Skip to main content

GOCE: Gravitational Gradiometry in a Satellite

  • Living reference work entry
  • First Online:
Handbook of Geomathematics
  • 442 Accesses

Abstract

Spring 2009 the satellite Gravity and steady-state Ocean Circulation Explorer (GOCE), equipped with a gravitational gradiometer, was launched by European Space Agency (ESA). Its purpose is the detailed determination of the spatial variations of the Earth’s gravitational field, with applications in oceanography, geophysics, geodesy, glaciology, and climatology. Gravitational gradients are derived from the differences between the measurements of an ensemble of three orthogonal pairs of accelerometers, located around the center of mass of the spacecraft. Gravitational gradiometry is complemented by gravity analysis from orbit perturbations. The orbits are thereby derived from uninterrupted and three-dimensional GPS tracking of GOCE. The gravitational tensor consists of the nine second-derivatives of the Earth’s gravitational potential. Due to its symmetry only six of them are independent. These six components can also be interpreted in terms of the local curvature of the field or in terms of components of the tidal field generated by the Earth inside the spacecraft. Four of the six components are measured with high precision (10− 11 s− 2 per square-root of Hz), the others are less precise. Several strategies exist for the determination of the gravity field at the Earth’s surface from the measured tensor components at altitude. The mission ended in November 2013. Until August 2012 in total 2.3 years of data were collected. They entered into ESA’s fourth release of GOCE gravity models. After August 2012 the orbit altitude was lowered in several steps by altogether 31 km in order to test the enhanced gravitational sensitivity at lower orbit heights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albertella A, Rummel R (2009) On the spectral consistency of the altimetric ocean and geoid surface: a one-dimensional example. J Geod 83(9):805–815

    Article  Google Scholar 

  • Baur O (2007) Die Invariantendarstellung in der Satellitengradiometrie. DGK, Reihe C, Beck, München

    Google Scholar 

  • Baur O, Grafarend EW (2006) High performance GOCE gravity field recovery from gravity gradient tensor invariants and kinematic orbit information. In: Flury J, Rummel R, Reigber Ch, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer, Berlin, pp 239–254

    Chapter  Google Scholar 

  • Baur O, Cai J, Sneeuw N (2009) Spectral approaches to solving the polar gap problem. In: Flechtner F, Mandea M, Gruber Th, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin

    Google Scholar 

  • Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi:10.1029/2010GL045633

    Article  Google Scholar 

  • Bock H, Jäggi A, Meyer U, Visser P, van den Ijssel J, van Helleputte T, Heinze M, Hugentobler U (2011) GPS-derived orbits of the GOCE satellite. J Geod 85(11):807–818

    Article  Google Scholar 

  • Bouman J, Visser P, Fuchs M, Broerse T, Haberkorn C, Lieb V, Schmidt M, Schrama E, van der Wal W (2013) GOCE gravity gradients and the Earth’s time varying gravity field. ESA Living Planet, Edinburgh

    Google Scholar 

  • Brockmann JM, Kargoll B, Krasbutter I, Schuh WD, Wermuth M (2009) GOCE data analysis: from calibrated measurements to the global earth gravity field. In: Flechtner F, Mandea M, Gruber Th, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin

    Google Scholar 

  • Bunge H-P, Richards MA, Lithgow-Bertelloni C, Baumgardner JR, Grand SP, Romanowiez BA (1998) Time scales and heterogeneous structure in geodynamic earth models. Science 280:91–95

    Article  Google Scholar 

  • Carroll JJ, Savet PH (1959) Gravity difference detection. Aerosp Eng 18:44–47

    Google Scholar 

  • Colombo O (1989) Advanced techniques for high-resolution mapping of the gravitational field. In: Sansò F, Rummel R (eds) Theory of satellite geodesy and gravity field determination. Lecture notes in earth sciences, vol 25. Springer, Heidelberg, pp 335–369

    Chapter  Google Scholar 

  • Doornbos E, Bruinsma S, Fritsche B, Visser P, v/d Ijssel J, Teixeira Encarna J, Kern M (2013) Air density and wind retrieval using GOCE data. ESA Living Planet, Edinburgh

    Google Scholar 

  • Eicker A, Mayer-Gürr T, Ilk KH, Kurtenbach E (2009) Regionally refined gravity field models from in situ satellite data. In: Flechtner F, Mandea M, Gruber Th, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin

    Google Scholar 

  • ESA (1999a) Introducing the “Living Planet” Programme-the ESA strategy for earth observation. ESA SP-1234. ESA Publication Division, ESTEC, Noordwijk

    Google Scholar 

  • ESA (1999b) Gravity field and steady-state ocean circulation mission. Reports for mission selection, SP-1233 (1). ESA Publication Division, ESTEC, Noordwijk. http://www.esa.int./livingplanet/goce

  • ESA (2006) The changing earth-new scientific challenges for ESA’s Living Planet Programme. ESA SP-1304. ESA Publication Division, ESTEC, Noordwijk

    Google Scholar 

  • Falk G, Ruppel W (1974) Mechanik, Relativität, Gravitation. Springer, Berlin

    Google Scholar 

  • Ferraccioli F, Finn CA, Jordan TA, Bell RE, Anderson LM, Damaske D (2011) East Antarctic rifting triggers uplift in the Gamburtsev Mountains. Nature 479:388–392

    Article  Google Scholar 

  • Förste C, Bruinsma S, Shako R, Marty J-C, Flechtner F, Abrikosov O, Dahle C, Lemoine J-M, Neumayer H, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6: a new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse, EGU2011-3242

    Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  • Ganachaud A, Wunsch C, Kim M-Ch, Tapley B (1997) Combination of TOPEX/POSEIDON data with a hydrographic inversion for determination of the oceanic general circulation and its relation to geoid accuracy. Geophys J Int 128:708–722

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic, New York

    Google Scholar 

  • Hager BH, Richards MA (1989) Long-wavelength variations in Earth’s geoid: physical models and dynamical implications. Philos Trans R Soc Lond A 328:309–327

    Article  Google Scholar 

  • Jäggi A (2007) Pseudo-stochastic orbit modelling of low earth satellites using the global positioning system. Geodätisch - geophysikalische Arbeiten in der Schweiz, 73

    Google Scholar 

  • Janjić T, Schröter J, Savcenko R, Bosch W, Albertella A, Rummel R, Klatt O (2012) Impact of combining GRACE and GOCE gravity data on ocean circulation estimates. Ocean Sci 8:65–79. doi:10.5194/os-8-65-2012

    Article  Google Scholar 

  • Johannessen JA, Balmino G, LeProvost C, Rummel R, Sabadini R, Sünkel H, Tscherning CC, Visser P, Woodworth P, Hughes CH, LeGrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H, Drinkwater MR (2003) The European gravity field and steady-state ocean circulation explorer satellite mission: its impact on geophysics. Surv Geophys 24:339–386

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Reigber Ch (2004) A new isostatic model of the lithosphere and gravity field. J Geod 78:368–385

    Article  Google Scholar 

  • Kusche J, Klees R (2002) Regularization of gravity field estimation from satellite gravity gradients. J Geod 76:359–368

    Article  Google Scholar 

  • LeGrand P, Minster J-F (1999) Impact of the GOCE gravity mission on ocean circulation estimates. Geophys Res Lett 26(13):1881–1884

    Article  Google Scholar 

  • Le Traon PY, Schaeffer P, Guinehut S, Rio MH, Hernandez F, Larnicol G, Lemoine JM (2011) Mean ocean dynamic topography from GOCE and altimetry, ESA SP 686

    Google Scholar 

  • Lithgow-Bertelloni C, Richards MA (1998) The dynamics of cenozoic and mesozoic plate motions. Rev Geophys 36(1):27–78

    Article  Google Scholar 

  • Losch M, Sloyan B, Schröter J, Sneeuw N (2002) Box inverse models, altimetry and the geoid; problems with the omission error. J Geophys Res 107(C7):15-1–15-13

    Google Scholar 

  • Martinec Z (2003) Green’s function solution to spherical gradiometric boundary-value problems. J Geod 77:41–49

