Skip to main content

Urinary Tract Infections

  • Reference work entry
The Prokaryotes

Abstract

Urinary tract infections (UTIs) are among the most common bacterial infections and generally occur when uropathogens, normally quiescent residents of the gastrointestinal tract, enter the urinary tract. Cystitis, caused by uropathogens that colonize the lower urinary tract, is usually self-limiting and amenable to antibiotic therapy. In spite of this, uropathogens can gain access to the upper urinary tract, causing pyelonephritis, and may enter the bloodstream from this site, causing potentially fatal urosepsis. The vast majority of UTIs are caused by uropathogenic Escherichia coli (UPEC), a heterogenous group of E. coli strains. Other organisms that cause UTIs include Proteus mirabilis, Klebsiella pneumoniae, and Staphylococcus saprophyticus. All of these organisms have a variety of virulence factors, often encoded on large, horizontally acquired pathogenicity islands, which promote growth in urine, colonization of the host urinary tract, and evasion of the host immune system. These virulence factors include a plethora of distinct fimbrial and non-fimbrial adhesins, flagella, ureases, osmolarity and pH homeostasis factors, nutrient transporters, extracellular polysaccharides, metal scavenging systems, an assortment of toxins, an array of bacteriocins, and envelope damage response systems. Uropathogens also have sophisticated genetic regulatory mechanisms to coordinate expression of these virulence factors. This is especially true between diverse fimbrial operons and between fimbrial and flagella operons. However, no one preeminent set of virulence factors exists among uropathogens, which instead use combinations of the aforementioned virulence factors to facilitate uropathogenesis. Thus, a broad understanding of these virulence factors is necessary to gain a comprehensive understanding of uropathogenesis and UTIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham SN, Beachey EH (1987) Assembly of a chemically synthesized peptide of Escherichia coli type 1 fimbriae into fimbria-like antigenic structures. J Bacteriol 169(6):2460–2465

    PubMed  CAS  Google Scholar 

  • Abraham JM, Freitag CS et al (1985) An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci USA 82(17):5724–5727

    Article  PubMed  CAS  Google Scholar 

  • Abraham SN, Goguen JD et al (1988) Hyperadhesive mutant of type 1-fimbriated Escherichia coli associated with formation of FimH organelles (fimbriosomes). Infect Immun 56(5):1023–1029

    PubMed  CAS  Google Scholar 

  • Adegbola RA, Old DC et al (1983) The adhesins and fimbriae of Proteus mirabilis strains associated with high and low affinity for the urinary tract. J Med Microbiol 16(4):427–431

    Article  PubMed  CAS  Google Scholar 

  • Alamuri P, Mobley HL (2008) A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol Microbiol 68(4):997–1017

    Article  PubMed  CAS  Google Scholar 

  • Alamuri P, Eaton KA et al (2009) Vaccination with proteus toxic agglutinin, a hemolysin-independent cytotoxin in vivo, protects against Proteus mirabilis urinary tract infection. Infect Immun 77(2):632–641

    Article  PubMed  CAS  Google Scholar 

  • Allison C, Coleman N et al (1992) Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60(11):4740–4746

    PubMed  CAS  Google Scholar 

  • Alteri CJ, Mobley HL (2007) Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75(6):2679–2688

    PubMed  CAS  Google Scholar 

  • Alteri CJ, Mobley HL (2011) Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Alteri CJ, Hagan EC et al (2009a) Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog 5(9):e1000586

    Article  PubMed  CAS  Google Scholar 

  • Alteri CJ, Smith SN et al (2009b) Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5(5):e1000448

    Article  PubMed  CAS  Google Scholar 

  • Alteri CJ, Lindner JR et al (2011) The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol 82(1):145–163

    Article  PubMed  CAS  Google Scholar 

  • Altman E, Harrison BA et al (2001) Galectin-3-mediated adherence of Proteus mirabilis to Madin-Darby canine kidney cells. Biochem Cell Biol 79(6):783–788

    PubMed  CAS  Google Scholar 

  • Anderson GG, Goller CC et al (2010) Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect Immun 78(3):963–975

    Article  PubMed  CAS  Google Scholar 

  • Anfora AT, Welch RA (2006) DsdX is the second d-serine transporter in uropathogenic Escherichia coli clinical isolate CFT073. J Bacteriol 188(18):6622–6628

    Article  PubMed  CAS  Google Scholar 

  • Anfora AT, Haugen BJ et al (2007) Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75(11):5298–5304

    Article  PubMed  CAS  Google Scholar 

  • Aoki SK, Pamma R et al (2005) Contact-dependent inhibition of growth in Escherichia coli. Science 309(5738):1245–1248

    Article  PubMed  CAS  Google Scholar 

  • Aoki SK, Webb JS et al (2009) Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli. J Bacteriol 191(6):1777–1786

    Article  PubMed  CAS  Google Scholar 

  • Autar R, Khan AS et al (2003) Adhesion inhibition of F1C-fimbriated Escherichia coli and Pseudomonas aeruginosa PAK and PAO by multivalent carbohydrate ligands. Chembiochem 4(12):1317–1325

    Article  PubMed  CAS  Google Scholar 

  • Bacheller CD, Bernstein JM (1997) Urinary tract infections. Med Clin North Am 81(3):719–730

    Article  PubMed  CAS  Google Scholar 

  • Backhed F, Alsen B et al (2002) Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J Biol Chem 277(20):18198–18205

    Article  PubMed  CAS  Google Scholar 

  • Baga M, Goransson M et al (1985) Transcriptional activation of a pap pilus virulence operon from uropathogenic Escherichia coli. EMBO J 4(13B):3887–3893

    PubMed  CAS  Google Scholar 

  • Bahrani FK, Johnson DE et al (1991) Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Infect Immun 59(10):3574–3580

    PubMed  CAS  Google Scholar 

  • Bahrani FK, Massad G et al (1994) Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun 62(8):3363–3371

    PubMed  CAS  Google Scholar 

  • Bahrani-Mougeot FK, Buckles EL et al (2002) Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 45(4):1079–1093

    Article  PubMed  CAS  Google Scholar 

  • Barisani D, Conte D (2002) Transferrin receptor 1 (TfR1) and putative stimulator of Fe transport (SFT) expression in iron deficiency and overload: an overview. Blood Cells Mol Dis 29(3):498–505

    Article  PubMed  CAS  Google Scholar 

  • Bauer RJ, Zhang L et al (2002) Molecular epidemiology of 3 putative virulence genes for Escherichia coli urinary tract infection-usp, iha, and iroN(E. coli). J Infect Dis 185(10):1521–1524

    Article  PubMed  CAS  Google Scholar 

  • Benabdelhak H, Kiontke S et al (2003) A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. J Mol Biol 327(5):1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Bent S, Nallamothu BK et al (2002) Does this woman have an acute uncomplicated urinary tract infection? J Am Med Assoc 287(20):2701–2710

    Article  Google Scholar 

  • Benz R, Dobereiner A et al (1992) Haemolysin of Escherichia coli: comparison of pore-forming properties between chromosome and plasmid-encoded haemolysins. FEMS Microbiol Immunol 5(1–3):55–62

    Article  PubMed  CAS  Google Scholar 

  • Bergsten G, Samuelsson M et al (2004) PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189(9):1734–1742

    Article  PubMed  CAS  Google Scholar 

  • Bhakdi S, Mackman N et al (1986) Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun 52(1):63–69

    PubMed  CAS  Google Scholar 

  • Bichler KH, Eipper E et al (2002) Urinary infection stones. Int J Antimicrob Agents 19(6):488–498

    Article  PubMed  CAS  Google Scholar 

  • Bidet P, Bonacorsi S et al (2005) Multiple insertional events, restricted by the genetic background, have led to acquisition of pathogenicity island IIJ96-like domains among Escherichia coli strains of different clinical origins. Infect Immun 73(7):4081–4087

    Article  PubMed  CAS  Google Scholar 

  • Bijlsma IG, van Dijk L et al (1995) Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains. Microbiology 141(Pt 6):1349–1357

    PubMed  CAS  Google Scholar 

  • Blum G, Ott M et al (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62(2):606–614

    PubMed  CAS  Google Scholar 

  • Blum G, Falbo V et al (1995) Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and alpha-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett 126(2):189–195

    PubMed  CAS  Google Scholar 

  • Boehm DF, Welch RA et al (1990) Calcium is required for binding of Escherichia coli hemolysin (HlyA) to erythrocyte membranes. Infect Immun 58(6):1951–1958

    PubMed  CAS  Google Scholar 

  • Boretti FS, Buehler PW et al (2009) Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J Clin Invest 119(8):2271–2280

    PubMed  CAS  Google Scholar 

  • Braaten BA, Nou X et al (1994) Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76(3):577–588

    Article  PubMed  CAS  Google Scholar 

  • Braude AI, Siemienski J (1960) Role of bacterial urease in experimental pyelonephritis. J Bacteriol 80:171–179

    PubMed  CAS  Google Scholar 

  • Braun V, Focareta T (1991) Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol 18(2):115–158

    Article  PubMed  CAS  Google Scholar 

  • Brinton CC Jr (1965) The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci 27(8):1003–1054

    Article  PubMed  CAS  Google Scholar 

  • Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24(3):203–206

    Article  PubMed  CAS  Google Scholar 

  • Bryan A, Roesch P et al (2006) Regulation of type 1 fimbriae by unlinked FimB- and FimE-like recombinases in uropathogenic Escherichia coli strain CFT073. Infect Immun 74(2):1072–1083

    Article  PubMed  CAS  Google Scholar 

  • Brzuszkiewicz E, Bruggemann H et al (2006) How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103(34):12879–12884

    Article  PubMed  CAS  Google Scholar 

  • Buckles EL, Wang X et al (2006) PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152(Pt 1):153–160

    Article  PubMed  CAS  Google Scholar 

  • Buckles EL, Wang X et al (2009) Role of the K2 capsule in Escherichia coli urinary tract infection and serum resistance. J Infect Dis 199(11):1689–1697

    Article  PubMed  CAS  Google Scholar 

  • Burns SM, Hull SI (1998) Comparison of loss of serum resistance by defined lipopolysaccharide mutants and an acapsular mutant of uropathogenic Escherichia coli O75:K5. Infect Immun 66(9):4244–4253

