The Family Acidimicrobiaceae

Reference work entry

Abstract

The order Acidimicrobiales, phylum Actinobacteria, is a phylogenetically well defined lineage that embraces 5 genera. While the family Acidimicrobiaceae harbors 5 genera, the family Iamiaceae is monogeneric. However, there is phylogenetic evidence that the genus Ilumatobacter, Acidimicrobiaceae, is more closely related to the genus Iamia than to other members of the family. While Acidimicrobium, Ferrimicrobium, Ferrithrix and Aciditerrimonas are obligate acidophilic, oxidize ferrous iron or reduce ferric iron and contain meso-diaminopimelic acid in their peptidoglycan, Ilumatobacter grows under neutral or slightly alkaline conditions, is and organotrophic and contains LL-diaminopimelic acid in its peptidoglycan. The iron oxidizing members are involved in uncontrolled pollution by heavy metals but are also used under controlled conditions for biomining.

Keywords

Ferrous Iron Ferrous Sulfate Terminal Restriction Fragment Length Polymorphism Acidithiobacillus Ferrooxidans Geothermal Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bacelar-Nicolau P, Johnson DB (1999) Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65:585–590PubMedCentralPubMedGoogle Scholar
  2. Blackall LL, Stratton H, Bradford D, Dot TD, Sjörup C, Seviour EM, Seviour RJ (1996) “Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 46:344–3446PubMedCrossRefGoogle Scholar
  3. Bond PL, Banfield JF (2001) Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb Ecol 41:149–161PubMedGoogle Scholar
  4. Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849PubMedCentralPubMedCrossRefGoogle Scholar
  5. Breuker A, Blazejak A, Bosecker K, Schippers A, Lavalle TL (2009) Diversity of iron oxidizing bacteria from various sulfidic mine waste dumps. In: Donati ER, Viera MR, Tavani EL, Giaveno MA, Chiacchiarini PA (eds) Advanced materials research, biohydrometallurgy: a meeting point between microbial ecology, metal recovery processes amd environmental remediation. Trans Tech, Zürich, pp 47–50Google Scholar
  6. Brierley JA (1978) Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 36:523–525PubMedCentralPubMedGoogle Scholar
  7. Bridge TAM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186PubMedCentralPubMedGoogle Scholar
  8. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68PubMedCrossRefGoogle Scholar
  9. Brofft JE, Vaun McArthur J, Shimkets LJ (2002) Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environ Microbiol 4:764–769PubMedCrossRefGoogle Scholar
  10. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed–culture ferrous iron oxidation with Sulfolobus species. Microbiology 142:785–790CrossRefGoogle Scholar
  11. Cleaver AA, Burton NP, Norris PR (2007) A novel Acidimicrobium species in continuous cultures of moderately thermophilic, mineral-sulfide-oxidizing acidophiles. Appl Environ Microbiol 73:4294–4299PubMedCentralPubMedCrossRefGoogle Scholar
  12. Clum A, Nolan M, Lang E, Glavina T, Del Rio H, Tice A, Copeland J-F, Cheng S, Lucas F, Chen D, Bruce L, Goodwin S, Pitluck N, Ivanova K, Mavromatis N, Mikhailova A, Pati A, Chen K, Palaniappan M, Göker S, Spring M, Land L, Hauser Y-J, Chang CD, Jeffries P, Chain J, Bristow JA, Eisen V, Markowitz P, Hugenholtz NC, Kyrpides H-PK, Lapidus A (2009) Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICP). Stand Genomic Sci 1:38–45PubMedCentralPubMedCrossRefGoogle Scholar
  13. Collins G, Foy C, McHugh S, O’Flaherty V (2005) Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15 degrees C. FEMS Microbiol Ecol 53:167–178PubMedCrossRefGoogle Scholar
  14. Davis-Belmar CS, Norris PR (2009) Ferrous iron and pyrite oxidation by “Acidithiomicrobium” species. Adv Mater Res 71–73:271–274CrossRefGoogle Scholar
  15. DSMZ Catalogue of Strains (2001) http//www.dsmz.de
  16. Garcia-Moyano A, Gonzalez-Toril E, Aquilera A, Amils R (2012) Comparative microbial ecology study of the sediments and the water columns of the Rio Tinto, an extreme acidic environment. FEMS Microb Ecol 81:303–314CrossRefGoogle Scholar
  17. Garrido P, Gonzalez-Toril E, Garcia-Moyano A, Moreno-Paz M, Amils R, Parro V (2008) An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ Microbiol 10:836–850PubMedCrossRefGoogle Scholar
  18. Garrity GM, Holt JG (eds) (2001) The road map to the manual. Bergey’s manual of systematic bacteriology. Springer, New YorkGoogle Scholar
  19. Garrity GM, Bell JA, Lilburn T (2005) The revised road map to the manual. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) The proteobacteria, part A, introductory essays, vol 2, 2nd edn. Springer, New York, pp 159–206Google Scholar
  20. González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865PubMedCentralPubMedCrossRefGoogle Scholar
  21. González-Toril E, Aguilera A, Souza-Egipsy V, Lopez Pamo E, Sanchez Espana J, Amils R (2011) Geomicrobiology of La Zarza-Perrunal acid mine effluent (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77:2685–2694PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic “acid streamer” growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030PubMedCentralPubMedCrossRefGoogle Scholar
  23. Itoh T, Yamanoi K, Kudo T, Ohkuma M, Takashina T (2011) Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field. Int J Syst Evol Microbiol 61:1281–1285PubMedCrossRefGoogle Scholar
  24. Jenkins SN, Waite IS, Blackburn A, Husband R, Rushton SP, Manning DC, O’Donnell AG (2009) Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek 95:319–334PubMedCrossRefGoogle Scholar
  25. Johnson DB, Okibe N, Roberto FF (2003) Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68PubMedCrossRefGoogle Scholar
  26. Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Methods 23:205–218CrossRefGoogle Scholar
  27. Johnson DB, McGinness S (1991) A highly efficient and universal solid medium for growing mesophilic and moderately thermophilic iron-oxidising, acidophilic bacteria. J Microbiol Methods 13:113–122CrossRefGoogle Scholar
  28. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089PubMedCrossRefGoogle Scholar
  29. Köberl M, Müller H, Ramadan EM, Berg G (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6:e24452PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kurahashi M, Fukunaga Y, Akiyama Y, Harayama S, Yokota A (2009) Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam. nov. Int J Syst Evol Microbiol 59:869–873PubMedCrossRefGoogle Scholar
  31. Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni S, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278PubMedCentralPubMedGoogle Scholar
  32. Lu Z, Zhang W (2012) Comparative phylogenies of ribosomal proteins and the 16S rRNA gene at higher ranks of the class Actinobacteria. Curr Microbiol 65:1PubMedCrossRefGoogle Scholar
  33. Ludwig W, Euzéby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman WB (2012) Road map of the phylum Actinobacteria. In: Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo M, Garrity G, Ludwig W, Suzuki K-I (eds) Bergey’s manual of systematic bacteriology, vol 5, 2nd edn, the Actinobacteria. Springer, New YorkGoogle Scholar
  34. Macalady JL, Jones DS, Lyon EH (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environ Microbiol 9:1402–1414PubMedCrossRefGoogle Scholar
  35. Matsumoto A, Kasai H, Matsuo Y, Omura S, Shizuri Y, Takahashi Y (2009) Lumatobacter fluminis gen. nov., sp. nov., a novel actinobacterium isolated from the sediment of an estuary. J Gen Appl Microbiol 55:201–205PubMedCrossRefGoogle Scholar
  36. Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P (2010) Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 74:669–681PubMedCrossRefGoogle Scholar
