Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Formose Reaction

  • Henderson James (Jim) CleavesIIEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_587-3



The formose reaction, discovered by Butlerow in 1861, is a complex autocatalytic set of condensation reactions of formaldehyde to yield sugars and other small sugar-like molecules. The reaction is particularly noteworthy in the context of astrobiology and prebiotic chemistry in that it could serve as a potential abiotic source of carbohydrates, in particular ribose, which could be important for the origin of an RNA World.


The formose reaction is an autocatalytic reaction discovered by Butlerow (1861). It involves the formation of sugars, polyols and hydroxy acids from formaldehyde in a series of carbon-to-carbon condensations, as opposed to carbon-to-oxygen condensations of HCHO to form polyoxymethylene. Formose is a contraction of formaldehyde and the suffix -ose, denoting a sugar. In fact, many biological sugars have empirical formulas of the form (CH2O)n, for example, glucose, (CH2O)6, and ribose, (CH2O)5. The formose reaction may be a...


Autocatalysis Carbohydrate Formaldehyde Formose Ribose RNA World 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Arrhenius T, Arrhenius G et al (1994) Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin. Orig Life Evol Biosph 24(1):1–17CrossRefADSGoogle Scholar
  2. Berlow E, Barth RH, Snow JE (1958) The pentaerythritols. Reinhold Publishing, NYGoogle Scholar
  3. Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 21:22–26CrossRefGoogle Scholar
  4. Butlerow A (1861) Formation synthétique d’une substance sucrée. Comp Rend Acad Sci 53:145–147Google Scholar
  5. Cairns-Smith A, Ingram P, Walker G (1972) Formose production by minerals: possible relevance to the origin of life. J Theor Biol 35:601–604CrossRefGoogle Scholar
  6. Chandra K, De S (1983) Adsorption of formaldehyde by clay minerals in presence of urea and ammonium sulfate in aqueous system. Indian J Agr Chem 16:239–245Google Scholar
  7. Cleaves H (2003) The prebiotic synthesis of acrolein. Monatsh Chem 134:585–593CrossRefGoogle Scholar
  8. Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879–883CrossRefADSGoogle Scholar
  9. De Bruijn J, Kieboom A, Van Bekkum H (1986) Reactions of monosaccharides in aqueous alkaline solutions. Sugar Tech Rev 13:21–52Google Scholar
  10. Fuller W, Sanchez R, Orgel L (1972) Studies in prebiotic synthesis VII. J Mol Evol 1:249–257CrossRefGoogle Scholar
  11. Gabel N, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature 216:453–455CrossRefADSGoogle Scholar
  12. Gesteland R, Atkins J (1983) The RNA world: the nature of modern RNA suggests a prebiotic RNA world (Monograph/Cold Spring Harbor Laboratory, No 24)Google Scholar
  13. Gesteland RF, Atkins JF (1993) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  14. Hollis J, Lovas F, Jewell P (2000) Interstellar glycolaldehyde: the first sugar. Astrophys J 540:L107–L110CrossRefADSGoogle Scholar
  15. Joyce G, Schwartz A, Miller S, Orgel L (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A 84:4398–4402CrossRefADSGoogle Scholar
  16. Lahav N, Chang S (1976) The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation. J Mol Evol 8:357–380CrossRefGoogle Scholar
  17. Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010) The Silicate-Mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327:984–986CrossRefADSGoogle Scholar
  18. Larralde R, Robertson M, Miller S (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci U S A 92:8158–8160CrossRefADSGoogle Scholar
  19. Levy M, Miller S, Brinton K, Bada J (2000) Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145:609–613CrossRefADSGoogle Scholar
  20. Malinowski S, Basinski S, Szczepanska (1963) Ann Soc Chim Polonorum 37:977–982Google Scholar
  21. Miyakawa S, Cleaves H, Miller S (2002) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218CrossRefADSGoogle Scholar
  22. Nelsestuen GL (1980) Origin of life: consideration of alternatives to proteins and nucleic acids. J Mol Evol 15(1):59–72CrossRefGoogle Scholar
  23. Orgel LE (2000) Self-organizing biochemical cycles. PNAS 97(23):12503–12507CrossRefADSGoogle Scholar
  24. Osada M, Watanabe M, Sue K, Adschiri T, Arai K (2004) Water density dependence of formaldehyde reaction in supercritical water. J Supercrit Fluids 28:219–224CrossRefGoogle Scholar
  25. Parfitt R, Greenland D (1970) The adsorption of poly(ethylene glycols) on clay minerals. Clay Miner 8:305–315CrossRefGoogle Scholar
  26. Peltzer E, Bada J, Schlesinger G, Miller S (1984) The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy and dicarboxylic acids. Adv Space Res 4:69–74CrossRefADSGoogle Scholar
  27. Pinto J, Gladstone G, Yung Y (1980) Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210:183–185CrossRefADSGoogle Scholar
  28. Pizzarello S (2004) Chemical evolution and meteorites: an update. Orig Life Evol Biosph 34:25–34CrossRefADSGoogle Scholar
  29. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidines ribonucleotides in prebiotically plausible conditions. Nature 459:239–242CrossRefADSGoogle Scholar
  30. Reid C, Orgel L (1967) Synthesis of sugars in potentially prebiotic conditions. Nature 216:455CrossRefADSGoogle Scholar
  31. Ricardo A, Carrigan M, Olcott A, Benner S (2004) Borate minerals stabilize ribose. Science 303:196CrossRefGoogle Scholar
  32. Sanchez R, Ferris J, Orgel L (1966) Conditions for purine synthesis: did prebiotic synthesis occur at low temperatures? Science 153:72–73CrossRefADSGoogle Scholar
  33. Schlesinger G, Miller S (1973) Equilibrium and kinetics of glyconitrile formation in aqueous solution. J Am Chem Soc 95:3729–3735CrossRefGoogle Scholar
  34. Schwartz A (1983) Chemical evolution: the first stages. Naturwissenschaften 70:373–377CrossRefADSGoogle Scholar
  35. Schwartz A, De Graaf R (1993a) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 36:101–106CrossRefGoogle Scholar
  36. Schwartz AW, de Graaf RM (1993b) Tetrahedron Lett 34:2201CrossRefGoogle Scholar
  37. Seewald JS, Zolotov M, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460CrossRefADSGoogle Scholar
  38. Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85CrossRefGoogle Scholar
  39. Shigemasa Y, Matsuda Y, Sakazawa C, Matsuura T (1977) Formose reactions II. The photochemical formose reaction. Bull Chem Soc Jpn 50:222–226CrossRefGoogle Scholar
  40. Socha RF, Weiss AH, Sakharov MM (1980) Autocatalysis in the formose reaction. React Kinet Catal Lett 14(2):119–128CrossRefGoogle Scholar
  41. Stribling R, Miller S (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the hydrogen cyanide and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273CrossRefGoogle Scholar
  42. Van Trump JE, Miller SL (1972) Prebiotic synthesis of methionine. Science 178(63):859–860CrossRefADSGoogle Scholar
  43. Walker J (1964) Formaldehyde, 3rd edn. Rheinhold, New YorkGoogle Scholar
  44. Weber A (1997) Energy from redox disproportionation of sugar carbon drives biotic and abiotic synthesis. J Mol Evol 44:354–360CrossRefGoogle Scholar
  45. Weber A (2001) The sugar model: catalysis by amines and amino acid products. Orig Life Evol Biosph 31:71–86CrossRefADSGoogle Scholar
  46. Weber A (2002) Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig Life Evol Biosph 32:333–357CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Earth-Life Science Institute (ELSI), Tokyo Institute of TechnologyMeguro-kuJapan
  2. 2.Institute for Advanced StudyPrincetonUSA
  3. 3.Blue Marble Space Institute of ScienceWashingtonUSA
  4. 4.Center for Chemical EvolutionGeorgia Institute of TechnologyAtlantaUSA