-acquired urinary tract infections. Infection 38(6):459–464PubMedCrossRefGoogle Scholar
  246. Lin CT, Wu CC et al (2011) Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. Microbiology 157(Pt 2):419–429PubMedCrossRefGoogle Scholar
  247. Lindberg S, Xia Y et al (2008) Regulatory Interactions among adhesin gene systems of uropathogenic Escherichia coli. Infect Immun 76(2):771–780PubMedCrossRefGoogle Scholar
  248. Linhartova I, Bumba L et al (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34(6):1076–1112PubMedGoogle Scholar
  249. Llobet E, Tomas JM et al (2008) Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154(Pt 12):3877–3886PubMedCrossRefGoogle Scholar
  250. Lloyd AL, Rasko DA et al (2007) Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189(9):3532–3546PubMedCrossRefGoogle Scholar
  251. Lloyd AL, Henderson TA et al (2009) Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 191(11):3469–3481PubMedCrossRefGoogle Scholar
  252. Lomberg H, Hanson LA et al (1983) Correlation of P blood group, vesicoureteral reflux, and bacterial attachment in patients with recurrent pyelonephritis. N Engl J Med 308(20):1189–1192PubMedCrossRefGoogle Scholar
  253. Ludwig A, Jarchau T et al (1988) The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+−dependent binding to erythrocytes. Mol Gen Genet 214(3):553–561PubMedCrossRefGoogle Scholar
  254. Ludwig A, Garcia F et al (1996) Analysis of the in vivo activation of hemolysin (HlyA) from Escherichia coli. J Bacteriol 178(18):5422–5430PubMedGoogle Scholar
  255. Lugering A, Benz I et al (2003) The Pix pilus adhesin of the uropathogenic Escherichia coli strain X2194 (O2: K(−): H6) is related to Pap pili but exhibits a truncated regulatory region. Microbiology 149(Pt 6):1387–1397PubMedCrossRefGoogle Scholar
  256. Lund B, Lindberg F et al (1987) The PapG protein is the alpha-d-galactopyranosyl-(1–4)-beta-d-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 84(16):5898–5902PubMedCrossRefGoogle Scholar
  257. Lund B, Marklund BI et al (1988) Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. Mol Microbiol 2(2):255–263PubMedCrossRefGoogle Scholar
  258. Maayan MC, Ofek I et al (1985) Population shift in mannose-specific fimbriated phase of Klebsiella pneumoniae during experimental urinary tract infection in mice. Infect Immun 49(3):785–789PubMedGoogle Scholar
  259. Mackman N, Nicaud JM et al (1985) Genetical and functional organisation of the Escherichia coli haemolysin determinant 2001. Mol Gen Genet 201(2):282–288PubMedCrossRefGoogle Scholar
  260. Mackman N, Baker K et al (1987) Release of a chimeric protein into the medium from Escherichia coli using the C-terminal secretion signal of haemolysin. EMBO J 6(9):2835–2841PubMedGoogle Scholar
  261. Macnab RM (1996) Flagella and motility. In: Neidhardt FC, Curtiss R III, Ingraham JL et al (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 123–145Google Scholar
  262. Malaviya R, Ikeda T et al (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381(6577):77–80PubMedCrossRefGoogle Scholar
  263. Manson MD, Blank V et al (1986) Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 321(6067):253–256PubMedCrossRefGoogle Scholar
  264. Martinez JJ, Mulvey MA et al (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19(12):2803–2812PubMedCrossRefGoogle Scholar
  265. Massad G, Lockatell CV et al (1994) Proteus mirabilis fimbriae: construction of an isogenic pmfA mutant and analysis of virulence in a CBA mouse model of ascending urinary tract infection. Infect Immun 62(2):536–542PubMedGoogle Scholar
  266. Massad G, Zhao H et al (1995) Proteus mirabilis amino acid deaminase: cloning, nucleotide sequence, and characterization of aad. J Bacteriol 177(20):5878–5883PubMedGoogle Scholar
  267. Mazmanian SK, Liu G et al (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285(5428):760–763PubMedCrossRefGoogle Scholar
  268. McCartney AC, Clark J et al (1985) Bacteriological study of renal calculi. Eur J Clin Microbiol 4(6):553–555PubMedCrossRefGoogle Scholar
  269. Melican K, Sandoval RM et al (2011) Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog 7(2):e1001298PubMedCrossRefGoogle Scholar
  270. Middendorf B, Hochhut B et al (2004) Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 186(10):3086–3096PubMedCrossRefGoogle Scholar
