Encyclopedia of Color Science and Technology

Living Edition
| Editors: Ronnier Luo

Magno-, Parvo-, Koniocellular Pathways

  • Jasna Martinovic
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27851-8_278-1



Magno-, parvo-, and koniocellular pathways are the three visual pathways in primates. These pathways are established at the level of the lateral geniculate nucleus (LGN) of the thalamus. They are formed of morphologically distinct cellular layers that receive information from different types of retinal ganglion cells and project to different layers in the primary visual cortex.

Anatomical Considerations

The LGN layers of each of the three visual pathways have a specific cytoarchitectonic structure. The names of the pathways are derived from these structural characteristics. Magnocellular (M) cells have relatively large bodies (lat. Magnus: large) and are found in the lowest two layers (layers 1 and 2) of the LGN. Parvocellular (P) cells have smaller bodies (lat. Parvus: small) and are found in the top four layers of the LGN (layers 3, 4, 5,...


Autism Spectrum Disorder Receptive Field Retinal Ganglion Cell Lateral Geniculate Nucleus Primary Visual Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Casagrande, V.A., Xu, X.: Parallel visual pathways: a comparative perspective. In: Werner, J.S., Chalupa, L.S. (eds.) The New Visual Neurosciences, pp. 494–506. MIT Press, Cambridge (2004)Google Scholar
  2. 2.
    Hendry, S.H.C., Reid, R.C.: The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23, 127–153 (2000)CrossRefGoogle Scholar
  3. 3.
    Derrington, A.M., Krauskopf, J., Lennie, P.: Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. 357, 241–265 (1984)CrossRefGoogle Scholar
  4. 4.
    Bishop, G.H.: Fiber groups in the optic nerves. Am. J. Physiol. 106, 460–470 (1933)Google Scholar
  5. 5.
    Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Goodale, M.A., Mansfield, R.J.W. (eds.) Analysis of Visual Behavior, pp. 549–586. MIT Press, Cambridge (1982)Google Scholar
  6. 6.
    Livingstone, M.S., Hubel, D.H.: Segregation of form, color, movement and depth: anatomy, physiology and perception. Science 240, 740–749 (1988)CrossRefADSGoogle Scholar
  7. 7.
    Conway, B.R., et al.: Advances in color science: from retina to behavior. J. Neurosci. 30(45), 14955–14963 (2010)CrossRefGoogle Scholar
  8. 8.
    Kaplan, E.: The M, P and K pathways of the primate visual system revisited. In: Werner, J.S., Chalupa, L.S. (eds.) The New Visual Neurosciences. MIT Press, Cambridge (2012)Google Scholar
  9. 9.
    Stockman, A., Brainard, D.H.: Color vision mechanisms. In: Bass, M. (ed.) OSA Handbook of Optics, 3rd edn, pp. 11.1–11.104. McGraw-Hill, New York (2010)Google Scholar
  10. 10.
    Lee, B.B.: Visual pathways and psychophysical channels in the primate. J. Physiol. Lond. 589(1), 41–47 (2011)CrossRefADSGoogle Scholar
  11. 11.
    Solomon, S.G., Lennie, P.: The machinery of colour vision. Nat. Rev. Neurosci. 8(4), 276–286 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of Aberdeen, School of PsychologyAberdeenUK