    Article  MATH  Google Scholar 

  • Marussi A (1985) Intrinsic geodesy. Springer, Berlin

    Book  Google Scholar 

  • Maximenko N, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Technol 26:1910–1919

    Article  Google Scholar 

  • Migliaccio F, Reguzzoni M, Sansò F (2004) Space-wise approach to satellite gravity field determination in the presence of colored noise. J Geod 78:304–313

    Article  Google Scholar 

  • Misner CW, Thorne KS, Wheeler JA (1970) Gravitation. Freeman, San Francisco

    Google Scholar 

  • Moritz H, Hofmann-Wellenhof B (1993) Geometry, relativity, geodesy. Wichmann, Karlsruhe

    Google Scholar 

  • Nutz H (2002) A unified setup of gravitational observables. Dissertation. Shaker Verlag, Aachen

    Google Scholar 

  • Ohanian HC, Ruffini R (1994) Gravitation and spacetime. Norton & Comp., New York

    MATH  Google Scholar 

  • Pail R (2014) It is all about statistics: global gravity field modelling from GOCE and complementary data. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Pail R, Plank R (2004) GOCE gravity field processing strategy. Stud Geophys Geod 48:289–309

    Article  Google Scholar 

  • Rummel R (1986) Satellite gradiometry. In: Sünkel H (ed) Mathematical and numerical techniques in physical geodesy. Lecture notes in earth sciences, vol 7. Springer, Berlin, pp 317–363. ISBN (Print):978-3-540-16809-6, doi:10.1007/BFb0010135

    Google Scholar 

  • Rummel R (1997) Spherical spectral properties of the earth’s gravitational potential and its first and second-derivatives. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid. Lecture notes in earth sciences, vol 65. Springer, Berlin, pp 359–404. ISBN:3-540-62636-0

    Chapter  Google Scholar 

  • Rummel R, van Gelderen M (1992) Spectral analysis of the full gravity tensor. Geophys J Int 111:159–169

    Article  Google Scholar 

  • Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions-principles and aims. J Geodyn 33/1–2:3–20

    Article  Google Scholar 

  • Sampietro D, Reguzzoni M, Braitenberg C (2012) The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. In: C Rizos, P Wills (eds) Earth on the edge: science for a substainable planet, International Association of Geodesy Symposia, vol 139. Springer, pp 391–397. doi:10.1007/978-3-642-37222-3_52

    Google Scholar 

  • Schreiner M (1994) Tensor spherical harmonics and their application in satellite gradiometry. Dissertation, Universität Kaiserslautern

    Google Scholar 

  • Stubenvoll R, Förste Ch, Abrikosov O, Kusche J (2009) GOCE and its use for a high-resolution global gravity combination model. In: Flechtner F, Mandea M, Gruber Th, Rothacher M, Wickert J, Güntner A, Schöne T (eds) System earth via geodetic-geophysical space techniques. Springer, Berlin

    Google Scholar 

  • Svehla D, Rothacher M (2004) Kinematic precise orbit determination for gravity field determination. In: Sansò F (ed) The proceedings of the international association of geodesy: a window on the future of geodesy. Springer, Berlin, pp 181–188

    Google Scholar 

  • Van der Meijde M, Julia J, Assumpcao M(2013) Gravity derived Moho for South America. Tectonophysics 609:456–467

    Article  Google Scholar 

  • Wells WC (ed) (1984) Spaceborne gravity gradiometers. NASA conference publication, vol 2305, Greenbelt

    Google Scholar 

  • Woodworth PL, Hughes CW, Bingham RJ, Gruber T(2012) Towards worthwide height system unification using ocean information. J Geodetic Sci 2(4):302–318. doi:10.2478/v10156-012-0004-8

    Article  Google Scholar 

  • Wunsch C, Gaposchkin EM (1980) On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement. Rev Geophys 18:725–745

    Article  Google Scholar 

  • Yi W, Rummel R (2014) A comparison of GOCE gravitational models with EGM2008. J Geodyn 73:14–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiner Rummel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rummel, R. (2014). GOCE: Gravitational Gradiometry in a Satellite. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_4-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_4-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics