Skip to main content

Formaldehyde

Encyclopedia of Astrobiology

Synonyms

Methanal; Methyl aldehyde; Methylene oxide; Paraformaldehyde

Definition

Formaldehyde (methanal, HCHO), the simplest aldehyde, is a one carbon molecule intermediary along the redox continuum between CO2 and CH4, at the same oxidation state (0) as graphite. Formaldehyde was first reported by the Russian chemist Butlerow in 1860 and was conclusively identified by von Hofmann. It exists transiently but prominently in the abiological carbon cycle (Cleaves 2008). It is an abundant interstellar molecule and is a constituent of cometary ices (Biver et al. 2002). It is readily produced in prebiotic simulation experiments from a variety of gas mixtures and energy sources.

HCHO may have played an important role in the synthesis of organic molecules relevant to the origin of life. HCHO is likely a significant precursor for the prebiotic synthesis of glycine and other amino acids (Miller 1957). HCHO can react to form sugars under basic conditions (Butlerow 1861) via the so-called formose...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Aubrey AD, Cleaves HJ, Bada JL (2009) The role of submarine hydrothermal systems in the synthesis of amino acids. Orig Life Evol Biosph 39(2):91–108

    Article  ADS  Google Scholar 

  • Biver N, Bockelée-Morvan D, Crovisier J, Colom P, Henry F, Moreno R, Paubert G, Despois D, Lis D (2002) Chemical composition diversity among 24 comets observed at radio wavelengths. Earth Moon Planet 90:323–333

    Article  ADS  Google Scholar 

  • Bone W, Smith H (1905) The thermal decomposition of formaldehyde and acetaldehyde. J Am Chem Soc 87:910–916

    Article  MATH  Google Scholar 

  • Butlerow A (1861) Formation synthétique d’une substance sucrée. Compt Rendus Acad Sci 53:145–147

    Google Scholar 

  • Calvert A, Steacie E (1951) The vapor phase photolysis of formaldehyde at wavelength 3130. J Chem Phys 19:1976–1982

    Article  Google Scholar 

  • Chandra K, De S (1983) Adsorption of formaldehyde by clay minerals in presence of urea and ammonium sulfate in aqueous system. Indian J Agric Chem 16:239–245

    Google Scholar 

  • Chang S (1993) Prebiotic synthesis in planetary environments. In: Greenberg JM, Mendoza-Gomez CX, Pirronello V (eds) The chemistry of life’s origins. Kluwer, Boston

    Google Scholar 

  • Cleaves H (2003) The prebiotic synthesis of acrolein. Monatsh Chem 134:585–593

    Article  Google Scholar 

  • Cleaves HJ (2008) The prebiotic geochemistry of formaldehyde. Precambrian Res 164(3–4):111–118

    Article  Google Scholar 

  • Cole W, Kaschke M, Sherringham J, Curry G, Turner D, Russell M (1994) Can amino acids be synthesized by H2S in anoxic lakes? Mar Chem 45:243–256

    Article  Google Scholar 

  • Ferris J (1994) The potential for prebiotic synthesis in hydrothermal systems. Orig Life Evol Biosph 24:363–381

    Google Scholar 

  • Fox S, Windsor C (1970) Synthesis of amino acids by the heating of formaldehyde and ammonia. Science 170:984–986

    Article  ADS  Google Scholar 

  • Gabel N, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature 216:453–455

    Article  ADS  Google Scholar 

  • Henkel C, Guesten R, Gardner FF (1985) [12C]/[13C] ratios from formaldehyde in the inner galactic disk. Astron Astrophys 143(1):148–152

    ADS  MATH  Google Scholar 

  • Henry L (1890) Sur le nitrile gycolique et la synthèse directe de l’acide glycolique. Compt Rendus 110:759–760

    Google Scholar 

  • Joyce G, Schwartz A, Miller S, Orgel L (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A 84:4398–4402

    Article  ADS  Google Scholar 

  • Kasting J, Brown L (1998) Setting the stage: the early atmosphere as a source of biogenic compounds. In: Brack A (ed) The molecular origins of life: assembling the pieces of the puzzle. Cambridge University Press, New York, pp 35–56

    Google Scholar 

  • Koch K, Schweizer W, Eschenmoser A (2007) Reactions of the HCN-tetramer with aldehydes. Chem Biodivers 4:541–553

    Article  Google Scholar 

  • Löb W (1906) Studien über die chemische Wirkung der stillen elektrischen Entladung. Zeitschr für Elektrochem 15:282–312

    Article  Google Scholar 

  • Miller S (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  ADS  Google Scholar 

  • Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 23(3):480–489

    Article  Google Scholar 

  • Parfitt R, Greenland D (1970) The adsorption of poly(ethylene glycols) on clay minerals. Clay Miner 8:305–315

    Article  Google Scholar 

  • Pinto J, Gladstone G, Yung Y (1980) Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210:183–185

    Article  ADS  Google Scholar 

  • Schlesinger G, Miller S (1973) Equilibrium and kinetics of glyconitrile formation in aqueous solution. J Am Chem Soc 95:3729–3735

    Article  Google Scholar 

  • Schutte W, Allamandola L, Sandford S (1993) An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus 104:118–137

    Article  ADS  Google Scholar 

  • Schwartz A, De Graaf R (1993) The prebiotic synthesis of carbohydrates: a reassessment. J Mol Evol 36:101–106

    Article  Google Scholar 

  • Schwartz A, Goverde M (1982) Acceleration of HCN oligomerization by formaldehyde and related compounds: implications for prebiotic syntheses. J Mol Evol 18:351–353

    Article  Google Scholar 

  • Seewald JS, Zolotov M, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460

    Article  ADS  Google Scholar 

  • Sekine Y (2002) Oxidative decomposition of formaldehyde by metal oxides at room temperature. Atmos Environ 36:5543–5547

    Article  ADS  Google Scholar 

  • Shigemasa Y, Matsuda Y, Sakazawa C, Matsuura T (1977) Formose reactions II. The photochemical formose reaction. Bull Chem Soc Jpn 50:222–226

    Article  Google Scholar 

  • Simoneit B (1992) Aqueous organic geochemistry at high temperature/high pressure. Orig Life Evol Biosph 22:43–65

    Article  ADS  Google Scholar 

  • Stribling R, Miller S (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the hydrogen cyanide and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273

    Article  Google Scholar 

  • Walker J (1964) Formaldehyde, 3rd edn. Rheinhold, New York

    Google Scholar 

  • Weber A (1998) Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia. Orig Life Evol Biosph 28:259–270

    Article  ADS  Google Scholar 

  • Weber A (2002) Chemical constraints governing the origin of metabolism: the thermodynamic landscape of carbon group transformations under mild aqueous conditions. Orig Life Evol Biosph 32:333–357

    Article  ADS  Google Scholar 

  • Woon DE (2002) Modeling gas-grain chemistry with quantum chemical cluster calculations. I. Heterogeneous hydrogenation of CO and H2CO on icy grain mantles. Astrophys J 569:541–548

    Article  ADS  Google Scholar 

  • Zuckerman B, Buhl D, Palmer P, Snyder LE (1970) Observation of interstellar formaldehyde. Astrophys J 160:485–506

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henderson James (Jim) Cleaves II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cleaves, H.J.(. (2014). Formaldehyde. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_585-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_585-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Formaldehyde
    Published:
    22 December 2022

    DOI: https://doi.org/10.1007/978-3-642-27833-4_585-4

  2. Original

    Formaldehyde
    Published:
    07 May 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_585-3