    PubMed  CAS  Google Scholar 

  • Burns SM, Hull SI (1999) Loss of resistance to ingestion and phagocytic killing by O(−) and K(−) mutants of a uropathogenic Escherichia coli O75:K5 strain. Infect Immun 67(8):3757–3762

    PubMed  CAS  Google Scholar 

  • Campos MA, Vargas MA et al (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72(12):7107–7114

    Article  PubMed  CAS  Google Scholar 

  • Camprubi S, Merino S et al (1993) The role of the O-antigen lipopolysaccharide and capsule on an experimental Klebsiella pneumoniae infection of the rat urinary tract. FEMS Microbiol Lett 111(1):9–13

    Article  PubMed  CAS  Google Scholar 

  • Caprioli A, Falbo V et al (1983) Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 39(3):1300–1306

    PubMed  CAS  Google Scholar 

  • Carbonetti NH, Boonchai S et al (1986) Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infect Immun 51(3):966–968

    PubMed  CAS  Google Scholar 

  • Castelain M, Ehlers S et al (2011) Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers. Eur Biophys J 40(3):305–316

    Article  PubMed  Google Scholar 

  • Chen YT, Chang HY et al (2004) Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189–198

    Article  PubMed  CAS  Google Scholar 

  • Cheng HY, Chen YS et al (2010) RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol 192(12):3144–3158

    Article  PubMed  CAS  Google Scholar 

  • Chilcott GS, Hughes KT (2000) Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 64(4):694–708

    Article  PubMed  CAS  Google Scholar 

  • Choudhury D, Thompson A et al (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285(5430):1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Clegg S, Wilson J et al (2011) More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway. J Bacteriol 193(9):2081–2088

    Article  PubMed  CAS  Google Scholar 

  • Collins CM, Gutman DM et al (1993) Identification of a nitrogen-regulated promoter controlling expression of Klebsiella pneumoniae urease genes. Mol Microbiol 8(1):187–198

    Article  PubMed  CAS  Google Scholar 

  • Connell I, Agace W et al (1996) Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci USA 93(18):9827–9832

    Article  PubMed  CAS  Google Scholar 

  • Cross AS, Kim KS et al (1986) Role of lipopolysaccharide and capsule in the serum resistance of bacteremic strains of Escherichia coli. J Infect Dis 154(3):497–503

    Article  PubMed  CAS  Google Scholar 

  • Culham DE, Dalgado C et al (1998) Osmoregulatory transporter ProP influences colonization of the urinary tract by Escherichia coli. Microbiology 144(Pt 1):91–102

    Article  PubMed  CAS  Google Scholar 

  • Culham DE, Lu A et al (2001) The osmotic stress response and virulence in pyelonephritis isolates of Escherichia coli: contributions of RpoS, ProP, ProU and other systems. Microbiology 147(Pt 6):1657–1670

    PubMed  CAS  Google Scholar 

  • Czaja CA, Scholes D et al (2007) Population-based epidemiologic analysis of acute pyelonephritis. Clin Infect Dis 45(3):273–280

    Article  PubMed  Google Scholar 

  • Czaja CA, Stamm WE et al (2009) Prospective cohort study of microbial and inflammatory events immediately preceding Escherichia coli recurrent urinary tract infection in women. J Infect Dis 200(4):528–536

    Article  PubMed  CAS  Google Scholar 

  • Das M, Hart-Van Tassell A et al (2005) Hydrophilic domain II of Escherichia coli Dr fimbriae facilitates cell invasion. Infect Immun 73(9):6119–6126

    Article  PubMed  CAS  Google Scholar 

  • Davis JM, Carvalho HM et al (2006) Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun 74(8):4401–4408

    Article  PubMed  CAS  Google Scholar 

  • de Ree JM, van den Bosch JF (1987) Serological response to the P fimbriae of uropathogenic Escherichia coli in pyelonephritis. Infect Immun 55(9):2204–2207

    PubMed  Google Scholar 

  • De Rycke J, Gonzalez EA et al (1990) Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol 28(4):694–699

    PubMed  Google Scholar 

  • Dhakal BK, Mulvey MA (2012) The UPEC pore-forming toxin alpha-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 11(1):58–69

    Article  PubMed  CAS  Google Scholar 

  • Dlugaszek M, Kaszczuk M et al (2011) Magnesium, calcium, and trace elements excretion in 24-h urine. Biol Trace Elem Res 142(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt U, Blum-Oehler G et al (2002) Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect Immun 70(11):6365–6372

    Article  PubMed  CAS  Google Scholar 

  • Dobrindt U, Agerer F et al (2003) Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185(6):1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Dodson KW, Jacob-Dubuisson F et al (1993) Outer-membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc Natl Acad Sci USA 90(8):3670–3674

    Article  PubMed  CAS  Google Scholar 

  • Dodson KW, Pinkner JS et al (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105(6):733–743

    Article  PubMed  CAS  Google Scholar 

  • Donnelly MA, Steiner TS (2002) Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J Biol Chem 277(43):40456–40461

    Article  PubMed  CAS  Google Scholar 

  • Donnenberg MS, Welch RA (1996) Virulence determinants of uropathogenic Escherichia coli. In: Mobley HL, Warren JW (eds) Urinary tract infections: molecular pathogenesis and clinical management. ASM Press, Washington, DC

    Google Scholar 

  • Dowling KJ, Roberts JA et al (1987) P-fimbriated Escherichia coli urinary tract infection: a clinical correlation. South Med J 80(12):1533–1536

    Article  PubMed  CAS  Google Scholar 

  • Doye A, Mettouchi A et al (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111(4):553–564

    Article  PubMed  CAS  Google Scholar 

  • Drechsel H, Thieken A et al (1993) Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol 175(9):2727–2733

    PubMed  CAS  Google Scholar 

  • Duguid JP, Gillies RR (1958) Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus and Chromobacterium. J Pathol Bacteriol 75(2):519–520

    Google Scholar 

  • Duguid JP, Clegg S et al (1979) The fimbrial and non-fimbrial haemagglutinins of Escherichia coli. J Med Microbiol 12(2):213–227

    Article  PubMed  CAS  Google Scholar 

  • Dutta PR, Cappello R et al (2002) Functional comparison of serine protease autotransporters of enterobacteriaceae. Infect Immun 70(12):7105–7113

    Article  PubMed  Google Scholar 

  • Echols RM, Tosiello RL et al (1999) Demographic, clinical, and treatment parameters influencing the outcome of acute cystitis. Clin Infect Dis 29(1):113–119

    Article  PubMed  CAS  Google Scholar 

  • Eden CS, Hansson HA (1978) Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells. Infect Immun 21(1):229–237

    PubMed  CAS  Google Scholar 

  • Eden CS, Hanson LA et al (1976) Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet 1(7984):490–492

    PubMed  CAS  Google Scholar 

  • Eguchi Y, Ishii E et al (2011) Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. J Bacteriol 193(5):1222–1228

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein BI (1981) Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. Science 214(4518):337–339

    Article  PubMed  CAS  Google Scholar 

  • El-Labany S, Sohanpal BK et al (2003) Distant cis-active sequences and sialic acid control the expression of fimB in Escherichia coli K-12. Mol Microbiol 49(4):1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Evanylo LP, Kadis S et al (1984) Siderophore production by Proteus mirabilis. Can J Microbiol 30(8):1046–1051

    Article  PubMed  CAS  Google Scholar 

  • Fader RC, Davis CP (1980) Effect of piliation on Klebsiella pneumoniae infection in rat bladders. Infect Immun 30(2):554–561

    PubMed  CAS  Google Scholar 

  • Fader RC, Avots-Avotins AE et al (1979) Evidence for pili-mediated adherence of Klebsiella pneumoniae to rat bladder epithelial cells in vitro. Infect Immun 25(2):729–737

    PubMed  CAS  Google Scholar 

  • Fader RC, Duffy LK et al (1982) Purification and chemical characterization of type 1 pili isolated from Klebsiella pneumoniae. J Biol Chem 257(6):3301–3305

    PubMed  CAS  Google Scholar 

  • Fairley KF, Carson NE et al (1971) Site of infection in acute urinary-tract infection in general practice. Lancet 2(7725):615–618

    Article  PubMed  CAS  Google Scholar 

  • Falzano L, Fiorentini C et al (1993) Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol Microbiol 9(6):1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Faro S, Fenner DE (1998) Urinary tract infections. Clin Obstet Gynecol 41(3):744–754

    Article  PubMed  CAS  Google Scholar 

  • Favre-Bonte S, Joly B et al (1999) Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect Immun 67(2):554–561

    PubMed  CAS  Google Scholar 

  • Felmlee T, Welch RA (1988) Alterations of amino acid repeats in the Escherichia coli hemolysin affect cytolytic activity and secretion. Proc Natl Acad Sci USA 85(14):5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Felmlee T, Pellett S et al (1985a) Escherichia coli hemolysin is released extracellularly without cleavage of a signal peptide. J Bacteriol 163(1):88–93

    PubMed  CAS  Google Scholar 

  • Felmlee T, Pellett S et al (1985b) Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163(1):94–105

    PubMed  CAS  Google Scholar 

  • Fiorentini C, Donelli G et al (1995) Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase. Infect Immun 63(10):3936–3944

    PubMed  CAS  Google Scholar 

  • Flahaut S, Vinogradov E et al (2008) Structural and biological characterization of a capsular polysaccharide produced by Staphylococcus haemolyticus. J Bacteriol 190(5):1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Flannery EL, Mody L et al (2009) Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun 77(11):4887–4894

    Article  PubMed  CAS  Google Scholar 

  • Flannery EL, Antczak SM et al (2011) Self-transmissibility of the integrative and conjugative element ICEPm1 between clinical isolates requires a functional integrase, relaxase, and type IV secretion system. J Bacteriol 193(16):4104–4112

    Article  PubMed  CAS  Google Scholar 

  • Flatau G, Lemichez E et al (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387(6634):729–733

    Article  PubMed  CAS  Google Scholar 

  • Fowler JE Jr (1985) Staphylococcus saprophyticus as the cause of infected urinary calculus. Ann Intern Med 102(3):342–343

    PubMed  Google Scholar 

  • Fung CP, Chang FY et al (2011) Immune response and pathophysiological features of Klebsiella pneumoniae liver abscesses in an animal model. Lab Invest 91(7):1029–1039

