Skip to main content

Formose Reaction

Encyclopedia of Astrobiology

Synonyms

Butlerow reaction

Definition

The formose reaction, discovered by Butlerow in 1861, is a complex autocatalytic set of condensation reactions of formaldehyde to yield sugars and other small sugar-like molecules. The reaction is particularly noteworthy in the context of astrobiology and prebiotic chemistry in that it could serve as a potential abiotic source of carbohydrates, in particular ribose, which could be important for the origin of an RNA World.

Overview

The formose reaction is an autocatalytic reaction discovered by Butlerow (1861). It involves the formation of sugars, polyols and hydroxy acids from formaldehyde in a series of carbon-to-carbon condensations, as opposed to carbon-to-oxygen condensations of HCHO to form polyoxymethylene. Formose is a contraction of formaldehyde and the suffix -ose, denoting a sugar. In fact, many biological sugars have empirical formulas of the form (CH2O)n, for example, glucose, (CH2O)6, and ribose, (CH2O)5. The formose reaction may be a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Arrhenius T, Arrhenius G et al (1994) Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin. Orig Life Evol Biosph 24(1):1–17

    Article  ADS  Google Scholar 

  • Berlow E, Barth RH, Snow JE (1958) The pentaerythritols. Reinhold Publishing, NY

    Google Scholar 

  • Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 21:22–26

    Article  Google Scholar 

  • Butlerow A (1861) Formation synthétique d’une substance sucrée. Comp Rend Acad Sci 53:145–147

    Google Scholar 

  • Cairns-Smith A, Ingram P, Walker G (1972) Formose production by minerals: possible relevance to the origin of life. J Theor Biol 35:601–604

    Article  Google Scholar 

  • Chandra K, De S (1983) Adsorption of formaldehyde by clay minerals in presence of urea and ammonium sulfate in aqueous system. Indian J Agr Chem 16:239–245

    Google Scholar 

  • Cleaves H (2003) The prebiotic synthesis of acrolein. Monatsh Chem 134:585–593

    Article  Google Scholar 

  • Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879–883

    Article  ADS  Google Scholar 

  • De Bruijn J, Kieboom A, Van Bekkum H (1986) Reactions of monosaccharides in aqueous alkaline solutions. Sugar Tech Rev 13:21–52

    Google Scholar 

  • Fuller W, Sanchez R, Orgel L (1972) Studies in prebiotic synthesis VII. J Mol Evol 1:249–257

    Article  Google Scholar 

  • Gabel N, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature 216:453–455

    Article  ADS  Google Scholar 

  • Gesteland R, Atkins J (1983) The RNA world: the nature of modern RNA suggests a prebiotic RNA world (Monograph/Cold Spring Harbor Laboratory, No 24)

    Google Scholar 

  • Gesteland RF, Atkins JF (1993) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Hollis J, Lovas F, Jewell P (2000) Interstellar glycolaldehyde: the first sugar. Astrophys J 540:L107–L110

    Article  ADS  Google Scholar 

  • Joyce G, Schwartz A, Miller S, Orgel L (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A 84:4398–4402

    Article  ADS  Google Scholar 

  • Lahav N, Chang S (1976) The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation. J Mol Evol 8:357–380

    Article  Google Scholar 

  • Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010) The Silicate-Mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327:984–986

    Article  ADS  Google Scholar 

  • Larralde R, Robertson M, Miller S (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci U S A 92:8158–8160

    Article  ADS  Google Scholar 

  • Levy M, Miller S, Brinton K, Bada J (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145:609–613

    Article  ADS  Google Scholar 

  • Malinowski S, Basinski S, Szczepanska (1963) Ann Soc Chim Polonorum 37:977–982

    Google Scholar 

  • Miyakawa S, Cleaves H, Miller S (2002) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    Article  ADS  Google Scholar 

  • Nelsestuen GL (1980) Origin of life: consideration of alternatives to proteins and nucleic acids. J Mol Evol 15(1):59–72

    Article  Google Scholar 

  • Orgel LE (2000) Self-organizing biochemical cycles. PNAS 97(23):12503–12507

    Article  ADS  Google Scholar 

  • Osada M, Watanabe M, Sue K, Adschiri T, Arai K (2004) Water density dependence of formaldehyde reaction in supercritical water. J Supercrit Fluids 28:219–224

    Article  Google Scholar 

  • Parfitt R, Greenland D (1970) The adsorption of poly(ethylene glycols) on clay minerals. Clay Miner 8:305–315

    Article  Google Scholar 

  • Peltzer E, Bada J, Schlesinger G, Miller S (1984) The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. Adv Space Res 4:69–74

    Article  ADS  Google Scholar 

  • Pinto J, Gladstone G, Yung Y (1980) Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210:183–185

    Article  ADS  Google Scholar 

  • Pizzarello S (2004) Chemical evolution and meteorites: an update. Orig Life Evol Biosph 34:25–34

    Article  ADS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidines ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  ADS  Google Scholar 

  • Reid C, Orgel L (1967) Synthesis of sugars in potentially prebiotic conditions. Nature 216:455

    Article  ADS  Google Scholar 

  • Ricardo A, Carrigan M, Olcott A, Benner S (2004) Borate minerals stabilize ribose. Science 303:196

    Article  Google Scholar 

  • Sanchez R, Ferris J, Orgel L (1966) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153:72–73

    Article  ADS  Google Scholar 

  • Schlesinger G, Miller S (1973) Equilibrium and kinetics of glyconitrile formation in aqueous solution. J Am Chem Soc 95:3729–3735

    Article  Google Scholar 

  • Schwartz A (1983) Chemical evolution: the first stages. Naturwissenschaften 70:373–377

    Article  ADS  Google Scholar 

  • Schwartz A, De Graaf R (1993a) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 36:101–106

    Article  Google Scholar 

  • Schwartz AW, de Graaf RM (1993b) Tetrahedron Lett 34:2201

    Article  Google Scholar 

  • Seewald JS, Zolotov M, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460

    Article  ADS  Google Scholar 

  • Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85

    Article  Google Scholar 

  • Shigemasa Y, Matsuda Y, Sakazawa C, Matsuura T (1977) Formose reactions II. The photochemical formose reaction. Bull Chem Soc Jpn 50:222–226

    Article  Google Scholar 

  • Socha RF, Weiss AH, Sakharov MM (1980) Autocatalysis in the formose reaction. React Kinet Catal Lett 14(2):119–128

    Article  Google Scholar 

  • Stribling R, Miller S (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the hydrogen cyanide and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273

    Article  Google Scholar 

  • Van Trump JE, Miller SL (1972) Prebiotic synthesis of methionine. Science 178(63):859–860

    Article  ADS  Google Scholar 

  • Walker J (1964) Formaldehyde, 3rd edn. Rheinhold, New York

    Google Scholar 

  • Weber A (1997) Energy from redox disproportionation of sugar carbon drives biotic and abiotic synthesis. J Mol Evol 44:354–360

    Article  Google Scholar 

  • Weber A (2001) The sugar model: catalysis by amines and amino acid products. Orig Life Evol Biosph 31:71–86

    Article  ADS  Google Scholar 

  • Weber A (2002) Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig Life Evol Biosph 32:333–357

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henderson James (Jim) Cleaves II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cleaves, H.J.(. (2014). Formose Reaction. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_587-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_587-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Formose Reaction
    Published:
    01 May 2022

    DOI: https://doi.org/10.1007/978-3-642-27833-4_587-4

  2. Original

    Formose Reaction
    Published:
    16 April 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_587-3