Skip to main content
Log in

First Prokaryotic Biodiversity Assessment Using Molecular Techniques of an Acidic River in Neuquén, Argentina

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Two acidic hot springs close to the crater of Copahue Volcano (Neuquén, Argentina) are the source of the Río Agrio. The river runs several kilometres before flowing into Caviahue Lake. Along the river, temperature, iron, other metal and proton concentrations decrease gradually with distance downstream. From the source to the lake and depending on the season, pH can rise from 1.0 (or even less) to about 4.0, while temperature values decrease from 70°C to 15°C. Water samples were taken from different stations on the river selected according to their physicochemical parameters. In order to assess prokaryotic biodiversity throughout the water column, different and complementary molecular biology techniques were used, mainly in situ hybridisation and 16S rRNA gene cloning and sequencing. All microorganisms found are typical of acidic environments. Sulphur-oxidizing bacteria like Acidithiobacillus thiooxidans and Acidithiobacillus albertensis were detected in every station. Moderately thermophile iron- and sulphur-oxidizing bacteria like members of Alicyclobacillus and Sulfobacillus genera were also ubiquitous. Strict iron-oxidizing bacteria like Leptospirillum and Ferrimicrobium were present at the source of the river, but disappeared downstream where iron concentrations were much lower. Iron-oxidizing, mesophilic Ferroplasma spp. were the main archaea found. The data presented in this work represent the first molecular assessment of this rare natural acidic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Achenbach L, Woese C (1995) 16S and 23S rRNA-like primers. In: Sower KR, Schreier HJ (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 521–523

    Google Scholar 

  2. Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30:531–546

    Article  PubMed  CAS  Google Scholar 

  3. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  4. Amann RI, Ludwig W, Scleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Mol Biol Rev 59:143–169

    CAS  Google Scholar 

  5. Amils R, Gonzalez-Toril E, Fernandez Remolar D, Gomez F, Aguilera A, Rodriguez N, Malki M, Garcia Moyano A, Fairen A, Delafuente V (2007) Extreme environments as Mars terrestrial analogs: the Rio Tinto case. Planet Space Sci 55:370–381

    Article  CAS  Google Scholar 

  6. Baffico GD (2010) Epilithic algae distribution along a chemical gradient in a naturally acidic river, Río Agrio (Patagonia, Argentina). Microb Ecol 59:533–545

    Article  PubMed  CAS  Google Scholar 

  7. Bond PL, Druschel GK, Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4978

    Article  PubMed  CAS  Google Scholar 

  8. Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  PubMed  CAS  Google Scholar 

  9. Breuker A, Blazejak A, Bosecker K, Schippers A (2009) Diversity of iron oxidizing bacteria from various sulfidic mine waste dumps. In: Donati E, Viera M, Tavani E, Giaveno A, Lavalle L, Chiachiarini P (eds) Biohydrometallurgy. Adv Mater Res 71:47–50.

  10. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  11. Chiacchiarini P, Lavalle L, Giaveno A, Donati E (2010) First assessment of acidophilic microorganisms from geothermal Copahue–Caviahue system. Hydrometallurgy 104:334–341

    Article  CAS  Google Scholar 

  12. Craig Baker A, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  Google Scholar 

  13. Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  PubMed  CAS  Google Scholar 

  14. Daims H, Nielsen P, Nielsen JL, Juretschko S, Wagner M (2001) Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Sci Technol 43:416–523

    Google Scholar 

  15. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799

    Article  PubMed  CAS  Google Scholar 

  16. Edwards KJ, Gihring TM, Banfield JF (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627–3632

    PubMed  CAS  Google Scholar 

  17. Gammons C, Wood S, Parker S (2006) The behaviour of rare earth elements in naturally and anthropogenically acidified waters. J Alloys Compd 418:161–165

    Article  Google Scholar 

  18. Gammons C, Wood S, Pedrozo F, Varekamp J, Nelson B, Shope C, Baffico G (2005) Hydrogeochemistry and rare earth element behaviour in a volcanically acidified watershed in Patagonia, Argentina. Chem Geol 222:249–267

    Article  CAS  Google Scholar 

  19. García-Moyano A, González-Toril E, Aguilera A, Amils R (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). Syst Appl Microbiol 30:601–614

    Article  PubMed  Google Scholar 

  20. Garrido P, González-Toril E, García-Moyano A, Moreno-Paz A, Amils R, Parro V (2008) An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ Microbiol 10:836–850

    Article  PubMed  CAS  Google Scholar 

  21. Giaveno A, Pettinari G, González Toril E, Aguilera A, Urbieta MS, Donati E (2011) The influence of two thermophilic consortia on troilite (FeS) dissolution. Hydrometallurgy 106:19–25

    Article  CAS  Google Scholar 

  22. Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez-Toril E, Aguilera A, Souza-Egipsy V, Lopez Pamo E, Sanchez Espana J, Amils R (2011) Geomicrobiology of an acid mine effluent, La Zarza-Perrunal (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77:2685–2694