    Article  PubMed  CAS  Google Scholar 

  • Gadeberg OV, Orskov I (1984) In vitro cytotoxic effect of alpha-hemolytic Escherichia coli on human blood granulocytes. Infect Immun 45(1):255–260

    PubMed  CAS  Google Scholar 

  • Gadeberg OV, Orskov I et al (1983) Cytotoxic effect of an alpha-hemolytic Escherichia coli strain on human blood monocytes and granulocytes in vitro. Infect Immun 41(1):358–364

    PubMed  CAS  Google Scholar 

  • Gally DL, Bogan JA et al (1993) Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 175(19):6186–6193

    PubMed  CAS  Google Scholar 

  • Gally DL, Rucker TJ et al (1994) The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol 176(18):5665–5672

    PubMed  CAS  Google Scholar 

  • Ganz T (2006) Molecular pathogenesis of anemia of chronic disease. Pediatr Blood Cancer 46(5):554–557

    Article  PubMed  Google Scholar 

  • Garcia EC, Brumbaugh AR et al (2011) Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 79(3):1225–1235

    Article  PubMed  CAS  Google Scholar 

  • Gatermann S, Marre R (1989) Cloning and expression of Staphylococcus saprophyticus urease gene sequences in Staphylococcus carnosus and contribution of the enzyme to virulence. Infect Immun 57(10):2998–3002

    PubMed  CAS  Google Scholar 

  • Gatermann S, Meyer HG (1994) Staphylococcus saprophyticus hemagglutinin binds fibronectin. Infect Immun 62(10):4556–4563

    PubMed  CAS  Google Scholar 

  • Gatermann S, Marre R et al (1988) Hemagglutinating and adherence properties of Staphylococcus saprophyticus: epidemiology and virulence in experimental urinary tract infection of rats. FEMS Microbiol Immunol 1(3):179–185

    Article  PubMed  CAS  Google Scholar 

  • Gatermann S, John J et al (1989) Staphylococcus saprophyticus urease: characterization and contribution to uropathogenicity in unobstructed urinary tract infection of rats. Infect Immun 57(1):110–116

    PubMed  CAS  Google Scholar 

  • Gerlach JH, Endicott JA et al (1986) Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 324(6096):485–489

    Article  PubMed  CAS  Google Scholar 

  • Gerlach GF, Clegg S et al (1989) Identification and characterization of the genes encoding the type 3 and type 1 fimbrial adhesins of Klebsiella pneumoniae. J Bacteriol 171(3):1262–1270

    PubMed  CAS  Google Scholar 

  • Gillespie WA, Sellin MA et al (1978) Urinary tract infection in young women, with special reference to Staphylococcus saprophyticus. J Clin Pathol 31(4):348–350

    Article  PubMed  CAS  Google Scholar 

  • Goller CC, Seed PC (2010) High-throughput identification of chemical inhibitors of E. coli Group 2 capsule biogenesis as anti-virulence agents. PLoS One 5(7):e11642

    Article  PubMed  CAS  Google Scholar 

  • Goluszko P, Moseley SL et al (1997) Development of experimental model of chronic pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae: mutation in the dra region prevented tubulointerstitial nephritis. J Clin Invest 99(7):1662–1672

    Article  PubMed  CAS  Google Scholar 

  • Gordon DM, Riley MA (1992) A theoretical and experimental analysis of bacterial growth in the bladder. Mol Microbiol 6(4):555–562

    Article  PubMed  CAS  Google Scholar 

  • Gray L, Mackman N et al (1986) The carboxy-terminal region of haemolysin 2001 is required for secretion of the toxin from Escherichia coli. Mol Gen Genet 205(1):127–133

    Article  PubMed  CAS  Google Scholar 

  • Gunther NW IV, Lockatell V et al (2001) In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect Immun 69(5):2838–2846

    Article  PubMed  CAS  Google Scholar 

  • Gunther NW IV, Snyder JA et al (2002) Assessment of virulence of uropathogenic Escherichia coli type 1 fimbrial mutants in which the invertible element is phase-locked on or off. Infect Immun 70(7):3344–3354

    Article  PubMed  CAS  Google Scholar 

  • Gupta K, Hooton TM et al (1999) The prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in young women. Int J Antimicrob Agents 11(3–4):305–308

    Article  PubMed  CAS  Google Scholar 

  • Gupta K, Hooton TM et al (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52(5):e103–e120

    Article  PubMed  Google Scholar 

  • Guyer DM, Kao JS et al (1998) Genomic analysis of a pathogenicity island in uropathogenic Escherichia coli CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis, and Catheter-associated bacteriuria and from fecal samples. Infect Immun 66(9):4411–4417

    PubMed  CAS  Google Scholar 

  • Guyer DM, Henderson IR et al (2000) Identification of sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol 38(1):53–66

    Article  PubMed  CAS  Google Scholar 

  • Guyer DM, Radulovic S et al (2002) Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun 70(8):4539–4546

    Article  PubMed  CAS  Google Scholar 

  • Hacker J, Bender L et al (1990) Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb Pathog 8(3):213–225

    Article  PubMed  CAS  Google Scholar 

  • Hagan EC, Mobley HL (2009) Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol 71(1):79–91

    Article  PubMed  CAS  Google Scholar 

  • Hagan EC, Lloyd AL et al (2010) Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6(11):e1001187

    Article  PubMed  CAS  Google Scholar 

  • Hagberg L, Jodal U et al (1981) Adhesion, hemagglutination, and virulence of Escherichia coli causing urinary tract infections. Infect Immun 31(2):564–570

    PubMed  CAS  Google Scholar 

  • Hahn PF, Bale WF et al (1939) Radioactive iron and its excretion in urine, bile, and feces. J Exp Med 70(5):443–451

    Article  PubMed  CAS  Google Scholar 

  • Hancock V, Vejborg RM et al (2010) Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Mol Genet Genomics 284(6):437–454

    Article  PubMed  CAS  Google Scholar 

  • Hannan TJ, Mysorekar IU et al (2008) LeuX tRNA-dependent and -independent mechanisms of Escherichia coli pathogenesis in acute cystitis. Mol Microbiol 67(1):116–128

    PubMed  CAS  Google Scholar 

  • Hardie KR, Issartel JP et al (1991) In vitro activation of Escherichia coli prohaemolysin to the mature membrane-targeted toxin requires HlyC and a low molecular-weight cytosolic polypeptide. Mol Microbiol 5(7):1669–1679

    Article  PubMed  CAS  Google Scholar 

  • Harshey RM, Toguchi A (1996) Spinning tails: homologies among bacterial flagellar systems. Trends Microbiol 4(6):226–231

    Article  PubMed  CAS  Google Scholar 

  • Haugen BJ, Pellett S et al (2007) In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 75(1):278–289

    Article  PubMed  CAS  Google Scholar 

  • Hedblom ML, Adler J (1980) Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J Bacteriol 144(3):1048–1060

    PubMed  CAS  Google Scholar 

  • Heimer SR, Rasko DA et al (2004) Autotransporter genes pic and tsh are associated with Escherichia coli strains that cause acute pyelonephritis and are expressed during urinary tract infection. Infect Immun 72(1):593–597

    Article  PubMed  CAS  Google Scholar 

  • Hell W, Meyer HG et al (1998) Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 29(3):871–881

    Article  PubMed  CAS  Google Scholar 

  • Henderson IR, Navarro-Garcia F et al (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68(4):692–744

    Article  PubMed  CAS  Google Scholar 

  • Henderson JP, Crowley JR et al (2009) Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog 5(2):e1000305

    Article  PubMed  CAS  Google Scholar 

  • Hennequin C, Forestier C (2007) Influence of capsule and extended-spectrum beta-lactamases encoding plasmids upon Klebsiella pneumoniae adhesion. Res Microbiol 158(4):339–347

    Article  PubMed  CAS  Google Scholar 

  • Heptinstall RH (1983) Pathology of the kidney. Little, Brown, Boston

    Google Scholar 

  • Herlax V, Mate S et al (2009) Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J Biol Chem 284(37):25199–25210

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF, Hiles ID et al (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323(6087):448–450

    Article  PubMed  CAS  Google Scholar 

  • Higgs PI, Myers PS et al (1998) Interactions in the TonB-dependent energy transduction complex: ExbB and ExbD form homomultimers. J Bacteriol 180(22):6031–6038

    PubMed  CAS  Google Scholar 

  • Himpsl SD, Pearson MM et al (2010) Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol Microbiol 78(1):138–157

    PubMed  CAS  Google Scholar 

  • Hofman P, Le Negrate G et al (2000) Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J Leukoc Biol 68(4):522–528

    PubMed  CAS  Google Scholar 

  • Holland IB, Schmitt L et al (2005) Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol 22(1–2):29–39

    Article  PubMed  CAS  Google Scholar 

  • Hooton TM (2001) Recurrent urinary tract infection in women. Int J Antimicrob Agents 17(4):259–268

    Article  PubMed  CAS  Google Scholar 

  • Hornick DB, Allen BL et al (1992) Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products. Infect Immun 60(4):1577–1588

    PubMed  CAS  Google Scholar 

  • Horwitz MA, Silverstein SC (1980) Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J Clin Invest 65(1):82–94

    Article  PubMed  CAS  Google Scholar 

  • Hsieh PF, Lin TL et al (2008) Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis 197(12):1717–1727

    Article  PubMed  CAS  Google Scholar 

  • Hughes C, Issartel JP et al (1992) Activation of Escherichia coli prohemolysin to the membrane-targetted toxin by HlyC-directed ACP-dependent fatty acylation. FEMS Microbiol Immunol 5(1–3):37–43

    Article  PubMed  CAS  Google Scholar 

  • Hughes KT, Gillen KL et al (1993) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262(5137):1277–1280

    Article  PubMed  CAS  Google Scholar 

  • Hull RA, Hull SI (1997) Nutritional requirements for growth of uropathogenic Escherichia coli in human urine. Infect Immun 65(5):1960–1961

    PubMed  CAS  Google Scholar 

  • Hull RA, Gill RE et al (1981) Construction and expression of recombinant plasmids encoding type 1 or d-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 33(3):933–938

    PubMed  CAS  Google Scholar 

  • Hultgren SJ, Schwan WR et al (1986) Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun 54(3):613–620

    PubMed  CAS  Google Scholar 

  • Hultgren SJ, Normark S et al (1991) Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45:383–415

