Skip to main content
Log in

Fast multipole accelerated solution of the oblique derivative boundary value problem

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

The oblique derivative boundary value problem of potential theory plays an important role in physical geodesy, in particular in modeling the gravitational field. Thereby, the boundary is the known surface of the Earth itself and the measurements can be considered as discrete scattered directional derivatives of the potential on the surface or on parts of that surface. The Runge–Walsh approximation allows the construction of the solution in terms of harmonic splines. These localizing trial functions lead to a system of linear equations whose solution provides directly the—possibly local—solution of the boundary value problem. To obtain a fast matrix-vector multiplication, fast multipole methods are developed for the occurring kernels. In combination with a domain decomposition method that helps to precondition the system of linear equations, an iterative solver can quickly determine the desired approximation. Parameter studies of the numerical realization of the developed algorithms are included as well as global and local examples for the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronszajn N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  • Beatson R.K., Billings S., Light W.A.: Fast solution of the radial basis function interpolation equations: domain decomposition methods. SIAM J. Sci. Comput. 22(5), 1717–1740 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Biedenharn, L.C., Louck. J.D.: Angular Momentum in Quantum Physics (Theory and Application). Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, Massachusetts (1981)

  • Bitzadse A.V.: Boundary Value Problems for Second Order Elliptic Equations. North Holland Publishing Co., Amsterdam (1968)

    Google Scholar 

  • Bjerhammer A., Svensson L.: On the geodetic boundary-value problem for a fixed boundary surface—satellite approach. Bull. Géodésique 57, 382–393 (1983)

    Article  Google Scholar 

  • Carrier J., Greengard L., Rokhlin V.: A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9(4), 669–686 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan T.F., Mathew T.P.: Domain decomposition algorithms. Acta Numerica 3, 61–143 (1994)

    Article  MathSciNet  Google Scholar 

  • Cheng H., Greengard L., Rokhlin V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Choi C.H., Ivanic J., Gordon M.S., Ruedenberg K.: Rapid and staple determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys. 111(19), 8825–8831 (1999)

    Article  Google Scholar 

  • Edmonds, A.R.: Drehimpulse in der Quantenmechanik. Bibliographisches Institut, Mannheim (1964)

  • Epton M.A., Dembart B.: Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16(4), 865–897 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W.: On approximation by harmonic splines. Manuscr. Geod. 6, 193–244 (1981a)

    MATH  Google Scholar 

  • Freeden W.: On spherical spline interpolation and approximation. Math. Methods Appl. Sci. 3, 551–575 (1981b)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W.: A spline interpolation method for solving boundary value problems of potential theory from discretely given data. Numer. Methods Partial Differ. Equ. 3, 375–398 (1987a)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W.: Harmonic splines for solving boundary value problems of potential theory. In: Mason, J.C., Cox, M.G. (eds) Algorithms for Approximation, The Institute of Mathematics and its Applications, Conference Series, vol. 10, pp. 507–529. Clarendon Press, Oxford (1987)

    Google Scholar 

  • Freeden W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner. Leipzig, Stuttgart (1999)

    Google Scholar 

  • Freeden, W., Kersten, H.: The Geodetic Boundary Value Problem Using the Known Surface of the Earth. Veröff. Geod. Inst. RWTH Aachen 29 (1980)

  • Freeden W., Kersten H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Methods Appl. Sci. 3, 104–114 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden W., Kersten H.: An extended version of Runge’s theorem. Manuscr. Geod. 7, 267–278 (1982)

    MATH  Google Scholar 

  • Freeden W., Michel V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  • Freeden W., Gervens T., Schreiner M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications, Clarendon (1998)

    MATH  Google Scholar 

  • Glockner, O.: On Numerical Aspects of Gravitational Field Modelling From SST and SGG by Harmonic Splines and Wavelets (With Application to CHAMP Data). PhD thesis, Geomathenatics Group, Department of Mathematics, University of Kaiserslautern. Shaker, Aachen (2002)

  • Grafarend, E.W.: The Geoid and the Gravimetric Boundary-Value Problem. Tech. Rep. 18 Dept. Geod., The Royal Institute of Technology, Stockholm (1989)

  • Greengard L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge, MA (1988)

    MATH  Google Scholar 

  • Greengard L., Rokhlin V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(1), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Greengard L., Rokhlin V.: Rapid evaluation of potential fields in three dimensions. In: Anderson, C., Greengard, L. (eds) Vortex Methods, pp. 121–141. Springer, Berlin (1988)

    Chapter  Google Scholar 

  • Greengard L., Rokhlin V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numerica 6, 229–269 (1997)

    Article  MathSciNet  Google Scholar 

  • Gutting, M.: Fast Multipole Methods for Oblique Derivative Problems. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern. Shaker, Aachen (2007)

  • Hastings D., Row L.W. III: TerrainBase Global Terrain Model Summary Documentation. National Geodetic Data Center, Boulder (1997)

    Google Scholar 

  • Hesse, K.: Domain Decomposition Methods for Multiscale Geopotential Determination from SST and SGG. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, Shaker, Aachen (2002)

  • Kellogg O.D.: Foundation of Potential Theory. Springer, Berlin (1967)

    Book  Google Scholar 

  • Koch K.R.: Die geodätische Randwertaufgabe bei bekannter Erdoberfläche. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 96, 218–224 (1971)

    Google Scholar 

  • Koch K.R., Pope A.J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull. Géodésique 106, 467–476 (1972)

    Article  MathSciNet  Google Scholar 

  • Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA/TP-1998-206861, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA (1998)

  • Miranda C.: Partial Differential Equations of Elliptic Type. Springer, New York (1970)

    Book  MATH  Google Scholar 

  • Rakhmanov E.A., Saff E.B., Zhou Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)

    MathSciNet  MATH  Google Scholar 

  • Rokhlin V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Saad Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  • Saad Y., Schultz M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Shure L., Parker R.L., Backus G.E.: Harmonic splines for geomagnetic modelling. Phys. Earth Planet. Inter. 28, 215–229 (1982)

    Article  Google Scholar 

  • Smith B.F., Bjørstad P.E., Gropp W.D.: Domain Decomposition (Parallel Multilevel Methods for Elliptic Partial Differential Equations). Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Vars̆alovic̆ D.A., Moskalev A.N., Chersonskij V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  • White C.A., Head-Gordon M.: Rotating around the quartic angular momentum barrier in fast multipole method calculations. J. Chem. Phys. 105(12), 5061–5067 (1996)

    Article  Google Scholar 

  • Yarvin N., Rokhlin V.: Generalized Gaussian quadratures and singular value decomposition of integral equations. SIAM J. Sci. Comput. 20(2), 699–718 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gutting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutting, M. Fast multipole accelerated solution of the oblique derivative boundary value problem. Int J Geomath 3, 223–252 (2012). https://doi.org/10.1007/s13137-012-0038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-012-0038-1

Keywords

Mathematics Subject Classification

Navigation