Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso


  • Henderson James (Jim) CleavesIIEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_585-3



Formaldehyde (methanal, HCHO), the simplest aldehyde, is a one carbon molecule intermediary along the redox continuum between CO2 and CH4, at the same oxidation state (0) as graphite. Formaldehyde was first reported by the Russian chemist Butlerow in 1860 and was conclusively identified by von Hofmann. It exists transiently but prominently in the abiological carbon cycle (Cleaves 2008). It is an abundant interstellar molecule and is a constituent of cometary ices (Biver et al. 2002). It is readily produced in prebiotic simulation experiments from a variety of gas mixtures and energy sources.

HCHO may have played an important role in the synthesis of organic molecules relevant to the origin of life. HCHO is likely a significant precursor for the prebiotic synthesis of glycine and other amino acids (Miller 1957). HCHO can react to form sugars under basic conditions (Butlerow 1861) via the so-called formose...


Formose Prebiotic chemistry Strecker synthesis 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Aubrey AD, Cleaves HJ, Bada JL (2009) The role of submarine hydrothermal systems in the synthesis of amino acids. Orig Life Evol Biosph 39(2):91–108CrossRefADSGoogle Scholar
  2. Biver N, Bockelée-Morvan D, Crovisier J, Colom P, Henry F, Moreno R, Paubert G, Despois D, Lis D (2002) Chemical composition diversity among 24 comets observed at radio wavelengths. Earth Moon Planet 90:323–333CrossRefADSGoogle Scholar
  3. Bone W, Smith H (1905) The thermal decomposition of formaldehyde and acetaldehyde. J Am Chem Soc 87:910–916CrossRefzbMATHGoogle Scholar
  4. Butlerow A (1861) Formation synthétique d’une substance sucrée. Compt Rendus Acad Sci 53:145–147Google Scholar
  5. Calvert A, Steacie E (1951) The vapor phase photolysis of formaldehyde at wavelength 3130. J Chem Phys 19:1976–1982CrossRefGoogle Scholar
  6. Chandra K, De S (1983) Adsorption of formaldehyde by clay minerals in presence of urea and ammonium sulfate in aqueous system. Indian J Agric Chem 16:239–245Google Scholar
  7. Chang S (1993) Prebiotic synthesis in planetary environments. In: Greenberg JM, Mendoza-Gomez CX, Pirronello V (eds) The chemistry of life’s origins. Kluwer, BostonGoogle Scholar
  8. Cleaves H (2003) The prebiotic synthesis of acrolein. Monatsh Chem 134:585–593CrossRefGoogle Scholar
  9. Cleaves HJ (2008) The prebiotic geochemistry of formaldehyde. Precambrian Res 164(3–4):111–118CrossRefGoogle Scholar
  10. Cole W, Kaschke M, Sherringham J, Curry G, Turner D, Russell M (1994) Can amino acids be synthesized by H2S in anoxic lakes? Mar Chem 45:243–256CrossRefGoogle Scholar
  11. Ferris J (1994) The potential for prebiotic synthesis in hydrothermal systems. Orig Life Evol Biosph 24:363–381Google Scholar
  12. Fox S, Windsor C (1970) Synthesis of amino acids by the heating of formaldehyde and ammonia. Science 170:984–986CrossRefADSGoogle Scholar
  13. Gabel N, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature 216:453–455CrossRefADSGoogle Scholar
  14. Henkel C, Guesten R, Gardner FF (1985) [12C]/[13C] ratios from formaldehyde in the inner galactic disk. Astron Astrophys 143(1):148–152ADSzbMATHGoogle Scholar
  15. Henry L (1890) Sur le nitrile gycolique et la synthèse directe de l’acide glycolique. Compt Rendus 110:759–760Google Scholar
  16. Joyce G, Schwartz A, Miller S, Orgel L (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A 84:4398–4402CrossRefADSGoogle Scholar
  17. Kasting J, Brown L (1998) Setting the stage: the early atmosphere as a source of biogenic compounds. In: Brack A (ed) The molecular origins of life: assembling the pieces of the puzzle. Cambridge University Press, New York, pp 35–56Google Scholar
  18. Koch K, Schweizer W, Eschenmoser A (2007) Reactions of the HCN-tetramer with aldehydes. Chem Biodivers 4:541–553CrossRefGoogle Scholar
  19. Löb W (1906) Studien über die chemische Wirkung der stillen elektrischen Entladung. Zeitschr für Elektrochem 15:282–312CrossRefGoogle Scholar
  20. Miller S (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529CrossRefADSGoogle Scholar
  21. Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 23(3):480–489CrossRefGoogle Scholar
  22. Parfitt R, Greenland D (1970) The adsorption of poly(ethylene glycols) on clay minerals. Clay Miner 8:305–315CrossRefGoogle Scholar
  23. Pinto J, Gladstone G, Yung Y (1980) Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210:183–185CrossRefADSGoogle Scholar
  24. Schlesinger G, Miller S (1973) Equilibrium and kinetics of glyconitrile formation in aqueous solution. J Am Chem Soc 95:3729–3735CrossRefGoogle Scholar
  25. Schutte W, Allamandola L, Sandford S (1993) An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus 104:118–137CrossRefADSGoogle Scholar
  26. Schwartz A, De Graaf R (1993) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 36:101–106CrossRefGoogle Scholar
  27. Schwartz A, Goverde M (1982) Acceleration of HCN oligomerization by formaldehyde and related compounds: implications for prebiotic syntheses. J Mol Evol 18:351–353CrossRefGoogle Scholar
  28. Seewald JS, Zolotov M, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460CrossRefADSGoogle Scholar
  29. Sekine Y (2002) Oxidative decomposition of formaldehyde by metal oxides at room temperature. Atmos Environ 36:5543–5547CrossRefADSGoogle Scholar
  30. Shigemasa Y, Matsuda Y, Sakazawa C, Matsuura T (1977) Formose reactions II. The photochemical formose reaction. Bull Chem Soc Jpn 50:222–226CrossRefGoogle Scholar
  31. Simoneit B (1992) Aqueous organic geochemistry at high temperature/high pressure. Orig Life Evol Biosph 22:43–65CrossRefADSGoogle Scholar
  32. Stribling R, Miller S (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the hydrogen cyanide and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273CrossRefGoogle Scholar
  33. Walker J (1964) Formaldehyde, 3rd edn. Rheinhold, New YorkGoogle Scholar
  34. Weber A (1998) Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia. Orig Life Evol Biosph 28:259–270CrossRefADSGoogle Scholar
  35. Weber A (2002) Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig Life Evol Biosph 32:333–357CrossRefADSGoogle Scholar
  36. Woon DE (2002) Modeling gas-grain chemistry with quantum chemical cluster calculations. I. Heterogeneous hydrogenation of CO and H2CO on icy grain mantles. Astrophys J 569:541–548CrossRefADSGoogle Scholar
  37. Zuckerman B, Buhl D, Palmer P, Snyder LE (1970) Observation of interstellar formaldehyde. Astrophys J 160:485–506CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA