Skip to main content

Fast Spherical/Harmonic Spline Modeling

  • Living reference work entry
  • First Online:
Handbook of Geomathematics

Abstract

Spherical and harmonic splines are closely related approaches to solve interpolation/approximation as well as boundary value problems on the sphere and on regular (sphere-like) surfaces, respectively. In any case they lead to a system of linear equations which requires fast summation methods for the kernel sums. The fast multipole method achieves just that and is combined in this paper with a preconditioner using the same decomposition of the computational domain to solve the system of linear equations resulting from spherical/harmonic splines. Due to the localizing nature of splines, regional problems can also be treated with this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337–404

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer F, Lukas MA (2011) Comparing parameter choice methods for regularization of ill-posed problems. Math Comput Simul 81(9):1795–1841

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer F, Gutting M, Lukas MA (2014) Evaluation of parameter choice methods for regularization of ill-posed problems in geomathematics. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Beatson RK, Billings S, Light WA (2000) Fast solution of the radial basis function interpolation equations: domain decomposition methods. SIAM J Sci Comput 22(5):1717–1740

    Article  MathSciNet  MATH  Google Scholar 

  • Biedenharn LC, Louck JD (1981) Angular momentum in quantum physics (theory and application). Encyclopedia of mathematics and its applications. Addison-Wesley, Reading

    Google Scholar 

  • Carrier J, Greengard L, Rokhlin V (1988) A fast adaptive multipole algorithm for particle simulations. SIAM J Sci Stat Comput 9(4):669–686

    Article  MathSciNet  MATH  Google Scholar 

  • Chan TF, Mathew TP (1994) Domain decomposition algorithms. Acta Numer 3:61–143

    Article  MathSciNet  Google Scholar 

  • Cheng H, Greengard L, Rokhlin V (1999) A fast adaptive multipole algorithm in three dimensions. J Comput Phys 155:468–498

    Article  MathSciNet  MATH  Google Scholar 

  • Choi CH, Ivanic J, Gordon MS, Ruedenberg K (1999) Rapid and staple determination of rotation matrices between spherical harmonics by direct recursion. J Chem Phys 111(19):8825–8831

    Article  Google Scholar 

  • Edmonds AR (1964) Drehimpulse in der Quantenmechanik. Bibliographisches Institut, Mannheim

    Google Scholar 

  • Epton MA, Dembart B (1995) Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J Sci Comput 16(4):865–897

    Article  MathSciNet  MATH  Google Scholar 

  • Fengler MJ (2005) Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressile Navier–Stokes equation on the sphere. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, Shaker, Aachen

    Google Scholar 

  • Freeden W (1981a) On approximation by harmonic splines. Manuscr Geod 6:193–244

    MATH  Google Scholar 

  • Freeden W (1981b) On spherical spline interpolation and approximation. Math Method Appl Sci 3:551–575

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W (1982a) Interpolation and best approximation by harmonic spline functions. Boll Geod Sci Aff 1:105–120

    Google Scholar 

  • Freeden W (1982b) On spline methods in geodetic approximation problems. Math Method Appl Sci 4:382–396

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W (1984a) Spherical spline interpolation: basic theory and computational aspects. J Comput Appl Math 11:367–375

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W (1984b) Ein Konvergenzsatz in sphärischer Spline-Interpolation. Z f Vermessungswes.(ZfV) 109:569–576

    Google Scholar 

  • Freeden W (1987a) A spline interpolation method for solving boundary value problems of potential theory from discretely given data. Numer Methods Partial Differ Equ 3:375–398

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W (1987b) Harmonic splines for solving boundary value problems of potential theory. In: Mason JC, Cox MG (eds) Algorithms for approximation. The institute of mathematics and its applications, conference Series, vol 10. Clarendon Press, Oxford, pp 507–529

    Google Scholar 

  • Freeden W (1999) Multiscale modelling of spaceborne geodata. B.G. Teubner, Stuttgart/Leipzig

    MATH  Google Scholar 

  • Freeden W, Gerhards C (2013) Geomathematically oriented potential theory. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Freeden W, Gutting M (2013) Special functions of mathematical (geo-)physics. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Freeden W, Michel V (2004) Multiscale potential theory (with applications to geoscience). Birkhäuser, Boston/Basel/Berlin

    Book  MATH  Google Scholar 

  • Freeden W, Schreiner M (2014) Special functions in mathematical geosciences: an attempt at a categorization. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Freeden W, Schreiner M, Franke R (1997) A survey on spherical spline approximation. Surv Math Ind 7:29–85

    MathSciNet  MATH  Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998a) Constructive approximation on the sphere (with applications to geomathematics). Oxford Science Publications, Clarendon Press, Oxford

    MATH  Google Scholar 

  • Freeden W, Glockner O, Schreiner M (1998b) Spherical panel clustering and its numerical aspects. J Geodesy 72:586–599

    Article  MATH  Google Scholar 

  • Glockner O (2002) On numerical aspects of gravitational field modelling from SST and SGG by harmonic splines and wavelets (with application to CHAMP data). PhD thesis, Geomathenatics Group, Department of Mathematics, University of Kaiserslautern. Shaker, Aachen

    Google Scholar 

  • Greengard L (1988) The rapid evaluation of potential fields in particle systems. MIT, Cambridge

    MATH  Google Scholar 

  • Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J Comput Phys 73(1):325–348

    Article  MathSciNet  MATH  Google Scholar 

  • Greengard L, Rokhlin V (1988) Rapid evaluation of potential fields in three dimensions. In: Anderson C, Greengard L (eds) Vortex methods. Springer, Berlin/Heidelberg/New York, pp 121–141

    Chapter  Google Scholar 

  • Greengard L, Rokhlin V (1997) A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer 6:229–269

    Article  MathSciNet  Google Scholar 

  • Gutting M (2007) Fast multipole methods for oblique derivative problems. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern. Shaker, Aachen

    Google Scholar 

  • Gutting M (2012) Fast multipole accelerated solution of the oblique derivative boundary value problem. GEM Int J Geom 3(2):223–252

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings D, Row LW III (1997) TerrainBase global Terrain model summary documentation. National Geodetic Data Center, Boulder

    Google Scholar 

  • Hesse K (2002) Domain decomposition methods for multiscale geopotential determination from SST and SGG. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, Shaker, Aachen

    Google Scholar 

  • Hobson EW (1965) The theory of spherical and ellipsoidal harmonics (second reprint). Chelsea Publishing Company, New York

    Google Scholar 

  • Keiner J, Kunis S, Potts D (2006) Fast summation of radial functions on the sphere. Computing 78:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Kellogg OD (1967) Foundation of potential theory. Springer, Berlin/Heidelber/New York

    Book  Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and NIMA geopotential model EGM96. NASA/TP-1998-206861, NASA Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Michel V (2013) Lectures on constructive approximation – Fourier, spline, and wavelet methods on the real line, the sphere, and the ball. Birkhäuser, Boston

    MATH  Google Scholar 

  • Michel V (2014a) RFMP – an iterative best basis algorithm for inverse problems in the geosciences. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Michel V (2014b) Tomography: problems and multiscale solutions. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Moritz H (2014) Classical physical geodesy. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics, 2nd edn. Springer, Heidelberg

    Google Scholar 

  • Potts D, Steidl G (2003) Fast summation at nonequispaced knots by NFFTs. SIAM J Sci Comput 24(6):2013–2037

    Article  MathSciNet  MATH  Google Scholar 

  • Rakhmanov EA, Saff EB, Zhou YM (1994) Minimal discrete energy on the sphere. Math Res Lett 1:647–662

    Article  MathSciNet  MATH  Google Scholar 

  • Rokhlin V (1985) Rapid solution of integral equations of classical potential theory. J Comput Phys 60:187–207

    Article  MathSciNet  MATH  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MathSciNet  MATH  Google Scholar 

  • Shure L, Parker RL, Backus GE (1982) Harmonic splines for geomagnetic modelling. Phys Earth Planet Inter 28:215–229

    Article  Google Scholar 

  • Smith BF, Bjørstad PE, Gropp WD (1996) Domain decomposition (parallel multilevel methods for elliptic partial differential equations). Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Vars̆alovic̆ DA, Moskalev AN, Chersonskij VK (1988) Quantum theory of angular momentum. World Scientific, Singapore

    Google Scholar 

  • Wahba G (1981) Spline interpolation and smoothing on the sphere. SIAM J Sci Stat Comput 2:5–16. Also errata: SIAM J Sci Stat Comput 3:385–386 (1981)

    Google Scholar 

  • Wahba G (1990) Spline models for observational data. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • White CA, Head-Gordon M (1996) Rotating around the quartic angular momentum barrier in fast multipole method calculations. J Chem Phys 105(12):5061–5067

    Article  Google Scholar 

  • Yamabe H (1950) On an extension of the Helly’s theorem. Osaka Math J 2(1):15–17

    MathSciNet  MATH  Google Scholar 

  • Yarvin N, Rokhlin V (1998) Generalized Gaussian quadratures and singular value decomposition of integral equations. SIAM J Sci Comput 20(2):699–718

    Article  MathSciNet  Google Scholar 

  • Zhou X, Hon YC, Li J (2003) Overlapping domain decomposition method by radial basis functions. Appl Numer Math 44:241–255

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gutting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gutting, M. (2013). Fast Spherical/Harmonic Spline Modeling. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics