Skip to main content

High-Performance GOCE Gravity Field Recovery from Gravity Gradient Tensor Invariants and Kinematic Orbit Information

  • Chapter
Observation of the Earth System from Space

Summary

The GOCE mission, planned to be launched in autumn 2006, will allow to determine the static Earth gravity field down to features of 100 km-70 km (half wavelength) in terms of spatial resolution. Since satellite gradiometry is restricted to the medium- to short-wavelength part of the gravitational spectrum, only its combination with satellite-to-satellite measurements in the high-low mode will meet the mission requirements as demanded by the ESA, namely a high-accurate GOCE-only terrestrial gravity field modeling. Here we apply the acceleration approach which is predominantly characterized by numerical differentiation of the kinematic GOCE orbit. Gradiometry is treated by analysis of the fundamental invariants of the gravitational tensor. These quantities neither depend on reference frame rotations nor on the orientation of the gradiometer frame in space. Linearization, computational effort and amalgamation of tensor elements provided with different levels of accuracy make this approach hard to handle. The use of high performance computing facilities, parallel programming standards and optimized numerical libraries are the key to accomplish efficient gravity field recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide (third edition). SIAM Publications, Philadelphia

    Google Scholar 

  • Baur O, Austen G (2005) A parallel iterative algorithm for large-scale problems of type potential field recovery from satellite data. Manuscript submitted to Advances in Geosciences

    Google Scholar 

  • Colombo O (1981) Numerical methods for harmonic analysis on the sphere. Department of Geodetic Science, Report No. 310, Ohio State University, Columbus, Ohio

    Google Scholar 

  • Ditmar P, Klees R (2002) A method to compute the Earth’s gravity field from SGG/SST data to be acquired by the GOCE satellite. Delft University Press

    Google Scholar 

  • ESA (1999) Gravity Field and steady-state ocean circulation-The four candidate Earth explorer core missions. ESA Publications Division, ESA SP-1233(1), ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  • ESA (2000) From Eötvös to milligal. Final report ESA/ESTEC, Contract No. 13392/NL/GD

    Google Scholar 

  • Földváry L, Å vehla D, Gerlach C, Wermuth M, Gruber T, Rummel R, Rothacher M, Frommknecht B, Peters T, Steigenberger P (2005) Gravity Model TUM-2Sp Based on the Energy Balance Approach and Kinematic CHAMP Orbits. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds.) Earth Observation with CHAMP-Results from Three Years in Orbit, 13–16, Springer, Berlin

    Google Scholar 

  • Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49, 409–436

    Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell, Waltham, MA

    Google Scholar 

  • Klees R, Koop R, Visser P, van den IJssel J (2000) Efficient gravity field recovery from GOCE gravity gradient observations. JoG, 74, 561–571

    Google Scholar 

  • Maeß G (1988) Vorlesungen über numerische Mathematik II. Akademie Verlag, Berlin

    Google Scholar 

  • Mayer-Gürr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: A CHAMP Gravity Field Model from Short Kinematic Arcs over a One-Year Observation Period. JoG, 78, 462–480

    Google Scholar 

  • Paige CC, Saunders MA (1982a) LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8, 43–71

    Article  Google Scholar 

  • Paige CC, Saunders MA (1982b) LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software, 8, 195–209

    Article  Google Scholar 

  • Pail R, Plank G (2002) Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. JoG, 76, 462–474

    Google Scholar 

  • Reigber C, Jochmann H, Wnsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer KH, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Perosanz F (2005) Earth Gravity Field and Seasonal Variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds.) Earth Observation with CHAMP-Results from Three Years in Orbit, 25–30, Springer, Berlin

    Google Scholar 

  • Reubelt T, Austen G, Grafarend EW (2003) Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. JoG, 77, 257–278

    Google Scholar 

  • Reubelt T, Götzelmann M, Grafarend EW (2005) A new CHAMP gravitational field model based on the GIS acceleration approach and two years of kinematic CHAMP data. Manuscript submitted to Advances in Geosciences

    Google Scholar 

  • Rummel R (1986) Satellite Gradiometry. In: Sünkel H (ed.) Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences 7, Springer

    Google Scholar 

  • Rummel R, Sansò F, van Gelderen M, Brovelli M, Koop R, Miggliaccio F, Schrama E, Scerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Netherlands Geodetic Commission, New Series, 39

    Google Scholar 

  • Saccoccia G, Gonzales del Amo J, Estublier D (2000) Electric Propulsion: A Key Technology for Space Missions in the New Millenium. ESA Bulletin 101, ESTEC, Noordwijk, The Netherlands

    Google Scholar 

  • Schuh WD (1996) Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field. Mitteilungen der Geodätischen Institute der TU Graz, 81, Graz

    Google Scholar 

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. DGK, Series C, No. 527, Munich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baur, O., Grafarend, E.W. (2006). High-Performance GOCE Gravity Field Recovery from Gravity Gradient Tensor Invariants and Kinematic Orbit Information. In: Flury, J., Rummel, R., Reigber, C., Rothacher, M., Boedecker, G., Schreiber, U. (eds) Observation of the Earth System from Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29522-4_17

Download citation

Publish with us

Policies and ethics