Skip to main content

Huronian Glaciation

Encyclopedia of Astrobiology

Synonyms

Paleoproterozoic ice ages; Paleoproterozoic snowball earth

Definition

The Huronian glaciation is the oldest series of protracted climatic refrigeration events that extensively affected Earth. It occurred between 2.45 and 2.22 Ga in association with the rise of atmospheric oxygen. Three glaciations of that series, the classical Huronian ice ages, are bracketed in time between ~2.45 and 2.32 Ga; the fourth event, recognized so far only in South Africa, is ~2.22 Ga in age. During these events, glaciers covered continents, extended to low latitudes, and reached to sea level. The ice ages were followed by a protracted time interval with greenhouse (warm and humid) conditions. The name is derived from the Huronian Supergroup exposed on the north shore of Lake Huron in Ontario, Canada, between Sault Ste. Marie, Sudbury, and Cobalt.

History

The Huronian glacial deposits were first recognized by Coleman (1907) in the northeastern part of the Huronian Basin in Ontario, Canada; just a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317–318:295–304

    Article  Google Scholar 

  • Bekker A, Holland HD, Wang P-L, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  ADS  Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Eriksson KA (2005) Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Res 137:167–206

    Article  Google Scholar 

  • Brasier AT, Martin AP, Melezhik VA, Prave AR, Condon DJ, Fallick AE, FAAR-DEEP Scientists (2013) Earth’s earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia. Precambrian Res 235:278–294

    Article  Google Scholar 

  • Coleman AP (1907) A lower huronian ice age. Am J Sci 23:187–192

    Article  MATH  Google Scholar 

  • Eskola PE (1919) Hufvuddragen av Onega-Karelens geology: Helsingin Geol. Yhd. Tiedonantoja 1917 u. 1918, pp 13–18, and Teknikern, vol 29, pp 37–39

    Google Scholar 

  • Evans DA, Beukes NJ, Kirschvink JL (1997) Low-latitude glaciation in the Paleoproterozoic era. Nature 386:262–266

    Article  ADS  Google Scholar 

  • Gumsley AP, Chamberlain K, Bleeker W, Söderlund U, de Kock MO, Kampmann TC, Larsson E (2015) U-Pb TIMS and in-situ SIMS dating of baddeleyite and zircon from sub-volcanic sills of the Ongeluk Formation (Transvaal Supergroup) in the Griqualand West sub-basin, Kaapvaal Craton, with implications for Snowball Earth and the Great Oxygenation Event. AGU-GAC-MAC-CGU Joint Assembly 2015 Program with Abstracts.

    Google Scholar 

  • Johnson JE, Gerpheide A, Lamb MP, Fischer WW (2014) O2 constraints from Paleoproterozoic detrital pyrite and uraninite. GSA Bull 126(5/6):813–830

    Article  Google Scholar 

  • Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria. PNAS 110(28):11238–11243

    Article  ADS  Google Scholar 

  • Ketchum KY, Heaman LM, Bennett G, Hughes DJ (2013) Age, petrogenesis and tectonic setting of the Thessalon volcanic rocks, Huronian Supergroup, Canada. Precambrian Res 233:144–172

    Article  Google Scholar 

  • Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW, Mojzsis SJ, Rouxel OJ, Barley ME, Rosìere C, Fralick PW, Kump LR, Bekker A (2011) Aerobic pyrite oxidation and acid rock drainage during the great oxidation event. Nature 478:369–373

    Article  ADS  MATH  Google Scholar 

  • Krapež B (1996) Sequence-stratigraphic concepts applied to the identification of basin-filling rhythms in Precambrian successions. Aust J Earth Sci 43:355–380

    Article  Google Scholar 

  • Marmo JS, Ojakangas RW (1984) Lower Proterozoic glaciogenic deposits, eastern Finland. GSA Bull 95:1055–1062

    Article  Google Scholar 

  • Mikhalsky EV, Beliatsky BV, Sheraton JW, Roland NW (2006) Two distinct Precambrian terranes in the Southern Prince Charles Mountains, East Antarctica: SHRIMP dating and geochemical constraints. Gondwana Res 9:291–309

    Article  MATH  Google Scholar 

  • Partin CA, Bekker A, Sylvester PJ, Wodicka N, Stern RA, Chacko T, Heaman LM (2014) Filling in the juvenile magmatic gap: evidence for uninterrupted Paleoproterozoic plate tectonics. Earth Planet Sci Lett 388:123–133

    Article  ADS  Google Scholar 

  • Pettijohn FJ (1943) Basal Huronian conglomerates of Menominee and Calumet Districts, Michigan. J Geol 51:387–397

    Article  ADS  Google Scholar 

  • Phillips G, Wilson CJL, Campbell IH, Allen CM (2006) U-Th-Pb detrital zircon geochronology from the southern Prince Charles Mountains, East Antarctica – defining the Archean to Neoproterozoic Ruker Province. Precambrian Res 148:292–306

    Article  Google Scholar 

  • Rasmussen B, Bekker A, Fletcher IR (2013) Correlation of Paleoproterozoic glaciations based on U-Pb zircon ages for tuff beds in the Transvaal and Huronian Supergroups. EPSL 382:173–180

    Article  ADS  Google Scholar 

  • Rogers AW (1906) The glacial beds in the Griqua Town Series. Rep S Afr Assoc Adv Sci 4:261–265

    Google Scholar 

  • Schröder S, Bedorf D, Beukes NJ, Gutzmer J (2011) From BIF to red beds: Sedimentology and sequence stratigraphy of the Paleoproterozoic Koegas Subgroup (South Africa). Sedimentary Geology 236:25–44

    Article  ADS  Google Scholar 

  • Strand KO, Laajoki K (1993) Palaeoproterozoic glaciomarine sedimentation in an extensional tectonic setting: the Honkala Formation, Finland. Precambrian Res 64(p):253–271

    Article  Google Scholar 

  • Trendall AF (1976) Striated and faceted boulders from the Turee Creek Formation – evidence for a possible Huronian glaciation on the Australian continent. Geol Surv West Aust Annu Rep 1975:88–92

    Google Scholar 

  • Visser JNJ (1971) The deposition of the Griquatown glacial member in the Transvaal Supergroup. Trans Geol Soc S Afr 74:187–199

    Google Scholar 

  • Young GM (1970) An extensive early proterozoic glaciation in North America? Palaeogeogr Palaeoclimatol Palaeoecol 7:85–101

    Article  Google Scholar 

  • Young GM (2004) Earth’s earliest glaciations: tectonic setting and stratigraphic context of Paleoproterozoic glaciogenic deposits. In: Jenkins GS, McMenamin MAS, McKay CP, Sohl L (eds) The extreme Proterozoic: geology, geochemistry, and climate, AGU geophysical monograph series. American Geophysical Union, Washington, DC, 146, pp 161–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Bekker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bekker, A. (2014). Huronian Glaciation. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_742-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_742-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Huronian Glaciation
    Published:
    28 December 2021

    DOI: https://doi.org/10.1007/978-3-642-27833-4_742-5

  2. Original

    Huronian Glaciation
    Published:
    07 May 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_742-4