  271. Milliner DS, Murphy ME (1993) Urolithiasis in pediatric patients. Mayo Clin Proc 68(3):241–248PubMedCrossRefGoogle Scholar
  272. Mills M, Meysick KC et al (2000) Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect Immun 68(10):5869–5880PubMedCrossRefGoogle Scholar
  273. Min G, Stolz M et al (2002) Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J Mol Biol 317(5):697–706PubMedCrossRefGoogle Scholar
  274. Min G, Zhou G et al (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116(Pt 20):4087–4094PubMedCrossRefGoogle Scholar
  275. Mobley HLT (2001) Urease. In: Mobley HLT, Mendz GL, Hazell SL (eds) Helicobacter pylori: physiology and genetics. ASM Press, Washington, DC, pp 179–191Google Scholar
  276. Mobley HL, Chippendale GR (1990) Hemagglutinin, urease, and hemolysin production by Proteus mirabilis from clinical sources. J Infect Dis 161(3):525–530PubMedCrossRefGoogle Scholar
  277. Mobley HL, Green DM et al (1990) Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58(5):1281–1289PubMedGoogle Scholar
  278. Mobley HL, Chippendale GR et al (1991) Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun 59(6):2036–2042PubMedGoogle Scholar
  279. Mobley HL, Jarvis KG et al (1993) Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: the role of alpha Gal(1–4) beta Gal binding in virulence of a wild-type strain. Mol Microbiol 10(1):143–155PubMedCrossRefGoogle Scholar
  280. Mobley HL, Belas R et al (1996) Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64(12):5332–5340PubMedGoogle Scholar
  281. Moeck GS, Coulton JW (1998) TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol Microbiol 28(4):675–681PubMedCrossRefGoogle Scholar
  282. Moore KL, Dalley AF et al (2010) Clinically oriented anatomy. Wolters Kluwer/Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  283. Mulholland SG, Mooreville M et al (1984) Urinary tract infections and P blood group antigens. Urology 24(3):232–235PubMedCrossRefGoogle Scholar
  284. Mulvey MA, Lopez-Boado YS et al (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282(5393):1494–1497PubMedCrossRefGoogle Scholar
  285. Musher DM, Griffith DP et al (1975) Role of urease in pyelonephritis resulting from urinary tract infection with Proteus. J Infect Dis 131(2):177–181PubMedCrossRefGoogle Scholar
  286. Nagano N, Cordevant C et al (2008) Upper and lower urinary tract infection caused by Klebsiella pneumoniae serotype K2 and CTX-M-15 beta-lactamase-producing serotype K1: a case report and characterization of serum killing resistance. J Med Microbiol 57(Pt 1):121–124PubMedCrossRefGoogle Scholar
  287. Nakano M, Yamamoto S et al (2001) Structural and sequence diversity of the pathogenicity island of uropathogenic Escherichia coli which encodes the USP protein. FEMS Microbiol Lett 205(1):71–76PubMedCrossRefGoogle Scholar
  288. Nassif X, Fournier JM et al (1989a) Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun 57(2):546–552PubMedGoogle Scholar
  289. Nassif X, Honore N et al (1989b) Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol Microbiol 3(10):1349–1359PubMedCrossRefGoogle Scholar
  290. Navarro-Garcia F, Gutierrez-Jimenez J et al (2010) Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect Immun 78(10):4101–4109PubMedCrossRefGoogle Scholar
  291. Newman CL, Stathopoulos C (2004) Autotransporter and two-partner secretion: delivery of large-size virulence factors by gram-negative bacterial pathogens. Crit Rev Microbiol 30(4):275–286PubMedCrossRefGoogle Scholar
  292. Nicholson TF, Watts KM et al (2009) OmpA of uropathogenic Escherichia coli promotes postinvasion pathogenesis of cystitis. Infect Immun 77(12):5245–5251PubMedCrossRefGoogle Scholar
  293. Nielubowicz GR, Mobley HL (2010) Host-pathogen interactions in urinary tract infection. Nat Rev Urol 7(8):430–441PubMedCrossRefGoogle Scholar
  294. Nielubowicz GR, Smith SN et al (2010) Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect Immun 78(6):2823–2833PubMedCrossRefGoogle Scholar
  295. Nilsson IM, Lee JC et al (1997) The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect Immun 65(10):4216–4221PubMedGoogle Scholar