    Article  PubMed  CAS  Google Scholar 

  • Hultgren SJ, Abraham S et al (1993) Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73(5):887–901

    Article  PubMed  CAS  Google Scholar 

  • Hung CS, Bouckaert J et al (2002) Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44(4):903–915

    Article  PubMed  CAS  Google Scholar 

  • Ikaheimo R, Siitonen A et al (1994) Community-acquired pyelonephritis in adults: characteristics of E. coli isolates in bacteremic and non-bacteremic patients. Scand J Infect Dis 26(3):289–296

    Article  PubMed  CAS  Google Scholar 

  • Issartel JP, Koronakis V et al (1991) Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 351(6329):759–761

    Article  PubMed  CAS  Google Scholar 

  • Jacob-Dubuisson F, Locht C et al (2001) Two-partner secretion in Gram-negative bacteria: a thrifty, specific pathway for large virulence proteins. Mol Microbiol 40(2):306–313

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SH, Lins LE et al (1985) P fimbriated Escherichia coli in adults with acute pyelonephritis. J Infect Dis 152(2):426–427

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SM, Lane MC et al (2008) The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection. FEMS Immunol Med Microbiol 52(2):180–193

    Article  PubMed  CAS  Google Scholar 

  • Jansen AM, Lockatell CV et al (2003) Visualization of Proteus mirabilis morphotypes in the urinary tract: the elongated swarmer cell is rarely observed in ascending urinary tract infection. Infect Immun 71(6):3607–3613

    Article  PubMed  CAS  Google Scholar 

  • Jansen AM, Lockatell V et al (2004) Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect Immun 72(12):7294–7305

    Article  PubMed  CAS  Google Scholar 

  • Johnson JR (1991) Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4(1):80–128

    PubMed  CAS  Google Scholar 

  • Johnson DE, Russell RG (1996) Animal models of urinary tract infection. In: Mobley HL, Warren JW (eds) Urinary tract infections: molecular pathogenesis and clinical management. ASM Press, Washington, DC, pp 377–403

    Google Scholar 

  • Johnson JR, Roberts PL et al (1987) P fimbriae and other virulence factors in Escherichia coli urosepsis: association with patients’ characteristics. J Infect Dis 156(1):225–229

    Article  PubMed  CAS  Google Scholar 

  • Johnson JR, Moseley SL et al (1988) Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun 56(2):405–412

    PubMed  CAS  Google Scholar 

  • Johnson JR, Goullet P et al (1991) Association of carboxylesterase B electrophoretic pattern with presence and expression of urovirulence factor determinants and antimicrobial resistance among strains of Escherichia coli that cause urosepsis. Infect Immun 59(7):2311–2315

    PubMed  CAS  Google Scholar 

  • Johnson DE, Russell RG et al (1993) Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection. Infect Immun 61(7):2748–2754

    PubMed  CAS  Google Scholar 

  • Johnson DE, Drachenberg C et al (2000) The role of cytotoxic necrotizing factor-1 in colonization and tissue injury in a murine model of urinary tract infection. FEMS Immunol Med Microbiol 28(1):37–41

    Article  PubMed  CAS  Google Scholar 

  • Johnson JR, Jelacic S et al (2005) The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect Immun 73(2):965–971

    Article  PubMed  CAS  Google Scholar 

  • Jones BD, Mobley HL (1988) Proteus mirabilis urease: genetic organization, regulation, and expression of structural genes. J Bacteriol 170(8):3342–3349

    PubMed  CAS  Google Scholar 

  • Jones BD, Lockatell CV et al (1990) Construction of a urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection. Infect Immun 58(4):1120–1123

    PubMed  CAS  Google Scholar 

  • Jones CH, Pinkner JS et al (1993) FimC is a periplasmic PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc Natl Acad Sci USA 90(18):8397–8401

    Article  PubMed  CAS  Google Scholar 

  • Jones CH, Pinkner JS et al (1995) FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 92(6):2081–2085

    Article  PubMed  CAS  Google Scholar 

  • Jones BV, Young R et al (2004) Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infect Immun 72(7):3941–3950

    Article  PubMed  CAS  Google Scholar 

  • Jordan PA, Iravani A et al (1980) Urinary tract infection caused by Staphylococcus saprophyticus. J Infect Dis 142(4):510–515

    Article  PubMed  CAS  Google Scholar 

  • Kalir S, McClure J et al (2001) Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292(5524):2080–2083

    Article  PubMed  CAS  Google Scholar 

  • Kallenius G, Mollby R et al (1980) Identification of a carbohydrate receptor recognized by uropathogenic Escherichia coli. Infection 8(Suppl 3):288–293

    Article  PubMed  Google Scholar 

  • Kallenius G, Mollby R et al (1981a) Occurrence of P-fimbriated Escherichia coli in urinary tract infections. Lancet 2(8260–61):1369–1372

    Article  PubMed  CAS  Google Scholar 

  • Kallenius G, Svenson S et al (1981b) Structure of carbohydrate part of receptor on human uroepithelial cells for pyelonephritogenic Escherichia coli. Lancet 2(8247):604–606

    Article  PubMed  CAS  Google Scholar 

  • Kammler M, Schon C et al (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175(19):6212–6219

    PubMed  CAS  Google Scholar 

  • Kanamaru S, Kurazono H et al (2003) Distribution and genetic association of putative uropathogenic virulence factors iroN, iha, kpsMT, ompT and usp in Escherichia coli isolated from urinary tract infections in Japan. J Urol 170(6 Pt 1):2490–2493

    Article  PubMed  Google Scholar 

  • Kao JS, Stucker DM et al (1997) Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains. Infect Immun 65(7):2812–2820

    PubMed  CAS  Google Scholar 

  • Kaye D (1968) Antibacterial activity of human urine. J Clin Invest 47(10):2374–2390

    Article  PubMed  CAS  Google Scholar 

  • King NP, Beatson SA et al (2011) UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology 157(Pt 4):1161–1175

    Article  PubMed  CAS  Google Scholar 

  • Kisielius PV, Schwan WR et al (1989) In vivo expression and variation of Escherichia coli type 1 and P pili in the urine of adults with acute urinary tract infections. Infect Immun 57(6):1656–1662

    PubMed  CAS  Google Scholar 

  • Klemm P (1985) Fimbrial adhesions of Escherichia coli. Rev Infect Dis 7(3):321–340

    Article  PubMed  CAS  Google Scholar 

  • Klemm P (1986) Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5(6):1389–1393

    PubMed  CAS  Google Scholar 

  • Kline KA, Dodson KW et al (2010a) A tale of two pili: assembly and function of pili in bacteria. Trends Microbiol 18(5):224–232

    Article  PubMed  CAS  Google Scholar 

  • Kline KA, Ingersoll MA et al (2010b) Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect Immun 78(5):1943–1951

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Hacker J et al (1986) Large, unstable inserts in the chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J Bacteriol 168(1):22–30

    PubMed  CAS  Google Scholar 

  • Komeda Y (1982) Fusions of flagellar operons to lactose genes on a mu lac bacteriophage. J Bacteriol 150(1):16–26

    PubMed  CAS  Google Scholar 

  • Komeda Y (1986) Transcriptional control of flagellar genes in Escherichia coli K-12. J Bacteriol 168(3):1315–1318

    PubMed  CAS  Google Scholar 

  • Kondoh H, Ball CB et al (1979) Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc Natl Acad Sci USA 76(1):260–264

    Article  PubMed  CAS  Google Scholar 

  • Korhonen TK, Vaisanen V et al (1982) P-antigen-recognizing fimbriae from human uropathogenic Escherichia coli strains. Infect Immun 37(1):286–291

    PubMed  CAS  Google Scholar 

  • Korhonen TK, Virkola R et al (1986) Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney. Infect Immun 54(2):328–332

    PubMed  CAS  Google Scholar 

  • Korhonen TK, Virkola R et al (1990) Tissue tropism of Escherichia coli adhesins in human extraintestinal infections. Curr Top Microbiol Immunol 151:115–127

    Article  PubMed  CAS  Google Scholar 

  • Koronakis V, Cross M et al (1989a) Transcription antitermination in an Escherichia coli haemolysin operon is directed progressively by cis-acting DNA sequences upstream of the promoter region. Mol Microbiol 3(10):1397–1404

    Article  PubMed  CAS  Google Scholar 

  • Koronakis V, Koronakis E et al (1989b) Isolation and analysis of the C-terminal signal directing export of Escherichia coli hemolysin protein across both bacterial membranes. EMBO J 8(2):595–605

    PubMed  CAS  Google Scholar 

  • Koronakis V, Stanley P et al (1992) The HlyB/HlyD-dependent secretion of toxins by gram-negative bacteria. FEMS Microbiol Immunol 5(1–3):45–53

    Article  PubMed  CAS  Google Scholar 

  • Koronakis V, Hughes C et al (1993) ATPase activity and ATP/ADP-induced conformational change in the soluble domain of the bacterial protein translocator HlyB. Mol Microbiol 8(6):1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Kostakioti M, Stathopoulos C (2004) Functional analysis of the Tsh autotransporter from an avian pathogenic Escherichia coli strain. Infect Immun 72(10):5548–5554

    Article  PubMed  CAS  Google Scholar 

  • Kouokam JC, Wai SN et al (2006) Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect Immun 74(4):2022–2030

    Article  PubMed  CAS  Google Scholar 

  • Krogfelt KA, Bergmans H et al (1990) Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect Immun 58(6):1995–1998

    PubMed  CAS  Google Scholar 

  • Kuehn MJ, Normark S et al (1991) Immunoglobulin-like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits. Proc Natl Acad Sci USA 88(23):10586–10590

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MJ, Heuser J et al (1992) P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356(6366):252–255

    Article  PubMed  CAS  Google Scholar 

  • Kunin CM (1997) Urinary tract infections: detection, prevention, and management. Williams & Wilkins, Baltimore

    Google Scholar 

  • Kurazono H, Nakano M et al (2003) Distribution of the usp gene in uropathogenic Escherichia coli isolated from companion animals and correlation with serotypes and size-variations of the pathogenicity island. Microbiol Immunol 47(10):797–802

    PubMed  CAS  Google Scholar 

  • Kuroda M, Yamashita A et al (2005) Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci USA 102(37):13272–13277

    Article  PubMed  CAS  Google Scholar 

  • Kutsukake K, Iino T (1994) Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J Bacteriol 176(12):3598–3605

    PubMed  CAS  Google Scholar 

  • Kutsukake K, Ohya Y et al (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172(2):741–747

    PubMed  CAS  Google Scholar 

  • Lai YC, Peng HL et al (2003) RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185(3):788–800

    Article  PubMed  CAS  Google Scholar 

  • Landraud L, Gauthier M et al (2000) Frequency of Escherichia coli strains producing the cytotoxic necrotizing factor (CNF1) in nosocomial urinary tract infections. Lett Appl Microbiol 30(3):213–216

    Article  PubMed  CAS  Google Scholar 

  • Lane MC, Lockatell V et al (2005) Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 73(11):7644–7656

    Article  PubMed  CAS  Google Scholar 

  • Lane MC, Lloyd AL et al (2006) Uropathogenic Escherichia coli strains generally lack functional Trg and Tap chemoreceptors found in the majority of E. coli strains strictly residing in the gut. J Bacteriol 188(15):5618–5625

    Article  PubMed  CAS  Google Scholar 

  • Lane MC, Alteri CJ et al (2007) Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci USA 104(42):16669–16674

    Article  PubMed  CAS  Google Scholar 

  • Langermann S, Palaszynski S et al (1997) Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276(5312):607–611

    Article  PubMed  CAS  Google Scholar 

  • Langermann S, Mollby R et al (2000) Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181(2):774–778

    Article  PubMed  CAS  Google Scholar 

  • Langstraat J, Bohse M et al (2001) Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun 69(9):5805–5812

    Article  PubMed  CAS  Google Scholar 

  • Larsson A, Ohlsson J et al (2003) Quantitative studies of the binding of the class II PapG adhesin from uropathogenic Escherichia coli to oligosaccharides. Bioorg Med Chem 11(10):2255–2261

    Article  PubMed  CAS  Google Scholar 

  • Latham RH, Stamm WE (1984) Role of fimbriated Escherichia coli in urinary tract infections in adult women: correlation with localization studies. J Infect Dis 149(6):835–840

    Article  PubMed  CAS  Google Scholar 

  • Lee KK, Harrison BA et al (2000) The binding of Proteus mirabilis nonagglutinating fimbriae to ganglio-series asialoglycolipids and lactosyl ceramide. Can J Microbiol 46(10):961–966

    PubMed  CAS  Google Scholar 

  • Lerm M, Selzer J et al (1999) Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect Immun 67(2):496–503

    PubMed  CAS  Google Scholar 

  • Li X, Rasko DA et al (2001) Repression of bacterial motility by a novel fimbrial gene product. EMBO J 20(17):4854–4862

    Article  PubMed  CAS  Google Scholar 

  • Li X, Lockatell CV et al (2002a) Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Mol Microbiol 45(3):865–874

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhao H et al (2002b) Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infect Immun 70(1):389–394

    Article  PubMed  CAS  Google Scholar 

  • Li X, Erbe JL et al (2004) Use of translational fusion of the MrpH fimbrial adhesin-binding domain with the cholera toxin A2 domain, coexpressed with the cholera toxin B subunit, as an intranasal vaccine to prevent experimental urinary tract infection by Proteus mirabilis. Infect Immun 72(12):7306–7310

    Article  PubMed  CAS  Google Scholar 

  • Lievin-Le Moal V, Comenge Y et al (2011) Secreted autotransporter toxin (Sat) triggers autophagy in epithelial cells that relies on cell detachment. Cell Microbiol 13(7):992–1013

    Article  PubMed  CAS  Google Scholar 

  • Lim JK, Gunther NW IV et al (1998) In vivo phase variation of Escherichia coli type 1 fimbrial genes in women with urinary tract infection. Infect Immun 66(7):3303–3310

    PubMed  CAS  Google Scholar 

  • Lima A, Zunino P et al (2007) An iron-regulated outer-membrane protein of Proteus mirabilis is a haem receptor that plays an important role in urinary tract infection and in in vivo growth. J Med Microbiol 56(Pt 12):1600–1607

    Article  PubMed  CAS  Google Scholar 

  • Lin JC, Siu LK et al (2006) Impaired phagocytosis of capsular serotypes K1 or K2 Klebsiella pneumoniae in type 2 diabetes mellitus patients with poor glycemic control. J Clin Endocrinol Metab 91(8):3084–3087

    Article  PubMed  CAS  Google Scholar 

  • Lin WH, Wang MC et al (2010) Clinical and microbiological characteristics of Klebsiella pneumoniae isolates causing community-acquired urinary tract infections. Infection 38(6):459–464

    Article  PubMed  Google Scholar 

  • Lin CT, Wu CC et al (2011) Fur regulation of the capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. Microbiology 157(Pt 2):419–429

    Article  PubMed  CAS  Google Scholar 

  • Lindberg S, Xia Y et al (2008) Regulatory Interactions among adhesin gene systems of uropathogenic Escherichia coli. Infect Immun 76(2):771–780

    Article  PubMed  CAS  Google Scholar 

  • Linhartova I, Bumba L et al (2010) RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34(6):1076–1112

    PubMed  CAS  Google Scholar 

  • Llobet E, Tomas JM et al (2008) Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154(Pt 12):3877–3886

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AL, Rasko DA et al (2007) Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189(9):3532–3546

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AL, Henderson TA et al (2009) Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 191(11):3469–3481

    Article  PubMed  CAS  Google Scholar 

  • Lomberg H, Hanson LA et al (1983) Correlation of P blood group, vesicoureteral reflux, and bacterial attachment in patients with recurrent pyelonephritis. N Engl J Med 308(20):1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Jarchau T et al (1988) The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+−dependent binding to erythrocytes. Mol Gen Genet 214(3):553–561

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Garcia F et al (1996) Analysis of the in vivo activation of hemolysin (HlyA) from Escherichia coli. J Bacteriol 178(18):5422–5430

    PubMed  CAS  Google Scholar 

  • Lugering A, Benz I et al (2003) The Pix pilus adhesin of the uropathogenic Escherichia coli strain X2194 (O2: K(−): H6) is related to Pap pili but exhibits a truncated regulatory region. Microbiology 149(Pt 6):1387–1397

    Article  PubMed  CAS  Google Scholar 

  • Lund B, Lindberg F et al (1987) The PapG protein is the alpha-d-galactopyranosyl-(1–4)-beta-d-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 84(16):5898–5902

    Article  PubMed  CAS  Google Scholar 

  • Lund B, Marklund BI et al (1988) Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. Mol Microbiol 2(2):255–263

    Article  PubMed  CAS  Google Scholar 

  • Maayan MC, Ofek I et al (1985) Population shift in mannose-specific fimbriated phase of Klebsiella pneumoniae during experimental urinary tract infection in mice. Infect Immun 49(3):785–789

    PubMed  CAS  Google Scholar 

  • Mackman N, Nicaud JM et al (1985) Genetical and functional organisation of the Escherichia coli haemolysin determinant 2001. Mol Gen Genet 201(2):282–288

    Article  PubMed  CAS  Google Scholar 

  • Mackman N, Baker K et al (1987) Release of a chimeric protein into the medium from Escherichia coli using the C-terminal secretion signal of haemolysin. EMBO J 6(9):2835–2841

    PubMed  CAS  Google Scholar 

  • Macnab RM (1996) Flagella and motility. In: Neidhardt FC, Curtiss R III, Ingraham JL et al (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 123–145

    Google Scholar 

  • Malaviya R, Ikeda T et al (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381(6577):77–80

    Article  PubMed  CAS  Google Scholar 

  • Manson MD, Blank V et al (1986) Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 321(6067):253–256

    Article  PubMed  CAS  Google Scholar 

  • Martinez JJ, Mulvey MA et al (2000) Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19(12):2803–2812

    Article  PubMed  CAS  Google Scholar 

  • Massad G, Lockatell CV et al (1994) Proteus mirabilis fimbriae: construction of an isogenic pmfA mutant and analysis of virulence in a CBA mouse model of ascending urinary tract infection. Infect Immun 62(2):536–542

    PubMed  CAS  Google Scholar 

  • Massad G, Zhao H et al (1995) Proteus mirabilis amino acid deaminase: cloning, nucleotide sequence, and characterization of aad. J Bacteriol 177(20):5878–5883

    PubMed  CAS  Google Scholar 

  • Mazmanian SK, Liu G et al (1999) Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285(5428):760–763

    Article  PubMed  CAS  Google Scholar 

  • McCartney AC, Clark J et al (1985) Bacteriological study of renal calculi. Eur J Clin Microbiol 4(6):553–555

    Article  PubMed  CAS  Google Scholar 

  • Melican K, Sandoval RM et al (2011) Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog 7(2):e1001298

    Article  PubMed  CAS  Google Scholar 

  • Middendorf B, Hochhut B et al (2004) Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 186(10):3086–3096

    Article  PubMed  CAS  Google Scholar 

  • Milliner DS, Murphy ME (1993) Urolithiasis in pediatric patients. Mayo Clin Proc 68(3):241–248

    Article  PubMed  CAS  Google Scholar 

  • Mills M, Meysick KC et al (2000) Cytotoxic necrotizing factor type 1 of uropathogenic Escherichia coli kills cultured human uroepithelial 5637 cells by an apoptotic mechanism. Infect Immun 68(10):5869–5880

    Article  PubMed  CAS  Google Scholar 

  • Min G, Stolz M et al (2002) Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J Mol Biol 317(5):697–706

    Article  PubMed  CAS  Google Scholar 

  • Min G, Zhou G et al (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116(Pt 20):4087–4094

    Article  PubMed  CAS  Google Scholar 

  • Mobley HLT (2001) Urease. In: Mobley HLT, Mendz GL, Hazell SL (eds) Helicobacter pylori: physiology and genetics. ASM Press, Washington, DC, pp 179–191

    Google Scholar 

  • Mobley HL, Chippendale GR (1990) Hemagglutinin, urease, and hemolysin production by Proteus mirabilis from clinical sources. J Infect Dis 161(3):525–530

    Article  PubMed  CAS  Google Scholar 

  • Mobley HL, Green DM et al (1990) Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58(5):1281–1289

    PubMed  CAS  Google Scholar 

  • Mobley HL, Chippendale GR et al (1991) Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun 59(6):2036–2042

    PubMed  CAS  Google Scholar 

  • Mobley HL, Jarvis KG et al (1993) Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: the role of alpha Gal(1–4) beta Gal binding in virulence of a wild-type strain. Mol Microbiol 10(1):143–155

    Article  PubMed  CAS  Google Scholar 

  • Mobley HL, Belas R et al (1996) Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64(12):5332–5340

    PubMed  CAS  Google Scholar 

  • Moeck GS, Coulton JW (1998) TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol Microbiol 28(4):675–681

    Article  PubMed  CAS  Google Scholar 

  • Moore KL, Dalley AF et al (2010) Clinically oriented anatomy. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Mulholland SG, Mooreville M et al (1984) Urinary tract infections and P blood group antigens. Urology 24(3):232–235

    Article  PubMed  CAS  Google Scholar 

  • Mulvey MA, Lopez-Boado YS et al (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282(5393):1494–1497

    Article  PubMed  CAS  Google Scholar 

  • Musher DM, Griffith DP et al (1975) Role of urease in pyelonephritis resulting from urinary tract infection with Proteus. J Infect Dis 131(2):177–181

    Article  PubMed  CAS  Google Scholar 

  • Nagano N, Cordevant C et al (2008) Upper and lower urinary tract infection caused by Klebsiella pneumoniae serotype K2 and CTX-M-15 beta-lactamase-producing serotype K1: a case report and characterization of serum killing resistance. J Med Microbiol 57(Pt 1):121–124

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Yamamoto S et al (2001) Structural and sequence diversity of the pathogenicity island of uropathogenic Escherichia coli which encodes the USP protein. FEMS Microbiol Lett 205(1):71–76

    Article  PubMed  CAS  Google Scholar 

  • Nassif X, Fournier JM et al (1989a) Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun 57(2):546–552

    PubMed  CAS  Google Scholar 

  • Nassif X, Honore N et al (1989b) Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol Microbiol 3(10):1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Garcia F, Gutierrez-Jimenez J et al (2010) Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect Immun 78(10):4101–4109

    Article  PubMed  CAS  Google Scholar 

  • Newman CL, Stathopoulos C (2004) Autotransporter and two-partner secretion: delivery of large-size virulence factors by gram-negative bacterial pathogens. Crit Rev Microbiol 30(4):275–286

    Article  PubMed  CAS  Google Scholar 

  • Nicholson TF, Watts KM et al (2009) OmpA of uropathogenic Escherichia coli promotes postinvasion pathogenesis of cystitis. Infect Immun 77(12):5245–5251

    Article  PubMed  CAS  Google Scholar 

  • Nielubowicz GR, Mobley HL (2010) Host-pathogen interactions in urinary tract infection. Nat Rev Urol 7(8):430–441

    Article  PubMed  CAS  Google Scholar 

  • Nielubowicz GR, Smith SN et al (2010) Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infect Immun 78(6):2823–2833

    Article  PubMed  CAS  Google Scholar 

  • Nilsson IM, Lee JC et al (1997) The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect Immun 65(10):4216–4221

    PubMed  CAS  Google Scholar 

  • Nilsson LM, Yakovenko O et al (2007) The cysteine bond in the Escherichia coli FimH adhesin is critical for adhesion under flow conditions. Mol Microbiol 65(5):1158–1169

    Article  PubMed  CAS  Google Scholar 

  • Norgren M, Normark S et al (1984) Mutations in E coli cistrons affecting adhesion to human cells do not abolish Pap pili fiber formation. EMBO J 3(5):1159–1165

    PubMed  CAS  Google Scholar 

  • Norinder BS, Koves B et al (2012) Do Escherichia coli strains causing acute cystitis have a distinct virulence repertoire? Microb Pathog 52(1):10–16

    Article  PubMed  CAS  Google Scholar 

  • Normark S, Lark D et al (1983) Genetics of digalactoside-binding adhesin from a uropathogenic Escherichia coli strain. Infect Immun 41(3):942–949

    PubMed  CAS  Google Scholar 

  • Nowicki B, Labigne A et al (1990) The Dr hemagglutinin, afimbrial adhesins AFA-I and AFA-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Escherichia coli belong to a family of hemagglutinins with Dr receptor recognition. Infect Immun 58(1):279–281

    PubMed  CAS  Google Scholar 

  • O’Hanley P, Low D et al (1985) Gal-Gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N Engl J Med 313(7):414–420

    Article  PubMed  Google Scholar 

  • Oelschlaeger TA, Dobrindt U et al (2002) Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int J Antimicrob Agents 19(6):517–521

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson J, Jass J et al (2002) Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives. Chembiochem 3(8):772–779

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi K, Kutsukake K et al (1990) Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol Gen Genet 221(2):139–147

    Article  PubMed  CAS  Google Scholar 

  • Old DC, Adegbola RA (1982) Haemagglutinins and fimbriae of Morganella, Proteus and Providencia. J Med Microbiol 15(4):551–564

    Article  PubMed  CAS  Google Scholar 

  • Orndorff PE, Bloch CA (1990) The role of type 1 pili in the pathogenesis of Escherichia coli infections: a short review and some new ideas. Microb Pathog 9(2):75–79

    Article  PubMed  CAS  Google Scholar 

  • Oswald E, Sugai M et al (1994) Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci USA 91(9):3814–3818

    Article  PubMed  CAS  Google Scholar 

  • Pan YJ, Fang HC et al (2008) Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol 46(7):2231–2240

    Article  PubMed  CAS  Google Scholar 

  • Parham NJ, Srinivasan U et al (2004) PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiol Lett 230(1):73–83

    Article  PubMed  CAS  Google Scholar 

  • Parham NJ, Pollard SJ et al (2005) Prevalence of pathogenicity island IICFT073 genes among extraintestinal clinical isolates of Escherichia coli. J Clin Microbiol 43(5):2425–2434

    Article  PubMed  CAS  Google Scholar 

  • Park S, Kelley KA et al (2010) Characterization of the structure and biological functions of a capsular polysaccharide produced by Staphylococcus saprophyticus. J Bacteriol 192(18):4618–4626

    Article  PubMed  CAS  Google Scholar 

  • Parreira VR, Gyles CL (2003) A novel pathogenicity island integrated adjacent to the thrW tRNA gene of avian pathogenic Escherichia coli encodes a vacuolating autotransporter toxin. Infect Immun 71(9):5087–5096

    Article  PubMed  CAS  Google Scholar 

  • Parret AH, De Mot R (2002) Escherichia coli’s uropathogenic-specific protein: a bacteriocin promoting infectivity? Microbiology 148(Pt 6):1604–1606

    PubMed  CAS  Google Scholar 

  • Patzer SI, Baquero MR et al (2003) The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149(Pt 9):2557–2570

    Article  PubMed  CAS  Google Scholar 

  • Pearson MM, Mobley HL (2008) Repression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis. Mol Microbiol 69(2):548–558

    Article  PubMed  CAS  Google Scholar 

  • Pearson MM, Sebaihia M et al (2008) Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol 190(11):4027–4037

    Article  PubMed  CAS  Google Scholar 

  • Pearson MM, Yep A et al (2011) Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 79(7):2619–2631

    Article  PubMed  CAS  Google Scholar 

  • Pere A, Leinonen M et al (1985) Occurrence of type-1 C fimbriae on Escherichia coli strains isolated from human extraintestinal infections. J Gen Microbiol 131(7):1705–1711

    PubMed  CAS  Google Scholar 

  • Pere A, Nowicki B et al (1987) Expression of P, type-1, and type-1 C fimbriae of Escherichia coli in the urine of patients with acute urinary tract infection. J Infect Dis 156(4):567–574

    Article  PubMed  CAS  Google Scholar 

  • Peterson SN, Reich NO (2008) Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J Mol Biol 383(1):92–105

    Article  PubMed  CAS  Google Scholar 

  • Pigrau-Serrallach C (2005) Recurrent urinary tract infections. Enferm Infecc Microbiol Clin 23(Suppl 4):28–39

    Article  PubMed  Google Scholar 

  • Pimenta AL, Racher K et al (2005) Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin. J Bacteriol 187(21):7471–7480

    Article  PubMed  CAS  Google Scholar 

  • Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11(4):589–603

    PubMed  CAS  Google Scholar 

  • Podschun R, Penner I et al (1992) Interaction of Klebsiella capsule type 7 with human polymorphonuclear leucocytes. Microb Pathog 13(5):371–379

    Article  PubMed  CAS  Google Scholar 

  • Podschun R, Sievers D et al (1993) Serotypes, hemagglutinins, siderophore synthesis, and serum resistance of Klebsiella isolates causing human urinary tract infections. J Infect Dis 168(6):1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Poutrel B, Rainard P et al (1997) Heterogeneity of cell-associated CP5 expression on Staphylococcus aureus strains demonstrated by flow cytometry. Clin Diagn Lab Immunol 4(3):275–278

    PubMed  CAS  Google Scholar 

  • Provence DL, Curtiss R 3rd (1994) Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun 62(4):1369–1380

    PubMed  CAS  Google Scholar 

  • Putnam DF, McDonnell Douglas Astronautics Company-West Division et al (1971) Composition and concentrative properties of human urine. National Aeronautics and Space Administration, Huntington Beach

    Google Scholar 

  • Rasko DA, Phillips JA et al (2001) Identification of DNA sequences from a second pathogenicity island of uropathogenic Escherichia coli CFT073: probes specific for uropathogenic populations. J Infect Dis 184(8):1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Rather PN (2005) Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7(8):1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Raz R, Colodner R et al (2005) Who are you—Staphylococcus saprophyticus? Clin Infect Dis 40(6):896–898

    Article  PubMed  Google Scholar 

  • Redford P, Welch RA (2006) Role of sigma E-regulated genes in Escherichia coli uropathogenesis. Infect Immun 74(7):4030–4038

    Article  PubMed  CAS  Google Scholar 

  • Redford P, Roesch PL et al (2003) DegS is necessary for virulence and is among extraintestinal Escherichia coli genes induced in murine peritonitis. Infect Immun 71(6):3088–3096

    Article  PubMed  CAS  Google Scholar 

  • Reiss DJ, Mobley HL (2011) Determination of target sequence bound by PapX, repressor of bacterial motility, in flhD promoter using systematic evolution of ligands by exponential enrichment (SELEX) and high throughput sequencing. J Biol Chem 286(52):44726–44738

    Article  PubMed  CAS  Google Scholar 

  • Rippere-Lampe KE, O’Brien AD et al (2001) Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf(1)) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 69(6):3954–3964

    Article  PubMed  CAS  Google Scholar 

  • Roberts JA, Kaack B et al (1984) Receptors for pyelonephritogenic Escherichia coli in primates. J Urol 131(1):163–168

    PubMed  CAS  Google Scholar 

  • Roberts JA, Marklund BI et al (1994) The Gal(alpha 1–4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91(25):11889–11893

    Article  PubMed  CAS  Google Scholar 

  • Rocha SP, Pelayo JS et al (2007) Fimbriae of uropathogenic Proteus mirabilis. FEMS Immunol Med Microbiol 51(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Roesch PL, Redford P et al (2003) Uropathogenic Escherichia coli use d-serine deaminase to modulate infection of the murine urinary tract. Mol Microbiol 49(1):55–67

    Article  PubMed  CAS  Google Scholar 

  • Ronald A (2003) The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon 49(2):71–82

    Article  PubMed  Google Scholar 

  • Rosen DA, Pinkner JS et al (2008a) Utilization of an intracellular bacterial community pathway in Klebsiella pneumoniae urinary tract infection and the effects of FimK on type 1 pilus expression. Infect Immun 76(7):3337–3345

    Article  PubMed  CAS  Google Scholar 

  • Rosen DA, Pinkner JS et al (2008b) Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect Immun 76(7):3346–3356

    Article  PubMed  CAS  Google Scholar 

  • Russo TA, Sharma G et al (1995) The construction and characterization of colanic acid deficient mutants in an extraintestinal isolate of Escherichia coli (O4/K54/H5). Microb Pathog 18(4):269–278

    Article  PubMed  CAS  Google Scholar 

  • Russo T, Brown JJ et al (1996a) The O4 specific antigen moiety of lipopolysaccharide but not the K54 group 2 capsule is important for urovirulence of an extraintestinal isolate of Escherichia coli. Infect Immun 64(6):2343–2348

    PubMed  CAS  Google Scholar 

  • Russo TA, Jodush ST et al (1996b) Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol 22(2):217–229

    Article  PubMed  CAS  Google Scholar 

  • Russo TA, Carlino UB et al (2001) Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 69(10):6209–6216

    Article  PubMed  CAS  Google Scholar 

  • Russo TA, McFadden CD et al (2002) IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 70(12):7156–7160

    Article  PubMed  CAS  Google Scholar 

  • Sabri M, Houle S et al (2009) Roles of the extraintestinal pathogenic Escherichia coli ZnuACB and ZupT zinc transporters during urinary tract infection. Infect Immun 77(3):1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Sahly H, Podschun R et al (2000) Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect Immun 68(12):6744–6749

    Article  PubMed  CAS  Google Scholar 

  • Sakinc T, Woznowski M et al (2005) The surface-associated protein of Staphylococcus saprophyticus is a lipase. Infect Immun 73(10):6419–6428

    Article  PubMed  CAS  Google Scholar 

  • Sakinc T, Kleine B et al (2006) SdrI, a serine-aspartate repeat protein identified in Staphylococcus saprophyticus strain 7108, is a collagen-binding protein. Infect Immun 74(8):4615–4623

    Article  PubMed  CAS  Google Scholar 

  • Sakinc T, Kleine B et al (2009) SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site. FEMS Microbiol Lett 301(1):28–34

    Article  PubMed  CAS  Google Scholar 

  • Sandberg T, Kaijser B et al (1988) Virulence of Escherichia coli in relation to host factors in women with symptomatic urinary tract infection. J Clin Microbiol 26(8):1471–1476

    PubMed  CAS  Google Scholar 

  • Satchell KJ (2011) Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol 65:71–90

    Article  PubMed  CAS  Google Scholar 

  • Scavone P, Rial A et al (2009) Effects of the administration of cholera toxin as a mucosal adjuvant on the immune and protective response induced by Proteus mirabilis MrpA fimbrial protein in the urinary tract. Microbiol Immunol 53(4):233–240

    Article  PubMed  CAS  Google Scholar 

  • Scavone P, Umpierrez A et al (2011) Nasal immunization with attenuated Salmonella typhimurium expressing an MrpA-TetC fusion protein significantly reduces Proteus mirabilis colonization in the mouse urinary tract. J Med Microbiol 60(Pt 7):899–904

    Article  PubMed  Google Scholar 

  • Schembri MA, Blom J et al (2005) Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 73(8):4626–4633

    Article  PubMed  CAS  Google Scholar 

  • Schilling JD, Mulvey MA et al (2001a) Structure and function of Escherichia coli type 1 pili: new insight into the pathogenesis of urinary tract infections. J Infect Dis 183(Suppl 1):S36–S40

    Article  PubMed  Google Scholar 

  • Schilling JD, Mulvey MA et al (2001b) Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol 166(2):1148–1155

    PubMed  CAS  Google Scholar 

  • Schilling JD, Lorenz RG et al (2002) Effect of trimethoprim-sulfamethoxazole on recurrent bacteriuria and bacterial persistence in mice infected with uropathogenic Escherichia coli. Infect Immun 70(12):7042–7049

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Sehr P et al (1997) Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387(6634):725–729

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Dobrindt U et al (2004) The pathogenicity island-associated K15 capsule determinant exhibits a novel genetic structure and correlates with virulence in uropathogenic Escherichia coli strain 536. Infect Immun 72(10):5993–6001

    Article  PubMed  CAS  Google Scholar 

  • Schwan WR (2009) Survival of uropathogenic Escherichia coli in the murine urinary tract is dependent on OmpR. Microbiology 155(Pt 6):1832–1839

    Article  PubMed  CAS  Google Scholar 

  • Schwan WR, Beck MT et al (2005) Down-regulation of the kps region 1 capsular assembly operon following attachment of Escherichia coli type 1 fimbriae to d-mannose receptors. Infect Immun 73(2):1226–1231

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Waterfield N et al (2002) The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol Lett 214(2):241–249

    Article  PubMed  CAS  Google Scholar 

  • Shaw C, Stitt JM et al (1951) Staphylococci and their classification. J Gen Microbiol 5(5 Suppl):1010–1023

    PubMed  CAS  Google Scholar 

  • Shin JS, Gao Z et al (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Science 289(5480):785–788

    Article  PubMed  CAS  Google Scholar 

  • Silverman M, Simon M (1977) Chemotaxis in Escherichia coli: methylation of che gene products. Proc Natl Acad Sci USA 74(8):3317–3321

    Article  PubMed  CAS  Google Scholar 

  • Simms AN, Mobley HL (2008) PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. Infect Immun 76(11):4833–4841

    Article  PubMed  CAS  Google Scholar 

  • Simoons-Smit AM, Verweij-van Vught AM et al (1986) The role of K antigens as virulence factors in Klebsiella. J Med Microbiol 21(2):133–137

    Article  PubMed  CAS  Google Scholar 

  • Smith TG, Hoover TR (2009) Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol 67:257–295

    Article  PubMed  CAS  Google Scholar 

  • Smith YC, Rasmussen SB et al (2008) Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect Immun 76(7):2978–2990

    Article  PubMed  CAS  Google Scholar 

  • Smith SN, Hagan EC et al (2010) Dissemination and systemic colonization of uropathogenic Escherichia coli in a murine model of bacteremia. MBio 1(5)

    Google Scholar 

  • Snyder JA, Haugen BJ et al (2004) Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72(11):6373–6381

    Article  PubMed  CAS  Google Scholar 

  • Snyder JA, Haugen BJ et al (2005) Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73(11):7588–7596

    Article  PubMed  CAS  Google Scholar 

  • Snyder JA, Lloyd AL et al (2006) Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun 74(2):1387–1393

    Article  PubMed  CAS  Google Scholar 

  • Sokurenko EV, Chesnokova V et al (1998) Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci USA 95(15):8922–8926

    Article  PubMed  CAS  Google Scholar 

  • Soutourina OA, Bertin PN (2003) Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27(4):505–523

    Article  PubMed  CAS  Google Scholar 

  • Spurbeck RR, Stapleton AE et al (2011) Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of Ygi and Yad fimbriae. Infect Immun 79(12):4753–4763

    Article  PubMed  CAS  Google Scholar 

  • Stahlhut SG, Chattopadhyay S et al (2009) Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 191(6):1941–1950

    Article  PubMed  CAS  Google Scholar 

  • Stamm WE (1983) Measurement of pyuria and its relation to bacteriuria. Am J Med 75(1B):53–58

    Article  PubMed  CAS  Google Scholar 

  • Stanley P, Packman LC et al (1994) Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science 266(5193):1992–1996

    Article  PubMed  CAS  Google Scholar 

  • Stanley P, Koronakis V et al (1998) Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 62(2):309–333

    PubMed  CAS  Google Scholar 

  • Stathopoulos C, Provence DL et al (1999) Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun 67(2):772–781

    PubMed  CAS  Google Scholar 

  • Stromberg N, Nyholm PG et al (1991) Saccharide orientation at the cell surface affects glycolipid receptor function. Proc Natl Acad Sci USA 88(20):9340–9344

    Article  PubMed  CAS  Google Scholar 

  • Struve C, Krogfelt KA (1999) In vivo detection of Escherichia coli type 1 fimbrial expression and phase variation during experimental urinary tract infection. Microbiology 145(Pt 10):2683–2690

    PubMed  CAS  Google Scholar 

  • Struve C, Bojer M et al (2008) Characterization of Klebsiella pneumoniae type 1 fimbriae by detection of phase variation during colonization and infection and impact on virulence. Infect Immun 76(9):4055–4065

    Article  PubMed  CAS  Google Scholar 

  • Struve C, Bojer M et al (2009) Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 77(11):5016–5024

    Article  PubMed  CAS  Google Scholar 

  • Surin BP, Rosenberg H et al (1985) Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J Bacteriol 161(1):189–198

    PubMed  CAS  Google Scholar 

  • Swanson TN, Bilge SS et al (1991) Molecular structure of the Dr adhesin: nucleotide sequence and mapping of receptor-binding domain by use of fusion constructs. Infect Immun 59(1):261–268

    PubMed  CAS  Google Scholar 

  • Swenson DL, Bukanov NO et al (1996) Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing. Infect Immun 64(9):3736–3743