  37. Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel Actinobacteria from marine sponges. Antonie Van Leeuwenhoek 87:29–36PubMedCrossRefGoogle Scholar
  38. Normand P (1996) Geodermatophilaceae fam.nov., a formal description. Int J Syst Evol Microbiol 56:2277–2278CrossRefGoogle Scholar
  39. Normand P (2006) The families Frankiaceae, Geodermatophilaceae, Acidothermaceae and Sporichthyaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 669–681CrossRefGoogle Scholar
  40. Norris PR, Barr DW (1985) Growth and iron oxidation by acidophilic moderate thermophiles. FEMS Microbiol Lett 28:221–224CrossRefGoogle Scholar
  41. Norris PR, Davis-Belmar CS, Brown CF, Calvo-Bado LA (2011) Autotrophic, sulfur-oxidizing actinobacteria in acidic environments. Extremophiles 15:155–163PubMedCrossRefGoogle Scholar
  42. Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783PubMedCrossRefGoogle Scholar
  43. Pertoft H, Laurent TC, Låås T, Kågedal L (1978) Density gradients prepared from colloidal silica particles coated by polyvinylpyrrolidone (Percoll). Anal Biochem 88:271–282PubMedCrossRefGoogle Scholar
  44. Readett D, Sylwestrzak L, Franzmann PD, Plumb JJ, Robertson WR, Gibson JAE, Watling H, Young CA (2003) The life cycle of a chalcocite heap bioleach system. In: Young CA, Alfantazi AM, Anderson CG, Dreisinger DB, Harris B, James A (eds) Hydrometallurgy, vol 1, Leaching and solution purification. TMS, Warrendale, pp 365–374Google Scholar
  45. Rheims H, Sproer C, Rainey FA, Stackebrandt E (1996) Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations. Microbiology 142:2863–2870PubMedCrossRefGoogle Scholar
  46. Rossetti S, Tomei MC, Nielsen PH, Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol Rev 29:49–64PubMedCrossRefGoogle Scholar
  47. Rowe OF, Johnson DB (2008) Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Syst Appl Microbiol 31:68–77PubMedCrossRefGoogle Scholar
  48. Rudi K, Zimonja M, Naes T (2006) Alignment-independent bilinear multivariate modelling (AIBIMM) for global analyses of 16S rRNA gene phylogeny. Int J Syst Evol Microbiol 56:1565–1575PubMedCrossRefGoogle Scholar
  49. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:471–491Google Scholar
  50. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  51. Sultana M, Vogler S, Zargar K, Schmidt AC, Saltikov C, Seifert J, Schlömann M (2012) New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch Microbiol 194:623–625Google Scholar
  52. Urbieta MS, González Toril E, Aguilera A, Giaveno MA, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic River in Neuquén, Argentina. Microb Ecol 64:91–104PubMedCrossRefGoogle Scholar
  53. Wakeman K, Auvinen H, Johnson DB (2008) Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Biotechnol Bioeng 101:739–750PubMedCrossRefGoogle Scholar
  54. Watkin EL, Keeling SE, Perrot FA, Shiers DW, Palmer ML, Watling HR (2009) Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans. J Ind Microbiol Biotechnol 36:461–465PubMedCrossRefGoogle Scholar
  55. Xin Y, Huang J, Deng M, Zhang W (2008) Culture-independent nested PCR method reveals high diversity of actinobacteria associated with the marine sponges Hymeniacidon perleve and Sponge sp. Antonie Van Leeuwenhoek 94:533–542PubMedCrossRefGoogle Scholar
  56. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living-Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  57. Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J, Liu X, Dai Z, Ding J, Liu X (2008) Molecular diversity of 16S rRNA and gyrB genes in copper mines. Arch Microbiol 189:101–110PubMedCrossRefGoogle Scholar
  58. Zammit CM, Jonna Mangold SV, Mutch LA, Watling HR, Dopson M, Watkin EL (2012) Bioleaching in brackish waters-effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 93:319–329PubMedCrossRefGoogle Scholar
  59. Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweigGermany

Personalised recommendations