Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Molecules in Space

  • Holger S. P. Müller
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_1834-12


In this entry, by “molecules” we refer to all types of (generally chemically) bound species consisting of two or more atoms. They may be chemically saturated as well as unsaturated, may contain unpaired electrons (i.e., are radicals), or may be charged positively (cations) or negatively (anions). Space refers here to all regions outside the solar system. On occasion, we restrict the discussion only to the interstellar medium and circumstellar envelopes in the Milky Way, thus excluding stellar atmospheres as well as extragalactic sources. Molecules in space usually, but not exclusively, refer to those in the gas phase.


The spectra produced by molecules in space are used to characterize the physical and chemical properties of certain media in space. For example, certain atomic and molecular absorption lines in the visible region observed in stellar atmospheres are used to classify the stars. Atomic and molecular lines play an important role in star formation, as they...


Astrochemistry Circumstellar envelope Interstellar medium Ion Molecule Radio astronomy Rotational spectroscopy 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Ball JA, Gottlieb CA, Lilley AE, Radford HE (1970) Detection of methyl alcohol in Sagittarius. Astrophys J 162:L203–L210ADSCrossRefGoogle Scholar
  2. Barlow MJ, Swinyard BM, Owen PJ et al (2013) Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula. Science 342:1343–1345ADSCrossRefGoogle Scholar
  3. Brünken S, Kluge L, Stoffels A, Asvany O, Schlemmer S (2014) Laboratory rotational spectrum of l-C3H+ and confirmation of its astronomical detection. Astrophys J 783:L4ADSCrossRefGoogle Scholar
  4. Buhl D, Synder LE (1970) Unidentified interstellar microwave line. Nature 228:267–269ADSCrossRefGoogle Scholar
  5. Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Detection of C60 and C70 in a young planetary nebula. Science 329:1180–1182ADSCrossRefGoogle Scholar
  6. Cheung AC, Rank DM, Townes CH, Thornton DD, Welch WJ (1968) Detection of NH3 molecules in the interstellar medium by their microwave emission. Phys Rev Lett 25:1701–1705ADSCrossRefGoogle Scholar
  7. Cheung AC, Rank DM, Townes CH, Thornton DD, Welch WJ (1969) Delection of water in interstellar regions by its microwave radiation. Nature 221:626–628ADSCrossRefGoogle Scholar
  8. De Luca M, Gupta H, Neufeld D et al (2012) Herschel/HIFI discovery of HCl+ in the interstellar medium. Astrophys J 751:L37ADSCrossRefGoogle Scholar
  9. Douglas AE, Herzberg G (1941) Note on CH+ in interstellar space and in the laboratory. Astrophys J 94:381ADSCrossRefGoogle Scholar
  10. Guélin M, Cernicharo J, Kahane C, Gomez-Gonzales J (1986) A new free radical in IRC +10216. Astron Astrophys 157:L17–L20ADSGoogle Scholar
  11. Herbig GH (1995) The diffuse interstellar bands. Annu Rev Astron Astrophys 33:19–74ADSCrossRefGoogle Scholar
  12. Kamiński T, Gottlieb CA, Menten KM, Patel NA, Young KH, Brünken S, Müller HSP, McCarthy MC, Winters JM, Decin L (2013) Pure rotational spectra of TiO and TiO2 in VY Canis Majoris. Astron Astrophys 551:A113ADSCrossRefGoogle Scholar
  13. Kawaguchi K, Kagi E, Hirano T, Takano S, Saito S (1993) Laboratory spectroscopy of MgNC – the first radioastronomical identification of Mg-bearing molecule. Astrophys J 406:L39–L42ADSCrossRefGoogle Scholar
  14. Kawaguchi K, Kasai Y, Ishikawa SI, Kaifu N (1995) A spectral-line survey observation of IRC +10216 between 28 and 50 GHz. Publ Astron Soc Jpn 47:853–876ADSGoogle Scholar
  15. Lis DC, Pearson JC, Neufeld DA et al (2010) Herschel/HIFI discovery of interstellar chloronium H2Cl+. Astron Astrophys 521:L9ADSCrossRefGoogle Scholar
  16. McCarthy MC, Gottlieb CA, Gupta H, Thaddeus P (2006) Laboratory and astronomical identification of the negative molecular ion C6H. Astrophys J 652:L141–L144ADSCrossRefGoogle Scholar
  17. McKellar A (1940) Evidence for the molecular origin of some hitherto unidentified interstellar lines. Publ Astron Soc Pac 52:187–192ADSCrossRefGoogle Scholar
  18. Menten KM, Wyrowski F, Güsten R, Belloche A, Dedes L, Müller HSP (2011) Submillimeter absorption from SH+, a new widespread interstellar radical, 13CH+ and HCl. Astron Astrophys 525:A77ADSCrossRefGoogle Scholar
  19. Müller HSP, Thorwirth S, Roth DA, Winnewisser G (2001) The Cologne database for molecular spectroscopy, CDMS. Astron Astrophys 370:L49–L52ADSCrossRefGoogle Scholar
  20. Müller HSP, Schlöder F, Stutzki J, Winnewisser G (2005) The Cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J Mol Struct 742:215–227ADSCrossRefGoogle Scholar
  21. Muller S, Beelen A, Guélin M, Aalto S, Black JH, Combes F, Curran SJ, Theulé P, Longmore SN (2011) Molecules at z = 0.89. A 4-mm-rest-frame absorption-line survey toward PKS 1830–211. Astron Astrophys 535:A103ADSCrossRefGoogle Scholar
  22. Neufeld DA, Falgarone E, Gerin M, Godard B, Herbst E, Pineau des Forêts G, Vasyunin AI, Güsten R, Wiesemeyer H, Ricken O (2012) Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA. Astron Astrophys 542:L6Google Scholar
  23. Ossenkopf V, Müller HSP, Lis DC et al (2010) Detection of interstellar oxidaniumyl: abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334. Astron Astrophys 518:L111ADSCrossRefGoogle Scholar
  24. Pineda JLP, Langer WD, Velusamy T, Goldsmith PF (2013) A Herschel [CII] galactic plane survey I: the global distribution of ISM gas components. Astron Astrophys 554:A103ADSCrossRefGoogle Scholar
  25. Schilke P, Neufeld DA, Müller HSP et al (2014) Ubiquitous argonium (ArH+) in the diffuse interstellar medium – a molecular tracer of almost purely atomic gas. Astron Astrophys 566:A29ADSCrossRefGoogle Scholar
  26. Snyder LE, Buhl D (1974) Detection of possible maser emission near 3.48 millimeters from an unidentified molecular species in Orion. Astrophys J 189:L31–L33ADSCrossRefGoogle Scholar
  27. Synder LE, Buhl D, Zuckerman B, Palmer P (1969) Microwave detection of interstellar formaldehyde. Phys Rev Lett 22:679–681ADSCrossRefGoogle Scholar
  28. Turner BE, Fourikis N, Morris M, Palmer P, Zuckerman B (1975) Microwave detection of interstellar HDO. Astrophys J 198:L125–L128ADSCrossRefGoogle Scholar
  29. Weinreb S, Barrett AH, Meeks ML, Henry JC (1963) Radio observations of OH in the interstellar medium. Nature 200:829–831ADSCrossRefGoogle Scholar
  30. Weliachew L (1971) Detection of interstellar OH in two external galaxies. Astrophys J 167:L47–L52ADSCrossRefGoogle Scholar
  31. Wyrowski F, Menten KM, Güsten R, Belloche A (2010) First interstellar detection of OH+. Astron Astrophys 518:A26ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.I. Physikalisches InstitutUniversität zu KölnKölnGermany