Skip to main content

Chirality

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Astrobiology
  • 211 Accesses

Synonyms

Handedness; Non-superimposable mirror image object

Definition

The term chirality, from the Greek word cheir for “hand,” refers to the property of “handedness” possessed by some molecules and macroscopic objects. A molecule or object is chiral if it is not superimposable on its mirror image, as is the case for left and right hands. The word was introduced by Lord Kelvin (1904) and has been further quantified by Mislow (1965) and Cahn et al. (1966), who define an object as chiral when it contains no element of symmetry (excepting in some cases an axis of rotation). The two distinct mirror-image forms are called enantiomers in the case of chiral molecules and enantiomorphs in the case of chiral crystals.

Overview

The two enantiomers of a chiral molecule have identical physical and chemical properties, which was demonstrated by van’t Hoff and Le Bel using arguments about the “exact mechanical symmetry” between enantiomers (van’t Hoff 1887). It has since been proven, however, that...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Ball PP (2007) Giving life a hand. Chem World 4:30–31

    Google Scholar 

  • Blackmond DG (2004) Asymmetric autocatalysis and its implications for the origin of homochirality. PNAS 101:5732–5736

    Article  ADS  Google Scholar 

  • Blackmond DG (2010) The origin of biological homochirality. In: The origin of life. Cold Spring Harbor Perspect Biol 2(5):a002147

    Google Scholar 

  • Bonner W (1998) Homochirality and life. In: Jolles P (ed) D-amino acids in sequences of secreted peptides of mulicellular organisms. Birkauser Verlag, Basel, pp 159–188

    Chapter  Google Scholar 

  • Breslow R, Cheng Z-L (2009) On the origin of terrestrial homochirality for nucleosides and amino acids. PNAS 106:9144–9146

    Article  ADS  Google Scholar 

  • Breslow R, Cheng Z-L (2010) L-amino acids catalyze the formation of an excess of d-glyceraldehyde, and thus of other d sugars, under credible prebiotic conditions. PNAS 107:5723–5725

    Article  ADS  Google Scholar 

  • Burton AS, Stern JS, Elsila JE, Glavin DP, Dworkin JP (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem Soc Rev 41:5459–5472

    Article  Google Scholar 

  • Cahn RS, Ingold C, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed Engl 5:385–415

    Article  Google Scholar 

  • Fletcher SP, Jagt RBC, Feringa BL (2007) An astrophysically-relevant mechanism for amino acid enantiomer enrichment. Chem Commun 43:2578–2580

    Article  Google Scholar 

  • Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459–463

    Article  Google Scholar 

  • Hein JE, Blackmond DG (2012) On the origin of single chirality of amino acids and sugars in biogenesis. Acc Chem Res 45:2045–2054

    Article  Google Scholar 

  • Hein JE, Tse E, Blackmond DG (2011) A route to enantiopure RNA precursors from nearly racemic starting materials. Nat Chem 3:704–706

    Article  Google Scholar 

  • Klussmann K, White AJP, Armstrong A, Blackmond DG (2006a) Rationalization and prediction of solution enantiomeric excess in ternary phase systems. Angew Chem Int Ed 47:7985–7989

    Article  Google Scholar 

  • Klussmann M, Iwamura H, Mathew SP, Wells DH Jr, Pandya U, Armstrong A, Blackmond DG (2006b) Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441:621–623

    Article  ADS  Google Scholar 

  • Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975–976

    Article  ADS  Google Scholar 

  • Levine M, Kenesky CS, Mazori D, Breslow R (2008) Enantioselective synthesis and enantiomeric amplification of amino acids under prebiotic conditions. Org Lett 10:2433–2436

    Article  Google Scholar 

  • Lord Kelvin (W. Thomson) (1904) Baltimore lectures on molecular dynamics and the wave theory of light. C. J. Clay and Sons, London, p 619 (The lectures were presented in 1884 and 1893 at Johns Hopkins University, Baltimore)

    Google Scholar 

  • Mislow K (1965) Introduction to stereochemistry. Benjamin, New York

    Google Scholar 

  • Morowitz M (1969) A mechanism for the amplification of fluctuations in racemic mixtures. J Theor Biol 25:491–494

    Article  Google Scholar 

  • Noorduin WL, Izumi T, Millemaggi A, Leeman M, Meekes H, Van Enckevort WJ, Kellogg RM, Kaptein B, Vlieg E, Blackmond DG (2008) Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J Am Chem Soc 130:1158–1159

    Article  Google Scholar 

  • Perry RH, Wu C, Nefliu M, Cooks RG (2007) Serine sublimes with spontaneous chiral amplification. Chem Commun 1071–1073

    Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  ADS  Google Scholar 

  • Quack M (2002) How important is parity violation for molecular and biomolecular chirality? Angew Chem Int Ed Engl 41:4618–4630

    Article  Google Scholar 

  • Sczepanski JT, Joyce GF (2014) A cross-chiral RNA polymerase ribozyme. Nature 515:440–442

    Article  ADS  Google Scholar 

  • Siegel JS (1998) The homochiral imperative of molecular evolution. Chirality 10:24–27

    Article  Google Scholar 

  • Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768

    Article  ADS  Google Scholar 

  • van’t Hoff JH (1887) La chimie dans l’espace. Rotterdam (reprinted in Sur la dissymétrie moléculaire (ed: Bourgeois C). Collection Epistème, Paris, 1986)

    Google Scholar 

  • Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94:065504-1–065504-4

    Article  ADS  Google Scholar 

  • Viedma C, Ortiz JE, de Torres T, Izumi T, Blackmond DG (2008) Evolution of solid phase homochirality for a proteinogenic amino acid. J Am Chem Soc 130:15274–15275

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna Blackmond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Blackmond, D. (2015). Chirality. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_283-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_283-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Chirality
    Published:
    07 September 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_283-3

  2. Original

    Chirality
    Published:
    07 May 2015

    DOI: https://doi.org/10.1007/978-3-642-27833-4_283-2