  296. Nilsson LM, Yakovenko O et al (2007) The cysteine bond in the Escherichia coli FimH adhesin is critical for adhesion under flow conditions. Mol Microbiol 65(5):1158–1169PubMedCrossRefGoogle Scholar
  297. Norgren M, Normark S et al (1984) Mutations in E coli cistrons affecting adhesion to human cells do not abolish Pap pili fiber formation. EMBO J 3(5):1159–1165PubMedGoogle Scholar
  298. Norinder BS, Koves B et al (2012) Do Escherichia coli strains causing acute cystitis have a distinct virulence repertoire? Microb Pathog 52(1):10–16PubMedCrossRefGoogle Scholar
  299. Normark S, Lark D et al (1983) Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain. Infect Immun 41(3):942–949PubMedGoogle Scholar
  300. Nowicki B, Labigne A et al (1990) The Dr hemagglutinin, afimbrial adhesins AFA-I and AFA-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Escherichia coli belong to a family of hemagglutinins with Dr receptor recognition. Infect Immun 58(1):279–281PubMedGoogle Scholar
  301. O’Hanley P, Low D et al (1985) Gal-Gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N Engl J Med 313(7):414–420PubMedCrossRefGoogle Scholar
  302. Oelschlaeger TA, Dobrindt U et al (2002) Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int J Antimicrob Agents 19(6):517–521PubMedCrossRefGoogle Scholar
  303. Ohlsson J, Jass J et al (2002) Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives. Chembiochem 3(8):772–779PubMedCrossRefGoogle Scholar
  304. Ohnishi K, Kutsukake K et al (1990) Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol Gen Genet 221(2):139–147PubMedCrossRefGoogle Scholar
  305. Old DC, Adegbola RA (1982) Haemagglutinins and fimbriae of Morganella, Proteus and Providencia. J Med Microbiol 15(4):551–564PubMedCrossRefGoogle Scholar
  306. Orndorff PE, Bloch CA (1990) The role of type 1 pili in the pathogenesis of Escherichia coli infections: a short review and some new ideas. Microb Pathog 9(2):75–79PubMedCrossRefGoogle Scholar
  307. Oswald E, Sugai M et al (1994) Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci USA 91(9):3814–3818PubMedCrossRefGoogle Scholar
  308. Pan YJ, Fang HC et al (2008) Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol 46(7):2231–2240PubMedCrossRefGoogle Scholar
  309. Parham NJ, Srinivasan U et al (2004) PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiol Lett 230(1):73–83PubMedCrossRefGoogle Scholar
  310. Parham NJ, Pollard SJ et al (2005) Prevalence of pathogenicity island IICFT073 genes among extraintestinal clinical isolates of Escherichia coli. J Clin Microbiol 43(5):2425–2434PubMedCrossRefGoogle Scholar
  311. Park S, Kelley KA et al (2010) Characterization of the structure and biological functions of a capsular polysaccharide produced by Staphylococcus saprophyticus. J Bacteriol 192(18):4618–4626PubMedCrossRefGoogle Scholar
  312. Parreira VR, Gyles CL (2003) A novel pathogenicity island integrated adjacent to the thrW tRNA gene of avian pathogenic Escherichia coli encodes a vacuolating autotransporter toxin. Infect Immun 71(9):5087–5096PubMedCrossRefGoogle Scholar
  313. Parret AH, De Mot R (2002) Escherichia coli’s uropathogenic-specific protein: a bacteriocin promoting infectivity? Microbiology 148(Pt 6):1604–1606PubMedGoogle Scholar
  314. Patzer SI, Baquero MR et al (2003) The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149(Pt 9):2557–2570PubMedCrossRefGoogle Scholar
  315. Pearson MM, Mobley HL (2008) Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol Microbiol 69(2):548–558PubMedCrossRefGoogle Scholar
  316. Pearson MM, Sebaihia M et al (2008) Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol 190(11):4027–4037PubMedCrossRefGoogle Scholar
  317. Pearson MM, Yep A et al (2011) Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 79(7):2619–2631PubMedCrossRefGoogle Scholar
  318. Pere A, Leinonen M et al (1985) Occurrence of type-1 C fimbriae on Escherichia coli strains isolated from human extraintestinal infections. J Gen Microbiol 131(7):1705–1711PubMedGoogle Scholar
  319. Pere A, Nowicki B et al (1987) Expression of P, type-1, and type-1 C fimbriae of Escherichia coli in the urine of patients with acute urinary tract infection. J Infect Dis 156(4):567–574PubMedCrossRefGoogle Scholar
  320. Peterson SN, Reich NO (2008) Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J Mol Biol 383(1):92–105PubMedCrossRefGoogle Scholar
  321. Pigrau-Serrallach C (2005) Recurrent urinary tract infections. Enferm Infecc Microbiol Clin 23(Suppl 4):28–39PubMedCrossRefGoogle Scholar
  322. Pimenta AL, Racher K et al (2005) Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin. J Bacteriol 187(21):7471–7480PubMedCrossRefGoogle Scholar
  323. Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603PubMedGoogle Scholar
  324. Podschun R, Penner I et al (1992) Interaction of Klebsiella capsule type 7 with human polymorphonuclear leucocytes. Microb Pathog 13(5):371–379PubMedCrossRefGoogle Scholar
  325. Podschun R, Sievers D et al (1993) Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J Infect Dis 168(6):1415–1421PubMedCrossRefGoogle Scholar
  326. Poutrel B, Rainard P et al (1997) Heterogeneity of cell-associated CP5 expression on Staphylococcus aureus strains demonstrated by flow cytometry. Clin Diagn Lab Immunol 4(3):275–278PubMedGoogle Scholar
  327. Provence DL, Curtiss R 3rd (1994) Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun 62(4):1369–1380PubMedGoogle Scholar
  328. Putnam DF, McDonnell Douglas Astronautics Company-West Division et al (1971) Composition and concentrative properties of human urine. National Aeronautics and Space Administration, Huntington BeachGoogle Scholar
  329. Rasko DA, Phillips JA et al (2001) Identification of DNA sequences from a second pathogenicity island of uropathogenic Escherichia coli CFT073: probes specific for uropathogenic populations. J Infect Dis 184(8):1041–1049PubMedCrossRefGoogle Scholar
  330. Rather PN (2005) Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7(8):1065–1073PubMedCrossRefGoogle Scholar
  331. Raz R, Colodner R et al (2005) Who are you—Staphylococcus saprophyticus? Clin Infect Dis 40(6):896–898PubMedCrossRefGoogle Scholar
  332. Redford P, Welch RA (2006) Role of sigma E-regulated genes in Escherichia coli uropathogenesis. Infect Immun 74(7):4030–4038PubMedCrossRefGoogle Scholar
  333. Redford P, Roesch PL et al (2003) DegS is necessary for virulence and is among extraintestinal Escherichia coli genes induced in murine peritonitis. Infect Immun 71(6):3088–3096PubMedCrossRefGoogle Scholar
  334. Reiss DJ, Mobley HL (2011) Determination of target sequence bound by PapX, repressor of bacterial motility, in flhD promoter using systematic evolution of ligands by exponential enrichment (SELEX) and high throughput sequencing. J Biol Chem 286(52):44726–44738PubMedCrossRefGoogle Scholar
  335. Rippere-Lampe KE, O’Brien AD et al (2001) Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf(1)) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 69(6):3954–3964PubMedCrossRefGoogle Scholar
  336. Roberts JA, Kaack B et al (1984) Receptors for pyelonephritogenic Escherichia coli in primates. J Urol 131(1):163–168PubMedGoogle Scholar
  337. Roberts JA, Marklund BI et al (1994) The Gal(alpha 1–4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91(25):11889–11893PubMedCrossRefGoogle Scholar
  338. Rocha SP, Pelayo JS et al (2007) Fimbriae of uropathogenic Proteus mirabilis. FEMS Immunol Med Microbiol 51(1):1–7PubMedCrossRefGoogle Scholar
  339. Roesch PL, Redford P et al (2003) Uropathogenic Escherichia coli use d-serine deaminase to modulate infection of the murine urinary tract. Mol Microbiol 49(1):55–67PubMedCrossRefGoogle Scholar
  340. Ronald A (2003) The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon 49(2):71–82PubMedCrossRefGoogle Scholar
  341. Rosen DA, Pinkner JS et al (2008a) Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect Immun 76(7):3337–3345PubMedCrossRefGoogle Scholar
  342. Rosen DA, Pinkner JS et al (2008b) Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect Immun 76(7):3346–3356PubMedCrossRefGoogle Scholar
  343. Russo TA, Sharma G et al (1995) The construction and characterization of colanic acid deficient mutants in an extraintestinal isolate of Escherichia coli (O4/K54/H5). Microb Pathog 18(4):269–278PubMedCrossRefGoogle Scholar
  344. Russo T, Brown JJ et al (1996a) The O4 specific antigen moiety of lipopolysaccharide but not the K54 group 2 capsule is important for urovirulence of an extraintestinal isolate of Escherichia coli. Infect Immun 64(6):2343–2348PubMedGoogle Scholar
  345. Russo TA, Jodush ST et al (1996b) Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol 22(2):217–229PubMedCrossRefGoogle Scholar
  346. Russo TA, Carlino UB et al (2001) Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 69(10):6209–6216PubMedCrossRefGoogle Scholar
  347. Russo TA, McFadden CD et al (2002) IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 70(12):7156–7160PubMedCrossRefGoogle Scholar
  348. Sabri M, Houle S et al (2009) Roles of the extraintestinal pathogenic Escherichia coli ZnuACB and ZupT zinc transporters during urinary tract infection. Infect Immun 77(3):1155–1164PubMedCrossRefGoogle Scholar
  349. Sahly H, Podschun R et al (2000) Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect Immun 68(12):6744–6749PubMedCrossRefGoogle Scholar
  350. Sakinc T, Woznowski M et al (2005) The surface-associated protein of Staphylococcus saprophyticus is a lipase. Infect Immun 73(10):6419–6428PubMedCrossRefGoogle Scholar
  351. Sakinc T, Kleine B et al (2006) SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein. Infect Immun 74(8):4615–4623PubMedCrossRefGoogle Scholar
  352. Sakinc T, Kleine B et al (2009) SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol Lett 301(1):28–34PubMedCrossRefGoogle Scholar
  353. Sandberg T, Kaijser B et al (1988) Virulence of Escherichia coli in relation to host factors in women with symptomatic urinary tract infection. J Clin Microbiol 26(8):1471–1476PubMedGoogle Scholar
  354. Satchell KJ (2011) Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol 65:71–90PubMedCrossRefGoogle Scholar
  355. Scavone P, Rial A et al (2009) Effects of the administration of cholera toxin as a mucosal adjuvant on the immune and protective response induced by Proteus mirabilis MrpA fimbrial protein in the urinary tract. Microbiol Immunol 53(4):233–240PubMedCrossRefGoogle Scholar
  356. Scavone P, Umpierrez A et al (2011) Nasal immunization with attenuated Salmonella typhimurium expressing an MrpA-TetC fusion protein significantly reduces Proteus mirabilis colonization in the mouse urinary tract. J Med Microbiol 60(Pt 7):899–904PubMedCrossRefGoogle Scholar
  357. Schembri MA, Blom J et al (2005) Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 73(8):4626–4633PubMedCrossRefGoogle Scholar
  358. Schilling JD, Mulvey MA et al (2001a) Structure and function of Escherichia coli type 1 pili: new insight into the pathogenesis of urinary tract infections. J Infect Dis 183(Suppl 1):S36–S40PubMedCrossRefGoogle Scholar
  359. Schilling JD, Mulvey MA et al (2001b) Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol 166(2):1148–1155PubMedGoogle Scholar
  360. Schilling JD, Lorenz RG et al (2002) Effect of trimethoprim-sulfamethoxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli. Infect Immun 70(12):7042–7049PubMedCrossRefGoogle Scholar
  361. Schmidt G, Sehr P et al (1997) Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387(6634):725–729PubMedCrossRefGoogle Scholar
  362. Schneider G, Dobrindt U et al (2004) The pathogenicity island-associated K15 capsule determinant exhibits a novel genetic structure and correlates with virulence in uropathogenic Escherichia coli strain 536. Infect Immun 72(10):5993–6001PubMedCrossRefGoogle Scholar
  363. Schwan WR (2009) Survival of uropathogenic Escherichia coli in the murine urinary tract is dependent on OmpR. Microbiology 155(Pt 6):1832–1839PubMedCrossRefGoogle Scholar
  364. Schwan WR, Beck MT et al (2005) Down-regulation of the kps region 1 capsular assembly operon following attachment of Escherichia coli type 1 fimbriae to d-mannose receptors. Infect Immun 73(2):1226–1231PubMedCrossRefGoogle Scholar
  365. Sharma S, Waterfield N et al (2002) The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol Lett 214(2):241–249PubMedCrossRefGoogle Scholar
  366. Shaw C, Stitt JM et al (1951) Staphylococci and their classification. J Gen Microbiol 5(5 Suppl):1010–1023PubMedGoogle Scholar
  367. Shin JS, Gao Z et al (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289(5480):785–788PubMedCrossRefGoogle Scholar
  368. Silverman M, Simon M (1977) Chemotaxis in Escherichia coli: methylation of che gene products. Proc Natl Acad Sci USA 74(8):3317–3321PubMedCrossRefGoogle Scholar
  369. Simms AN, Mobley HL (2008) PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. Infect Immun 76(11):4833–4841PubMedCrossRefGoogle Scholar
  370. Simoons-Smit AM, Verweij-van Vught AM et al (1986) The role of K antigens as virulence factors in Klebsiella. J Med Microbiol 21(2):133–137PubMedCrossRefGoogle Scholar
  371. Smith TG, Hoover TR (2009) Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol 67:257–295PubMedCrossRefGoogle Scholar
  372. Smith YC, Rasmussen SB et al (2008) Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect Immun 76(7):2978–2990PubMedCrossRefGoogle Scholar
  373. Smith SN, Hagan EC et al (2010) Dissemination and systemic colonization of uropathogenic Escherichia coli in a murine model of bacteremia. MBio 1(5)Google Scholar
  374. Snyder JA, Haugen BJ et al (2004) Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72(11):6373–6381PubMedCrossRefGoogle Scholar
  375. Snyder JA, Haugen BJ et al (2005) Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73(11):7588–7596PubMedCrossRefGoogle Scholar
  376. Snyder JA, Lloyd AL et al (2006) Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun 74(2):1387–1393PubMedCrossRefGoogle Scholar
  377. Sokurenko EV, Chesnokova V et al (1998) Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci USA 95(15):8922–8926PubMedCrossRefGoogle Scholar
  378. Soutourina OA, Bertin PN (2003) Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27(4):505–523PubMedCrossRefGoogle Scholar
  379. Spurbeck RR, Stapleton AE et al (2011) Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of Ygi and Yad fimbriae. Infect Immun 79(12):4753–4763PubMedCrossRefGoogle Scholar
  380. Stahlhut SG, Chattopadhyay S et al (2009) Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 191(6):1941–1950PubMedCrossRefGoogle Scholar
  381. Stamm WE (1983) Measurement of pyuria and its relation to bacteriuria. Am J Med 75(1B):53–58PubMedCrossRefGoogle Scholar
  382. Stanley P, Packman LC et al (1994) Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science 266(5193):1992–1996PubMedCrossRefGoogle Scholar
  383. Stanley P, Koronakis V et al (1998) Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 62(2):309–333PubMedGoogle Scholar
  384. Stathopoulos C, Provence DL et al (1999) Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun 67(2):772–781PubMedGoogle Scholar
  385. Stromberg N, Nyholm PG et al (1991) Saccharide orientation at the cell surface affects glycolipid receptor function. Proc Natl Acad Sci USA 88(20):9340–9344PubMedCrossRefGoogle Scholar
  386. Struve C, Krogfelt KA (1999) In vivo detection of Escherichia coli type 1 fimbrial expression and phase variation during experimental urinary tract infection. Microbiology 145(Pt 10):2683–2690PubMedGoogle Scholar
  387. Struve C, Bojer M et al (2008) Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 76(9):4055–4065PubMedCrossRefGoogle Scholar
  388. Struve C, Bojer M et al (2009) Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 77(11):5016–5024PubMedCrossRefGoogle Scholar
  389. Surin BP, Rosenberg H et al (1985) Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J Bacteriol 161(1):189–198PubMedGoogle Scholar
  390. Swanson TN, Bilge SS et al (1991) Molecular structure of the Dr adhesin: nucleotide sequence and mapping of receptor-binding domain by use of fusion constructs. Infect Immun 59(1):261–268PubMedGoogle Scholar
  391. Swenson DL, Bukanov NO et al (1996) Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing. Infect Immun 64(9):3736–3743PubMedGoogle Scholar
  392. Swihart KG, Welch RA (1990a) Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun 58(6):1861–1869PubMedGoogle Scholar
  393. Swihart KG, Welch RA (1990b) The HpmA hemolysin is more common than HlyA among Proteus isolates. Infect Immun 58(6):1853–1860PubMedGoogle Scholar
  394. Tarkkanen AM, Allen BL et al (1990) Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol Microbiol 4(8):1353–1361PubMedCrossRefGoogle Scholar
  395. Tarkkanen AM, Virkola R et al (1997) Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 65(4):1546–1549PubMedGoogle Scholar
  396. Thakker M, Park JS et al (1998) Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun 66(11):5183–5189PubMedGoogle Scholar
  397. Thanabalu T, Koronakis E et al (1998) Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17(22):6487–6496PubMedCrossRefGoogle Scholar
  398. Thomas WE, Nilsson LM et al (2004) Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Mol Microbiol 53(5):1545–1557PubMedCrossRefGoogle Scholar
  399. Tomas JM, Benedi VJ et al (1986) Role of capsule and O antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect Immun 54(1):85–89PubMedGoogle Scholar
  400. Torres AG, Redford P et al (2001) TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69(10):6179–6185PubMedCrossRefGoogle Scholar
  401. Uhlin BE, Norgren M et al (1985) Adhesion to human cells by Escherichia coli lacking the major subunit of a digalactoside-specific pilus-adhesin. Proc Natl Acad Sci USA 82(6):1800–1804PubMedCrossRefGoogle Scholar
  402. Ulleryd P, Lincoln K et al (1994) Virulence characteristics of Escherichia coli in relation to host response in men with symptomatic urinary tract infection. Clin Infect Dis 18(4):579–584PubMedCrossRefGoogle Scholar
  403. Uphoff TS, Welch RA (1990) Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with the Serratia marcescens hemolysin genes (shlA and shlB). J Bacteriol 172(3):1206–1216PubMedGoogle Scholar
  404. Vaisanen V, Elo J et al (1981) Mannose-resistant haemagglutination and P antigen recognition are characteristic of Escherichia coli causing primary pyelonephritis. Lancet 2(8260–61):1366–1369PubMedCrossRefGoogle Scholar
  405. Vaisanen-Rhen V, Elo J et al (1984) P-fimbriated clones among uropathogenic Escherichia coli strains. Infect Immun 43(1):149–155PubMedGoogle Scholar
  406. Vigil PD, Alteri CJ et al (2011a) Identification of in vivo-induced antigens including an RTX family exoprotein required for uropathogenic Escherichia coli virulence. Infect Immun 79(6):2335–2344PubMedCrossRefGoogle Scholar
  407. Vigil PD, Stapleton AE et al (2011b) Presence of putative repeat-in-toxin gene tosA in Escherichia coli predicts successful colonization of the urinary tract. MBio 2(3):e00066–00011PubMedCrossRefGoogle Scholar
  408. Vigil PD, Wiles TJ et al (2011c) The repeat-in-toxin (RTX) family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect Immun 80(2):493–505PubMedCrossRefGoogle Scholar
  409. Visvikis O, Boyer L et al (2011) Escherichia coli producing CNF1 toxin hijacks Tollip to trigger Rac1-dependent cell invasion. Traffic 12(5):579–590PubMedCrossRefGoogle Scholar
  410. Wacharotayankun R, Arakawa Y et al (1993) Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ. Infect Immun 61(8):3164–3174PubMedGoogle Scholar
  411. Wagner W, Vogel M et al (1983) Transport of hemolysin across the outer membrane of Escherichia coli requires two functions. J Bacteriol 154(1):200–210PubMedGoogle Scholar
  412. Wallmark G, Arremark I et al (1978) Staphylococcus saprophyticus: a frequent cause of acute urinary tract infection among female outpatients. J Infect Dis 138(6):791–797PubMedCrossRefGoogle Scholar
  413. Wandersman C, Delepelaire P (1990) TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci USA 87(12):4776–4780PubMedCrossRefGoogle Scholar
  414. Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647PubMedCrossRefGoogle Scholar
  415. Warren JW, Abrutyn E et al (1999) Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis 29(4):745–758PubMedCrossRefGoogle Scholar
  416. Watts RE, Totsika M et al (2012) Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect Immun 80(1):333–344PubMedCrossRefGoogle Scholar
  417. Welch RA (1987) Identification of two different hemolysin determinants in uropathogenic Proteus isolates. Infect Immun 55(9):2183–2190PubMedGoogle Scholar
  418. Welch RA (1991) Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol 5(3):521–528PubMedCrossRefGoogle Scholar
  419. Welch RA, Pellett S (1988) Transcriptional organization of the Escherichia coli hemolysin genes. J Bacteriol 170(4):1622–1630PubMedGoogle Scholar
  420. Welch RA, Dellinger EP et al (1981) Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294(5842):665–667PubMedCrossRefGoogle Scholar
  421. Welch RA, Hull R et al (1983) Molecular cloning and physical characterization of a chromosomal hemolysin from Escherichia coli. Infect Immun 42(1):178–186PubMedGoogle Scholar
  422. Welch RA, Burland V et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99(26):17020–17024PubMedCrossRefGoogle Scholar
  423. Westerlund B, Kuusela P et al (1989) The O75X adhesin of uropathogenic Escherichia coli is a type IV collagen-binding protein. Mol Microbiol 3(3):329–337PubMedCrossRefGoogle Scholar
  424. Wiles TJ, Dhakal BK et al (2008) Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol Biol Cell 19(4):1427–1438PubMedCrossRefGoogle Scholar
  425. Wilksch JJ, Yang J et al (2011) MrkH, a novel c-di-GMP-dependent transcriptional activator, controls klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 7(8):e1002204PubMedCrossRefGoogle Scholar
  426. Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8(8):552–563PubMedCrossRefGoogle Scholar
  427. Wray SK, Hull SI et al (1986) Identification and characterization of a uroepithelial cell adhesin from a uropathogenic isolate of Proteus mirabilis. Infect Immun 54(1):43–49PubMedGoogle Scholar
  428. Wright KJ, Seed PC et al (2005) Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73(11):7657–7668PubMedCrossRefGoogle Scholar
  429. Wu XR, Sun TT et al (1996) In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA 93(18):9630–9635PubMedCrossRefGoogle Scholar
  430. Wullt B, Bergsten G et al (2001) P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell Microbiol 3(4):255–264PubMedCrossRefGoogle Scholar
  431. Xu S, Arbeit RD et al (1992) Phagocytic killing of encapsulated and microencapsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun 60(4):1358–1362PubMedGoogle Scholar
  432. Yakubu DE, Old DC et al (1989) The haemagglutinins and fimbriae of Proteus penneri. J Med Microbiol 30(4):279–284PubMedCrossRefGoogle Scholar
  433. Yamamoto S, Nakano M et al (2001) The presence of the virulence island containing the usp gene in uropathogenic Escherichia coli is associated with urinary tract infection in an experimental mouse model. J Urol 165(4):1347–1351PubMedCrossRefGoogle Scholar
  434. Yoshida K, Matsumoto T et al (2000) Role of bacterial capsule in local and systemic inflammatory responses of mice during pulmonary infection with Klebsiella pneumoniae. J Med Microbiol 49(11):1003–1010PubMedGoogle Scholar
  435. Yu H, Kim KS (2010) Ferredoxin is involved in secretion of cytotoxic necrotizing factor 1 across the cytoplasmic membrane in Escherichia coli K1. Infect Immun 78(2):838–844PubMedCrossRefGoogle Scholar
  436. Yu WL, Ko WC et al (2006) Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 42(10):1351–1358PubMedCrossRefGoogle Scholar
  437. Zalewska B, Piatek R et al (2001) Cloning, expression, and purification of the uropathogenic Escherichia coli invasin DraD. Protein Expr Purif 23(3):476–482PubMedCrossRefGoogle Scholar
  438. Zalewska B, Piatek R et al (2005) A surface-exposed DraD protein of uropathogenic Escherichia coli bearing Dr fimbriae may be expressed and secreted independently from DraC usher and DraE adhesin. Microbiology 151(Pt 7):2477–2486PubMedCrossRefGoogle Scholar
  439. Zhou G, Mo WJ et al (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114(Pt 22):4095–4103PubMedGoogle Scholar
  440. Zingler G, Ott M et al (1992) Clonal analysis of Escherichia coli serotype O6 strains from urinary tract infections. Microb Pathog 12(4):299–310PubMedCrossRefGoogle Scholar
  441. Zingler G, Blum G et al (1993) Clonal differentiation of uropathogenic Escherichia coli isolates of serotype O6:K5 by fimbrial antigen typing and DNA long-range mapping techniques. Med Microbiol Immunol 182(1):13–24PubMedCrossRefGoogle Scholar
  442. Zunino P, Piccini C et al (1994) Flagellate and non-flagellate Proteus mirabilis in the development of experimental urinary tract infection. Microb Pathog 16(5):379–385PubMedCrossRefGoogle Scholar
  443. Zunino P, Sosa V et al (2003) Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiology 149(Pt 11):3231–3237PubMedCrossRefGoogle Scholar
  444. Zunino P, Sosa V et al (2007) Mannose-resistant Proteus-like and P. mirabilis fimbriae have specific and additive roles in P. mirabilis urinary tract infections. FEMS Immunol Med Microbiol 51(1):125–133PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel J. Reiss
    • 1
  • Michael D. Engstrom
    • 1
  • Harry L. T. Mobley
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations