Skip to main content
Log in

Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We used selective agar media for culturing bacteria from the caecum of mice fed a high calorie diet. In addition to the isolation of Enterobacteriaceae growing on a medium containing cholesterol and bile salts, we focused on the characterization of strain CT-m2T, which, based on 16S rDNA analysis, did not appear to correspond to any currently described organisms. The isolate belongs to the Clostridium cluster XIV and is most closely related to members of the Lachnospiraceae, including the genera Anaerostipes, Blautia, Butyrivibrio, Clostridium, Coprococcus, Eubacterium, Robinsoniella, Roseburia, Ruminococcus and Syntrophococcus (≤90 % similarity). Strain CT-m2T is a non-motile Gram-positive rod that does not form spores and has a G + C content of DNA of 48.5 %. Cells grow under strictly anoxic conditions (100 % N2) and produce acetate and butyrate after growth in reduced WCA broth. In contrast to related species, the new bacterium does not metabolize glucose and is positive for phenylalanine arylamidase, and its major cellular fatty acid is C14:0. Based on phylogenetic and phenotypic studies, the isolate merits recognition as a member of a novel genus and species, for which the name Acetatifactor muris is proposed. The type strain is CT-m2T (= DSM 23669T = ATCC BAA-2170T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Attebery HR, Finegold SM (1969) Combined screw-cap and rubber-stopper closure for Hungate tubes (pre-reduced anaerobically sterilized roll tubes and liquid media). Appl Microbiol 18:558–561

    PubMed  CAS  Google Scholar 

  • Clavel T, Henderson G, Engst W, Dore J, Blaut M (2006) Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55:471–478

    Article  PubMed  CAS  Google Scholar 

  • Clavel T, Charrier C, Braune A, Wenning M, Blaut M, Haller D (2009) Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov. Int J Syst Evol Microbiol 59:1805–1812

    Article  PubMed  CAS  Google Scholar 

  • Clavel T, Saalfrank A, Charrier C, Haller D (2010) Isolation of bacteria from mouse caecal samples and description of Bacteroides sartorii sp. nov. Arch Microbiol 192:427–435

    Article  PubMed  CAS  Google Scholar 

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    Article  PubMed  CAS  Google Scholar 

  • Cotta MA, Whitehead TR, Falsen E, Moore E, Lawson PA (2009) Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 59:150–155

    Article  PubMed  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006a) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  CAS  Google Scholar 

  • DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006b) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Hold GL, Barcenilla A, Stewart CS, Flint HJ (2002) Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52:1615–1620

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817

    Article  PubMed  CAS  Google Scholar 

  • Eeckhaut V, Van Immerseel F, Pasmans F, De Brandt E, Haesebrouck F, Ducatelle R, Vandamme P (2010) Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. Int J Syst Evol Microbiol 60:1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M (2010) Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 104:919–929

    Article  PubMed  CAS  Google Scholar 

  • Furuya H, Ide Y, Hamamoto M, Asanuma N, Hino T (2010) Isolation of a novel bacterium, Blautia glucerasei sp. nov., hydrolyzing plant glucosylceramide to ceramide. Arch Microbiol 192:365–372

    Article  PubMed  CAS  Google Scholar 

  • Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 108:6252–6257

    Article  PubMed  CAS  Google Scholar 

  • Grice EA, Snitkin ES, Yockey LJ, Bermudez DM, Liechty KW, Segre JA (2010) Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proc Natl Acad Sci USA 107:14799–14804

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuc Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Holdeman LV, Moore WEC (1974) New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int J Syst Bacteriol 24:260–277

    Article  Google Scholar 

  • Kageyama A, Benno Y, Nakase T (1999) Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49:1725–1732

    Article  PubMed  CAS  Google Scholar 

  • Kopecny J, Zorec M, Mrazek J, Kobayashi Y, Marinsek-Logar R (2003) Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol 53:201–209

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  PubMed  CAS  Google Scholar 

  • Moore WEC, Johnson JL, Holdeman LV (1976) Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium and Ruminococcus. Int J Syst Bacteriol 26:238–252

    Article  Google Scholar 

  • Pacaud S, Loubiere P, Goma G, Lindley ND (1986) Organic acid production during methylotrophic growth of Eubacterium limosum B 2: displacement towards increased butyric acid yields by supplementing with acetate. Appl Microbiol Biotechnol 23:330–335

    Article  CAS  Google Scholar 

  • Palop M, Valles S, Pinaga F, Flors A (1989) Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium celerecrescens sp. nov. Int J Syst Bacteriol 39:68–71

    Article  Google Scholar 

  • Rainey FA (2009a) Family V. Lachnospiraceae fam. nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey;s manual of systematic bacteriology, 2nd edn. Springer, New York, p 921

    Google Scholar 

  • Rainey FA (2009b) Family VIII. Ruminococcaceae fam. nov. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 1016

    Google Scholar 

  • Turnbaugh P, Ridaura V, Faith J, Rey F, Knight R, Gordon J (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Trans Med 1:6ra14

    Article  Google Scholar 

  • Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–1113

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Wagner SJ, Martinez I, Walter J, Chang JS, Clavel T, Kisling S, Schuemann K, Haller D (2011) Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 60:325–333

    Article  PubMed  CAS  Google Scholar 

  • Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rossello-Mora R (2008) The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Nico Gebhardt, Melanie Klein, Katharina Rank (TU München) and Sabine Schmidt (DIfE) for excellent technical assistance, to Jean P. Euzeby (Ecole Nationale Vétérinaire, Toulouse, France) for helping with Latin bacterial names and to staff members of the DSMZ for carrying out descriptive analysis of the isolate. C.D. was financed by the EU FP6 project Nutrient Sensing in Satiety Control and Obesity (NuSISCO, Grant no. MEST-CT-2005-020494).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Clavel.

Additional information

Communicated by Erko Stackebrandt.

The GenBank accession number of the 16S rRNA gene sequence of strain CT-m2T is HM989805.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 951 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, N., Desmarchelier, C., Blaut, M. et al. Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Arch Microbiol 194, 901–907 (2012). https://doi.org/10.1007/s00203-012-0822-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0822-1

Keywords

Navigation