Skip to main content

Fullerene

Encyclopedia of Astrobiology

Synonyms

Buckminsterfullerene; Buckyball; Footballene

Definition

A fullerene is a carbon molecule arranged in the form of a hollow sphere. Any graphene sheet can be closed into a fullerene cage provided that 12 pentagons are inserted into the sheet of condensed hexagonal rings. Only fullerenes having the 12 pentagonal sites fully annealed by hexagonal rings are stable and have been isolated in macroscopic quantity. This is an important rule regulating the fullerene stability. The fullerenes isolated in macroscopic quantity are those following strictly the isolated pentagons rule: C60, C70, C76, C84, C90, C94…. Each fullerene contains 2(10+ζ) carbon atoms corresponding to 12 pentagonal sites and ζ hexagons. This building principle is a consequence of Euler’s theorem (e.g., Kirk 2007). Fullerenes can have elements (metals, noble gases) trapped inside the cages, and these molecules are known as endohedral fullerenes (Kroto et al. 1991).

History

The structure of the most common fullerene, C

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Berné O, Mulas G, Joblin C (2013) Interstellar C60 +. Astron Astrophys 550:L4, 5 pp

    Google Scholar 

  • Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Detection of C60 and C70 in a young planetary nebula. Science 329:1180–1182

    Article  ADS  Google Scholar 

  • Cataldo F (2003) Fullerane, the hydrogenated C60 fullerene: properties and astrochemical considerations. Fuller Nanotub Car Nanostruct 11:295–316

    Article  Google Scholar 

  • Cataldo F, Iglesias-Groth S (2010) Fulleranes: the hydrogenated fullerenes. Springer, Berlin

    Book  Google Scholar 

  • Cataldo F, Iglesias-Groth S, Manchado A (2009a) On the action of UV photons on hydrogenated fulleranes C60H36 and C60D36. Roy Astron Soc 400:291–298, Monthly Notice

    Article  ADS  Google Scholar 

  • Cataldo F, Strazzulla A, Iglesias-Groth S (2009b) Stability of C60 and C70 fullerenes toward corpuscular and gamma radiation. Roy Astron Soc 394:615–623, Monthly Notice

    Article  ADS  Google Scholar 

  • Cataldo F, García-Hernández DA, Manchado A (2013) Sonochemical of fullerene C60/anthracene Diels-Alder mono and bis-adduct. Fuller Nanotub Car Nanostruct 21 (in press)

    Google Scholar 

  • Clayton GC, Kelly DM, Lacy JH, Little-Marenin IR, Feldman PA, Bernath PF (1995) A mid-infrared search for C60 in R coronae borealis stars and IRC + 10216. Astronom J 109:2096

    Article  ADS  Google Scholar 

  • Ehrenfreund P, Charnley SB (2000) Organic molecules in the interstellar medium, comets and meteorites: a voyage from dark clouds to the early Earth. Annu Rev Astronom Astrophys 38:427–483

    Article  ADS  Google Scholar 

  • Foing BH, Ehrenfreund P (1994) Detection of two interstellar absorption bands coincident with spectral features of C 60 +. Nature 369:296–298

    Article  ADS  Google Scholar 

  • García-Hernández DA, Villaver E, García-Lario P, Acosta-Pulido JA, Manchado A, Stanghellini L, Shaw RA, Cataldo F Infrared study of fullerene planetary nebulae. Astrophys J 760:107, 16 pp

    Google Scholar 

  • García-Hernández DA, Manchado A, García-Lario P, Stanghellini L, Villaver E, Shaw RA, Szczerba R, Perea-Calderón JV (2010) Formation of fullerenes in H-containing planetary nebulae. Astrophys J Lett 724:L39–L43

    Article  ADS  Google Scholar 

  • García-Hernández DA, Kameswara Rao N, Lambert DL (2011) Are C60 molecules detectable in circumstellar shells of R Coronae Borealis stars? Astrophys J 729, 126, 6 pp

    Article  ADS  Google Scholar 

  • Goeres A, Sedlmayr E (1992) The envelopes of R Coronae Borealis stars. I – a physical model of the decline events due to dust formation. Astronom Astrophys 265:216–236

    ADS  Google Scholar 

  • Goeres A, Sedlmayr E (1993) Hydrogen-blocking in C60 formation theories. Fuller Sci Technol 1:563–570

    Article  Google Scholar 

  • Hare JP, Kroto HW (1992) A postbuckminsterfullerene view of carbon in the galaxy. Acc Chem Res 25:106–112

    Article  Google Scholar 

  • Howard JA (1993) EPR, FTIR and FAB mass spectrometric investigation of reaction of H atoms with C60 in a cyclohexane matrix. Chem Phys Lett 203:540–544

    Article  ADS  Google Scholar 

  • Iglesias-Groth S (2004) Fullerenes and buckyonions in the interstellar medium. Astrophys J 608:L37–L40

    Article  ADS  Google Scholar 

  • Iglesias-Groth S (2005) Electric dipole emission by fulleranes and galactic anomalous microwave emission. Astrophys J 632:L25–L28