    Article  PubMed  CAS  Google Scholar 

  24. Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed  CAS  Google Scholar 

  25. Hallberg K, Hedrich S, Johnson DB (2011) Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 5:271–279

    Article  Google Scholar 

  26. Harrison JAP (1984) The acidophilic thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38:265–292

    Article  PubMed  CAS  Google Scholar 

  27. Huang L, Zhou W, Hallberg KB, Wan C, Li J, Shu W (2011) Spatial and temporal analysis of the microbial community in the tailings of a Pb–Zn mine generating acidic drainage. Appl Environ Microbiol 77:5540–5544

    Article  PubMed  CAS  Google Scholar 

  28. Ibáñez J, Del Pezzo JM, Bengoa E, Caselli C, Badi A, Almendros G (2008) Volcanic tremor and local earthquakes at Copahue volcanic complex, Southern Andes, Argentina. J Volcanol Geoth 174:284–294

    Article  Google Scholar 

  29. Javaux EJ (2006) Extreme life on Earth—past, present and possibly beyond. Res Microbiol 157:37–48

    Article  PubMed  Google Scholar 

  30. Jennifer EHL, Macalady L, Jones DS (2007) Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system. Italy Environ Microbiol 9:1402–1414

    Google Scholar 

  31. Johnson D (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Meth 23:205–218

    Article  Google Scholar 

  32. Johnson DB, Hallberg K (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  PubMed  CAS  Google Scholar 

  33. Kock D, Schippers A (2008) Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl Environ Microbiol 74:5211–5219

    Article  PubMed  CAS  Google Scholar 

  34. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  35. Lavalle L, Chiacchiarini P, Pogliani C, Donati E (2005) Isolation and characterization of acidophilic bacteria from Patagonia, Argentina. Process Biochem 40:1095–1099

    Article  CAS  Google Scholar 

  36. Löhr AJ, Laverman AM, Braster M, van Straalen NM, Röling WFM (2006) Microbial communities in the world’s largest acidic volcanic lake, Kawah Ijen in Indonesia, and in the Banyupahit river originating from it. Microb Ecol 52:609–618

    Article  PubMed  Google Scholar 

  37. Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  38. Mirete S, de Figueras CG, Gonzalez-Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73:6001–6011

    Article  PubMed  CAS  Google Scholar 

  39. Monasterio AM (2008) Termas de Copahue. Balnea 4:151–163

    Google Scholar 

  40. Neef A (1997) Anwendung der in situ-Einzelzell-Identifizierung von Bakterien zur Populations analyse in komplexen mikrobiellen Biozonosen. Ph.D. thesis. Technical University of Munich, Munich, Germany.

  41. Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, part A: processes, techniques, and health issues. The Society of Economic Geologists, Littleton, pp 133–160

    Google Scholar 

  42. Parker SR, Gammons CH, Fernando FL, Wood SA (2008) Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina. J Volcanol Geoth Res 178:213–223

    Article  CAS  Google Scholar 

  43. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  PubMed  CAS  Google Scholar 

  44. Lin B, Hyacinthe C, Bonneville S, Braster M, Van Cappellen P, Roling WF (2007) Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Eviron Microbiol 9:1956–1968

    Article  CAS  Google Scholar 

  45. Poplawski AB, Martensson L, Wartiainen I, Rasmussen U (2007) Archaeal diversity and community structure in a Swedish barley field: specificity of the EK510R/(EURY498) 16S rDNA primer. J Microbiol Meth 69:161–173

    Article  CAS  Google Scholar 

  46. Quiñones R, Levipan H, Urrutia H (2009) Spatial and temporal variability of planktonic archaeal abundance in the Humboldt Current System off Chile. Deep Sea Research Part II: Topical Studies in Oceanography 56:1073–1082

    Article  Google Scholar 

  47. Rowe OF, Sanchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771

    Article  PubMed  CAS  Google Scholar 

  48. Schippers A, Neretin LN (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8:1251–1260

    Article  PubMed  CAS  Google Scholar 

  49. Schloss PD (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  50. Sclesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewaters, 20th edn. American Public Health Association.

  51. Tan GL (2008) Culturable and molecular phylogenetic diversity of microorganisms in an open-dumped, extremely acidic Pb/Zn mine tailings. Extremophiles 12:657–664

    Article  PubMed  CAS  Google Scholar 

  52. Varekamp D, Maartende Moor J, Merrill M, Colvin A, Goss A, Vroon P (2006) Geochemistry and isotopic characteristics of the Caviahue–Copahue volcanic complex, Province of Neuquen, Argentina. Geol Soc Am Pap 407:317–342

    Google Scholar 

  53. Xiao S, Xie X, Liu J (2009) Microbial communities in acid water environments of two mines, China. Environ Pollut 157:1045–1050

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by grants PIP 0368 (CONICET), PICT 0339 and PICT-2010-0749 (ANPCYT) as well as the CGL2008-02298/BOS (MICIN) Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sofía Urbieta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbieta, M.S., González Toril, E., Aguilera, A. et al. First Prokaryotic Biodiversity Assessment Using Molecular Techniques of an Acidic River in Neuquén, Argentina. Microb Ecol 64, 91–104 (2012). https://doi.org/10.1007/s00248-011-9997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9997-2

Keywords

Navigation