    PubMed  CAS  Google Scholar 

  • Swihart KG, Welch RA (1990a) Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun 58(6):1861–1869

    PubMed  CAS  Google Scholar 

  • Swihart KG, Welch RA (1990b) The HpmA hemolysin is more common than HlyA among Proteus isolates. Infect Immun 58(6):1853–1860

    PubMed  CAS  Google Scholar 

  • Tarkkanen AM, Allen BL et al (1990) Type V collagen as the target for type-3 fimbriae, enterobacterial adherence organelles. Mol Microbiol 4(8):1353–1361

    Article  PubMed  CAS  Google Scholar 

  • Tarkkanen AM, Virkola R et al (1997) Binding of the type 3 fimbriae of Klebsiella pneumoniae to human endothelial and urinary bladder cells. Infect Immun 65(4):1546–1549

    PubMed  CAS  Google Scholar 

  • Thakker M, Park JS et al (1998) Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun 66(11):5183–5189

    PubMed  CAS  Google Scholar 

  • Thanabalu T, Koronakis E et al (1998) Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J 17(22):6487–6496

    Article  PubMed  CAS  Google Scholar 

  • Thomas WE, Nilsson LM et al (2004) Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli. Mol Microbiol 53(5):1545–1557

    Article  PubMed  CAS  Google Scholar 

  • Tomas JM, Benedi VJ et al (1986) Role of capsule and O antigen in resistance of Klebsiella pneumoniae to serum bactericidal activity. Infect Immun 54(1):85–89

    PubMed  CAS  Google Scholar 

  • Torres AG, Redford P et al (2001) TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69(10):6179–6185

    Article  PubMed  CAS  Google Scholar 

  • Uhlin BE, Norgren M et al (1985) Adhesion to human cells by Escherichia coli lacking the major subunit of a digalactoside-specific pilus-adhesin. Proc Natl Acad Sci USA 82(6):1800–1804

    Article  PubMed  CAS  Google Scholar 

  • Ulleryd P, Lincoln K et al (1994) Virulence characteristics of Escherichia coli in relation to host response in men with symptomatic urinary tract infection. Clin Infect Dis 18(4):579–584

    Article  PubMed  CAS  Google Scholar 

  • Uphoff TS, Welch RA (1990) Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with the Serratia marcescens hemolysin genes (shlA and shlB). J Bacteriol 172(3):1206–1216

    PubMed  CAS  Google Scholar 

  • Vaisanen V, Elo J et al (1981) Mannose-resistant haemagglutination and P antigen recognition are characteristic of Escherichia coli causing primary pyelonephritis. Lancet 2(8260–61):1366–1369

    Article  PubMed  CAS  Google Scholar 

  • Vaisanen-Rhen V, Elo J et al (1984) P-fimbriated clones among uropathogenic Escherichia coli strains. Infect Immun 43(1):149–155

    PubMed  CAS  Google Scholar 

  • Vigil PD, Alteri CJ et al (2011a) Identification of in vivo-induced antigens including an RTX family exoprotein required for uropathogenic Escherichia coli virulence. Infect Immun 79(6):2335–2344

    Article  PubMed  CAS  Google Scholar 

  • Vigil PD, Stapleton AE et al (2011b) Presence of putative repeat-in-toxin gene tosA in Escherichia coli predicts successful colonization of the urinary tract. MBio 2(3):e00066–00011

    Article  PubMed  CAS  Google Scholar 

  • Vigil PD, Wiles TJ et al (2011c) The repeat-in-toxin (RTX) family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect Immun 80(2):493–505

    Article  PubMed  CAS  Google Scholar 

  • Visvikis O, Boyer L et al (2011) Escherichia coli producing CNF1 toxin hijacks Tollip to trigger Rac1-dependent cell invasion. Traffic 12(5):579–590

    Article  PubMed  CAS  Google Scholar 

  • Wacharotayankun R, Arakawa Y et al (1993) Enhancement of extracapsular polysaccharide synthesis in Klebsiella pneumoniae by RmpA2, which shows homology to NtrC and FixJ. Infect Immun 61(8):3164–3174

    PubMed  CAS  Google Scholar 

  • Wagner W, Vogel M et al (1983) Transport of hemolysin across the outer membrane of Escherichia coli requires two functions. J Bacteriol 154(1):200–210

    PubMed  CAS  Google Scholar 

  • Wallmark G, Arremark I et al (1978) Staphylococcus saprophyticus: a frequent cause of acute urinary tract infection among female outpatients. J Infect Dis 138(6):791–797

    Article  PubMed  CAS  Google Scholar 

  • Wandersman C, Delepelaire P (1990) TolC, an Escherichia coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci USA 87(12):4776–4780

    Article  PubMed  CAS  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  PubMed  CAS  Google Scholar 

  • Warren JW, Abrutyn E et al (1999) Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis 29(4):745–758

    Article  PubMed  CAS  Google Scholar 

  • Watts RE, Totsika M et al (2012) Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect Immun 80(1):333–344

    Article  PubMed  CAS  Google Scholar 

  • Welch RA (1987) Identification of two different hemolysin determinants in uropathogenic Proteus isolates. Infect Immun 55(9):2183–2190

    PubMed  CAS  Google Scholar 

  • Welch RA (1991) Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol 5(3):521–528

    Article  PubMed  CAS  Google Scholar 

  • Welch RA, Pellett S (1988) Transcriptional organization of the Escherichia coli hemolysin genes. J Bacteriol 170(4):1622–1630

    PubMed  CAS  Google Scholar 

  • Welch RA, Dellinger EP et al (1981) Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 294(5842):665–667

    Article  PubMed  CAS  Google Scholar 

  • Welch RA, Hull R et al (1983) Molecular cloning and physical characterization of a chromosomal hemolysin from Escherichia coli. Infect Immun 42(1):178–186

    PubMed  CAS  Google Scholar 

  • Welch RA, Burland V et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99(26):17020–17024

    Article  PubMed  CAS  Google Scholar 

  • Westerlund B, Kuusela P et al (1989) The O75X adhesin of uropathogenic Escherichia coli is a type IV collagen-binding protein. Mol Microbiol 3(3):329–337

    Article  PubMed  CAS  Google Scholar 

  • Wiles TJ, Dhakal BK et al (2008) Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol Biol Cell 19(4):1427–1438

    Article  PubMed  CAS  Google Scholar 

  • Wilksch JJ, Yang J et al (2011) MrkH, a novel c-di-GMP-dependent transcriptional activator, controls klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 7(8):e1002204

    Article  PubMed  CAS  Google Scholar 

  • Wozniak RA, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8(8):552–563

    Article  PubMed  CAS  Google Scholar 

  • Wray SK, Hull SI et al (1986) Identification and characterization of a uroepithelial cell adhesin from a uropathogenic isolate of Proteus mirabilis. Infect Immun 54(1):43–49

    PubMed  CAS  Google Scholar 

  • Wright KJ, Seed PC et al (2005) Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 73(11):7657–7668

    Article  PubMed  CAS  Google Scholar 

  • Wu XR, Sun TT et al (1996) In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA 93(18):9630–9635

    Article  PubMed  CAS  Google Scholar 

  • Wullt B, Bergsten G et al (2001) P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell Microbiol 3(4):255–264

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Arbeit RD et al (1992) Phagocytic killing of encapsulated and microencapsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect Immun 60(4):1358–1362

    PubMed  CAS  Google Scholar 

  • Yakubu DE, Old DC et al (1989) The haemagglutinins and fimbriae of Proteus penneri. J Med Microbiol 30(4):279–284

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Nakano M et al (2001) The presence of the virulence island containing the usp gene in uropathogenic Escherichia coli is associated with urinary tract infection in an experimental mouse model. J Urol 165(4):1347–1351

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Matsumoto T et al (2000) Role of bacterial capsule in local and systemic inflammatory responses of mice during pulmonary infection with Klebsiella pneumoniae. J Med Microbiol 49(11):1003–1010

    PubMed  CAS  Google Scholar 

  • Yu H, Kim KS (2010) Ferredoxin is involved in secretion of cytotoxic necrotizing factor 1 across the cytoplasmic membrane in Escherichia coli K1. Infect Immun 78(2):838–844

    Article  PubMed  CAS  Google Scholar 

  • Yu WL, Ko WC et al (2006) Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clin Infect Dis 42(10):1351–1358

    Article  PubMed  CAS  Google Scholar 

  • Zalewska B, Piatek R et al (2001) Cloning, expression, and purification of the uropathogenic Escherichia coli invasin DraD. Protein Expr Purif 23(3):476–482

    Article  PubMed  CAS  Google Scholar 

  • Zalewska B, Piatek R et al (2005) A surface-exposed DraD protein of uropathogenic Escherichia coli bearing Dr fimbriae may be expressed and secreted independently from DraC usher and DraE adhesin. Microbiology 151(Pt 7):2477–2486

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Mo WJ et al (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114(Pt 22):4095–4103

    PubMed  CAS  Google Scholar 

  • Zingler G, Ott M et al (1992) Clonal analysis of Escherichia coli serotype O6 strains from urinary tract infections. Microb Pathog 12(4):299–310

    Article  PubMed  CAS  Google Scholar 

  • Zingler G, Blum G et al (1993) Clonal differentiation of uropathogenic Escherichia coli isolates of serotype O6:K5 by fimbrial antigen typing and DNA long-range mapping techniques. Med Microbiol Immunol 182(1):13–24

    Article  PubMed  CAS  Google Scholar 

  • Zunino P, Piccini C et al (1994) Flagellate and non-flagellate Proteus mirabilis in the development of experimental urinary tract infection. Microb Pathog 16(5):379–385

    Article  PubMed  CAS  Google Scholar 

  • Zunino P, Sosa V et al (2003) Proteus mirabilis fimbriae (PMF) are important for both bladder and kidney colonization in mice. Microbiology 149(Pt 11):3231–3237

    Article  PubMed  CAS  Google Scholar 

  • Zunino P, Sosa V et al (2007) Mannose-resistant Proteus-like and P. mirabilis fimbriae have specific and additive roles in P. mirabilis urinary tract infections. FEMS Immunol Med Microbiol 51(1):125–133

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry L. T. Mobley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Reiss, D.J., Engstrom, M.D., Mobley, H.L.T. (2013). Urinary Tract Infections. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30144-5_101

Download citation

Publish with us

Policies and ethics