    Article  ADS  Google Scholar 

  • Iglesias-Groth S (2006) Hydrogenated fulleranes and the anomalous microwave emission of the dark cloud LDN 1622. Roy Astron Soc 368:1925–1930, Monthly Notice

    Article  ADS  Google Scholar 

  • Iglesias-Groth S (2007) Fullerenes and the 4430 Å diffuse interstellar band. Astrophys J 661:L167–L170

    Article  ADS  Google Scholar 

  • Iglesias-Groth S (2008) Fullerenes as carriers of extinction, diffuse interstellar bands and anomalous microwave emission. Proc Int Astron Union IAU Symp 251:57–62

    Article  ADS  Google Scholar 

  • Iglesias-Groth S, Cataldo F, Manchado A (2011) Infrared spectroscopy and integrated molar absorptivity of C60 and C70 fullerenes at extreme temperatures. Mon Not Roy Astron Soc 413:213–222

    Article  ADS  Google Scholar 

  • Iglesias-Groth S, García-Hernández DA, Cataldo F, Manchado A (2012) Infrared spectroscopy of hydrogenated fullerenes (fulleranes) at extreme temperatures. Mon Not Roy Astron Soc 423:2868–2878

    Article  ADS  Google Scholar 

  • Iglesias-Groth S, Hafez Y, Angelini G, Cataldo F (2013) γ Radiolysis of C60 fullerene in water and water/ammonia mixtures: relevance of fullerene fate in ices of interstellar medium. J Radioanal Nucl Chem. doi:10.1007/s10967-013-2484-0

    Google Scholar 

  • Kaler JB (2006) The Cambridge encyclopedia of stars. Cambridge University Press, Cambridge, p 203

    MATH  Google Scholar 

  • Kirk A (2007) Euler’s polyhedron formula. Plus Mag

    Google Scholar 

  • Kroto HW (2006) Introduction: space-Pandora’s box. In: Rietmeijer FJH (ed) Natural fullerenes and related structures of elemental carbon. Springer, Dordrecht, pp 1–5

    Chapter  Google Scholar 

  • Kroto HW, Allaf AW, Balm SP (1991) C60: Buckminsterfullerene. Chem Rev 91:1213–1235

    Article  Google Scholar 

  • Lambert DL, Rao NK, Pandey G, Ivans II (2001) Infrared space observatory spectra of R Coronae Borealis stars. I. Emission features in the interval 3–25 microns. Astrophys J 555:925–931

    Article  ADS  Google Scholar 

  • Millar T (2004) Organic molecules in the interstellar medium. In: Ehrenfreund P (ed) Astrobiology: future perspectives. Kluwer, Dordrecht, pp 17–31

    Chapter  Google Scholar 

  • Murayama H, Tomonoh S, Alford JM, Karpuk ME (2004) Fullerene production in tons and more: from science to industry 1536-4046. Fuller Nanotub Car Nanostruct 12(1):1–9

    Google Scholar 

  • Petrie S, Bohme DK (2000) Laboratory studies of ion/molecule reactions of fullerenes: chemical derivatization of fullerenes within dense interstellar clouds and circumstellar shells. Astrophys J 540:869–885

    Article  ADS  Google Scholar 

  • Petrie S, Becker H, Baranov VI, Bohme DK (1995) Repeated addition of atomic hydrogen to fullerene cations, dications and trications. Int J Mass Spectrom 145:79–88

    Article  ADS  Google Scholar 

  • Rietmeijer FJH (2006) Natural fullerenes and related structures of elemental carbon. Springer, Dordrecht, pp 1–5

    Google Scholar 

  • Sellegren K, Werner MW, Ingalls JG (2009) The 5–15 micron spectrum of reflection nebulae as a probe for fullerenes. Am Astron Soc, AAS Meeting 214:402.12. Bull Am Astron Soc 41:664

    Google Scholar 

  • Sellegren K, Werner MW, Ingalls JG, Smith JTD, Carleton TM, Joblin C (2010) C60 in reflection nebulae. Astrophys J Lett 722:L54–L57

    Article  ADS  Google Scholar 

  • Taylor R (1999) Lecture notes on fullerene chemistry. A handbook for chemists. Imperial College Press, London, pp 56–70

    Book  Google Scholar 

  • Unsold A, Baschek B (2002) The new cosmos: an introduction to astronomy and astrophysics, 5th edn. Springer, Berlin, p 247

    Book  Google Scholar 

  • Webster A (1991) Comparison of a calculated spectrum of C60H60 with the unidentified astronomical infrared emission feature. Nature 352:412–414

    Article  ADS  Google Scholar 

  • Zhang Y, Kwok S (2011) Detection of C60 in the protoplanetary nebula IRAS 01005+7910. Astrophys J 730:126–134

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Cataldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cataldo, F., Iglesias-Groth, S. (2014). Fullerene. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_604-7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_604-7

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Fullerene
    Published:
    28 December 2022

    DOI: https://doi.org/10.1007/978-3-642-27833-4_604-8

  2. Original

    Fullerene
    Published:
    04 May 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_604-7