The Family Lachnospiraceae

  • Erko Stackebrandt
Reference work entry


The family Lachnospiraceae is a phylogenetically and morphologically heterogeneous taxon of the class Clostridia, phylum Firmicutes. The family, described on the basis of 16S rRNA gene sequence analysis, contains a high number of as yet not reclassified species of other genera which will significantly expand the physiological and chemotaxonomic diversity of the family once these species will be assigned to new genera. All members are anaerobic, fermentative, and chemoorganotrophic, some with strong hydrolyzing activities, e.g., pectin methylesterase, pectate lyase, xylanase, α-L-arabinofuranosidase, ß-xylosidase α- and ß-galactosidase, α- and ß-glucosidase, .-acetyl-ß-glucosaminidase, or α-amylase. The human or animal digestive tract is the main habitat for most members; other were isolated from the oral cavity but rarely from soil.


Irritable Bowel Syndrome Giant Panda Swine Manure Diabetic Wound Class Clostridia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Clavel T, Lippman R, Gavini F, Doré J, Blaut M (2007) Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30:16–26PubMedCrossRefGoogle Scholar
  2. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826PubMedCrossRefGoogle Scholar
  3. Cook AR, Riley PW, Murdoch H, Evans PN, McDonald IR (2007) Howardella ureilytica gen. nov., sp. nov., a Gram-positive, coccoid-shaped bacterium from a sheep rumen. Int J Syst Evol Microbiol 57:2940–2945PubMedCrossRefGoogle Scholar
  4. Cotta MA, Whitehead TR, Zeltwanger RL (2003) Isolation, characterization and comparison of bacteria from swine faeces and manure storage pits. Environ Microbiol 5:737–745PubMedCrossRefGoogle Scholar
  5. Cotta MA, Whitehead TR, Falsen E, Moore E, Lawson PA (2009) Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 59:150–155PubMedCrossRefGoogle Scholar
  6. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) (2009) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New YorkGoogle Scholar
  7. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade G (2010) The human oral microbiome. J Bacteriol 192:5002–5017PubMedCrossRefPubMedCentralGoogle Scholar
  8. Eckburg PB, Bi EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefPubMedCentralGoogle Scholar
  9. Euzeby J (2010) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 60:469–472CrossRefGoogle Scholar
  10. Grice EA, Snitkin ES, Yockey LJ, Bermudez DM, Liechty KW, Segre JA (2010) CONSRTM NISC Comparative sequencing program longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proc Natl Acad Sci U S A 107:14799–14804PubMedCrossRefPubMedCentralGoogle Scholar
  11. Hedberg ME, Moore ER, Svensson-Stadler L, Hörstedt P, Baranov V, Hernell O, Wai SN, Hammarström S, Hammarström ML (2012) Lachnoanaerobaculum gen. nov., a new genus in the Lachnospiraceae: characterization of Lachnoanaerobaculum umeaense gen. nov., sp. nov., isolated from the human small intestine, and Lachnoanaerobaculum orale sp. nov., isolated from saliva, and reclassification of Eubacterium saburreum (Prevot 1966) Holdeman and Moore 1970 as Lachnoanaerobaculum saburreum comb. nov. Int J Syst Evol Microbiol 62:2685–2690PubMedCrossRefPubMedCentralGoogle Scholar
  12. Jeong H, Lim YW, Yi H, Sekiguchi Y, Kamagata Y, Chun J (2007) Anaerosporobacter mobilis gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 57:1784–1787PubMedCrossRefGoogle Scholar
  13. Jin JS, Kakiuchi N, Hattori M (2007) Enantioselective oxidation of enterodiol to enterolactone by human intestinal bacteria. Biol Pharm Bull 30:2204–2206PubMedCrossRefGoogle Scholar
  14. Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33PubMedCrossRefGoogle Scholar
  15. Kroes I, Lepp PW, Relman DA (1999) Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 96:14547–14552PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ley RE, Turnbaugh PJ, Klein S, GordonJ I (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023PubMedCrossRefGoogle Scholar
  17. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedCrossRefPubMedCentralGoogle Scholar
  18. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, Zhang T, Rohlf FJ, Zhu W, Gu C, Robertson CE, Pace NR, Boedeker EC, Harpaz N, Yuan J, Weinstock GM, Sodergren E, Frank DN (2012) Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One 7:e26284PubMedCrossRefPubMedCentralGoogle Scholar
  19. McLaughlin RW, Zheng J, Ruan R, Wang C, Zhao Q, Wang D (2013) Isolation of Robinsoniella peoriensis from the fecal material of the endangered Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis. Anaerobe 20:79PubMedCrossRefGoogle Scholar
  20. Munson MA, Banerjee A, Watson TF, Wade WG (2004) Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42:3023–3029PubMedCrossRefPubMedCentralGoogle Scholar
  21. Perkins SD, Woeltje KF, Angenent LT (2010) Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. Int J Med Microbiol 300:503–511PubMedCrossRefGoogle Scholar
  22. Pfeiffer N, Desmarchelier C, Blaut M, Daniel H, Haller D, Clavel T (2012) Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Arch Microbiol 194:901–907PubMedCrossRefGoogle Scholar
  23. Rainey FA (2009a) Family V. Lachnospiraceae. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, p 921Google Scholar
  24. Rainey FA (2009b) Class II Clostridia class. nov. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, p 736Google Scholar
  25. Rainey FA (2009c) Order I Clostridiales prevot 1953. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, p 736Google Scholar
  26. Sizova MV, Hohmann T, Hazen A, Paster BJ, Halem SR, Murphy CM, Panikov NS, Epstein SS (2012) New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 78:194–203PubMedCrossRefPubMedCentralGoogle Scholar
  27. Sizova M, Muller P, Panikov N, Mandalakis M, Hohmann T, Hazen A, Fowle W, Prozorov T, Bazylinski DA, Epstein SS (2013) Stomatobaculum longum gen. nov., sp. nov., an obligately anaerobic bacterium from the human oral cavity. Int J Syst Evol Microbiol 63:1450–1456PubMedCrossRefPubMedCentralGoogle Scholar
  28. Smith P, Siddharth J, Pearson R, Holway N, Shaxted M, Butler M, Clark N, Jamontt J, Watson RP, Sanmugalingam D, Parkinson SJ (2012) Host genetics and environmental factors regulate ecological succession of the mouse colon issue-associated microbiota. PLoS One 7, E30273PubMedCrossRefPubMedCentralGoogle Scholar
  29. Stackebrandt E, Kramer I, Swiderski J, Hippe H (1999) Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 24:253–258PubMedCrossRefGoogle Scholar
  30. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 429(22):2688–2690CrossRefGoogle Scholar
  31. Turnbaugh PJ, Backhed F, Fulto L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223PubMedCrossRefPubMedCentralGoogle Scholar
  32. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6RA14PubMedCrossRefPubMedCentralGoogle Scholar
  33. van der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW, Carroll MP, Parkhill J, Bruce KD (2011) Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J 5:780–791PubMedCrossRefPubMedCentralGoogle Scholar
  34. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living-tree project based on 16S 445 and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbHBraunschweigGermany

Personalised recommendations