Skip to main content

Ergodicity and Mixing Properties

Encyclopedia of Complexity and Systems Science
  • 374 Accesses

FormalPara Glossary
Bernoulli shift:

Mathematical abstraction of the scenario in statistics or probability in which one performs repeated independent identical experiments.

Markov chain:

A probability model describing a sequence of observations made at regularly spaced time intervals such that at each time, the probability distribution of the subsequent observation depends only on the current observation and not on prior observations.

Measure-preserving transform at ion:

A map from a measure space to itself such that for each measurable subset of the space, it has the same measure as its inverse image under the map.

Measure-theoretic entropy:

A nonnegative (possibly infinite) real number describing the complexity of a measure-preserving transformation.

Product transformation:

Given a pair of measure-preserving transformations: T of X and S of Y, the product transformation is the map of X × Y given by (T × S)(x, y) = (T(x), S(y)).

Definition of the Subject

Many physical phenomena in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Aaronson J (1997) An introduction to infinite ergodic theory. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Adams TM, Petersen K (1998) Binomial coefficient multiples of irrationals. Monatsh Math 125:269–278

    Article  MathSciNet  MATH  Google Scholar 

  • Alpern S (1976) New proofs that weak mixing is generic. Invent Math 32:263–278

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Avila A, Forni G (2007) Weak-mixing for interval exchange transformations and translation flows. Ann Math 165:637–664

    Article  MathSciNet  MATH  Google Scholar 

  • Bergelson V (1987) Weakly mixing pet. Ergod Theory Dyn Syst 7:337–349

    Article  MathSciNet  MATH  Google Scholar 

  • Birkhoff GD (1931) Proof of the ergodic theorem. Proc Nat Acad Sci 17:656–660

    Article  ADS  MATH  Google Scholar 

  • Birkhoff GD, Smith PA (1924) Structural analysis of surface transformations. J Undergrad Math 7:345–379

    MATH  Google Scholar 

  • Boltzmann L (1871) Einige allgemeine Sätze über Wärmegleicbgewicht. Wiener Berichte 63:679–711

    MATH  Google Scholar 

  • Boltzmann L (1909) Wissenschaftliche Abhandlungen. Akademie der Wissenschaften, Berlin

    MATH  Google Scholar 

  • Boshernitzan M, Berend D, Kolesnik G (2001) Irrational dilations of Pascal's triangle. Mathematika 48:159–168

    Article  MathSciNet  MATH  Google Scholar 

  • Bowen R (1975) Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Springer, Berlin

    Book  MATH  Google Scholar 

  • Bradley RC (2005) Basic properties of strong mixing conditions. A survey and some open questions. Probab Surv 2:107–144

    Article  MathSciNet  MATH  Google Scholar 

  • Chacon RV (1969) Weakly mixing transformations which are not strongly mixing. Proc Amer Math Soc 22:559–562

    Article  MathSciNet  MATH  Google Scholar 

  • Choquet G (1956a) Existence des représentations intégrales au moyen des points extrémaux dans les cônes convexes. C R Acad Sci Paris 243:699–702

    MathSciNet  MATH  Google Scholar 

  • Choquet G (1956b) Unicité des représentations intégrales au moyen de points extrémaux dans les cônes convexes réticulés. C R Acad Sci Paris 243:555–557

    MathSciNet  MATH  Google Scholar 

  • de la Rue T (2006) 2-fold and 3-fold mixing: why 3-dot-type counterexamples are impossible in one dimension. Bull Braz Math Soc (NS) 37(4):503–521

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrenfest P, Ehrenfest T (1911) Begriffliche Grundlage der statistischen Auffassung in der Mechanik. No. 4. In: Encyclopädie der mathematischen. Wissenschaften Teubner, Leipzig

    Google Scholar 

  • Feller W (1950) An introduction to probability and its applications. Wiley, New York

    MATH  Google Scholar 

  • Friedman NA, Ornstein DS (1970) On isomorphism of weak Bernoulli transformations. Adv Math 5:365–394

    Article  MathSciNet  MATH  Google Scholar 

  • Furstenberg H (1977) Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Analyse Math 31:204–256

    Article  MathSciNet  MATH  Google Scholar 

  • Furstenberg H (1981) Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Furstenberg H, Weiss B (1978) The finite multipliers of infinite ergodic transformations. In: The structure of attractors in dynamical systems. Proceedings of the conference, North Dakota State University, Fargo1977. Springer, Berlin

    Google Scholar 

  • Garsia AM (1965) A simple proof of E. Hopf's maximal ergodic theory. J Math Mech 14:381–382

    MathSciNet  MATH  Google Scholar 

  • Girsanov IV (1958) Spectra of dynamical systems generated by stationary Gaussian processes. Dokl Akad Nauk SSSR 119:851–853

    MathSciNet  MATH  Google Scholar 

  • Góra P (1994) Properties of invariant measures for piecewise expanding one-dimensional transformations with summable oscillations of derivative. Ergod Theory Dyn Syst 14:475–492

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos PA (1944) In general a measure-preserving transformation is mixing. Ann Math 45:786–792

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos P (1956) Lectures on ergodic theory. Chelsea, New York

    MATH  Google Scholar 

  • Hoffman C, Heicklen D (2002) Rational maps are d-adic bernoulli. Ann Math 156:103–114

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman C, Rudolph DJ (2002) Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann Math 76:79–101

    Article  MathSciNet  MATH  Google Scholar 

  • Host B (1991) Mixing of all orders and pairwise independent joinings of systems with singular spectrum. Israel J Math 76:289–298

    Article  MathSciNet  MATH  Google Scholar 

  • Hu H (2004) Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergod Theory Dyn Syst 24:495–524

    Article  MathSciNet  MATH  Google Scholar 

  • Kalikow S (1982) T , T −1 Transformation is not loosely Bernoulli. Ann Math 115:393–409

    Article  MathSciNet  MATH  Google Scholar 

  • Kalikow S (1984) Twofold mixing implies threefold mixing for rank one transformations. Ergodic Theory Dynam Syst 2:237–259

    MathSciNet  MATH  Google Scholar 

  • Kalikow S. Outline of ergodic theory. Notes freely available for download. See http://www.math.uvic.ca/faculty/aquas/kalikow/kalikow.html

  • Kamae T (1982) A simple proof of the ergodic theorem using non-standard analysis. Israel J Math 42:284–290

    Article  MathSciNet  MATH  Google Scholar 

  • Katok A (1980a) Interval exchange transformations and some special flows are not mixing. Israel J Math 35:301–310

    Article  MathSciNet  MATH  Google Scholar 

  • Katok A (1980b) Smooth non-Bernoulli K-automorphisms. Invent Math 61:291–299

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Katznelson Y (1971) Ergodic automorphisms of \( {\mathbb{T}}^n \) are Bernoulli shifts. Israel J Math 10:186–195

    Article  MathSciNet  MATH  Google Scholar 

  • Katznelson Y, Weiss B (1982) A simple proof of some ergodic theorems. Israel J Math 42:291–296

    Article  MathSciNet  MATH  Google Scholar 

  • Keane MS, Petersen KE (2006) Nearly simultaneous proofs of the ergodic theorem and maximal ergodic theorem. In:Dynamics and stochastics: festschrift in honor of M.S. Keane. Institute of Mathematical Statistics, Bethesda, pp 248–251

    Google Scholar 

  • Keane M, Smorodinsky M (1979) Bernoulli schemes of the same entropy are finitarily isomorphic. Ann Math 109:397–406

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogorov AN (1958) New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces. Dokl Russ Acad Sci 119:861–864

    MATH  Google Scholar 

  • Koopman BO (1931) Hamiltonian systems and Hilbert space. Proc Nat Acad Sci 17:315–218

    Article  ADS  MATH  Google Scholar 

  • Krámli A, Simányi N, Szász D (1991) The K-property of three billiard balls. Ann Math 133:37–72

    Article  MathSciNet  MATH  Google Scholar 

  • Ledrappier F (1978) Un champ Markovien peut être d'entropie nulle et mélangeant. C R Acad Sci Paris, Sér A-B 287:561–563

    MathSciNet  MATH  Google Scholar 

  • Liveram C (2004) Decay of correlations. Ann Math 159:1275–1312

    Article  MathSciNet  Google Scholar 

  • Masser DW (2004) Mixing and linear equations over groups in positive characteristic. Israel J Math 142:189–204

    Article  MathSciNet  MATH  Google Scholar 

  • Masur H (1982) Interval exchange transformations and measured foliations. Ann Math 115:169–200

    Article  MathSciNet  MATH  Google Scholar 

  • McCutcheon R, Quas A (2007, to appear) Generalized polynomials and mild mixing systems. Canad J Math

    Google Scholar 

  • Méla X, Petersen K (2005) Dynamical properties of the Pascal adic transformation. Ergod Theory Dyn Syst 25:227–256

    Article  MathSciNet  MATH  Google Scholar 

  • Newton D, Parry W (1966) On a factor automorphism of a normal dynamical system. Ann Math Statist 37:1528–1533

    Article  MathSciNet  MATH  Google Scholar 

  • Ornstein DS (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4:337–352

    Article  MathSciNet  MATH  Google Scholar 

  • Ornstein DS (1972) On the root problem in ergodic theory. In: Proceedings of the sixth Berkeley symposium on mathematical statistics and probability (University of California, Berkeley, 1970/1971), vol II: probability theory. University of California Press, pp 347–356

    Google Scholar 

  • Ornstein DS (1973a) An example of a Kolmogorov automorphism that is not a Bernoulli shift. Adv Math 10:49–62

    Article  MathSciNet  MATH  Google Scholar 

  • Ornstein DS (1973b) A K-automorphism with no square root and Pinsker's conjecture. Adv Math 10:89–102

    Article  MathSciNet  MATH  Google Scholar 

  • Ornstein DS (1973c) A mixing transformation for which Pinsker's conjecture fails. Adv Math 10:103–123

    Article  MathSciNet  MATH  Google Scholar 

  • Ornstein DS (1974) Ergodic theory, randomness, and dynamical systems. Yale University Press, Newhaven

    MATH  Google Scholar 

  • Ornstein DS, Shields PC (1973) An uncountable family of K-automorphisms. Adv Math 10:89–102

    Article  MathSciNet  MATH  Google Scholar 

  • Ornstein DS, Weiss B (1973) Geodesic flows are Bernoullian. Israel J Math 14:184–198

    Article  MathSciNet  MATH  Google Scholar 

  • Ornstein DS, Weiss B (1975) Unilateral codings of Bernoulli systems. Israel J Math 21:159–166

    Article  MathSciNet  MATH  Google Scholar 

  • Oxtoby JC (1952) Ergodic sets. Bull Amer Math Soc 58:116–136

    Article  MathSciNet  MATH  Google Scholar 

  • Parry W (1981) Topics in ergodic theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Petersen K (1983) Ergodic theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Petersen K, Schmidt K (1997) Symmetric Gibbs measures. Trans Amer Math Soc 349:2775–2811

    Article  MathSciNet  MATH  Google Scholar 

  • Phelps R (1966) Lectures on Choquet's theorem. Van Nostrand, New York

    MATH  Google Scholar 

  • Pinsker MS (1960) Dynamical systems with completely positive or zero entropy. Soviet Math Dokl 1:937–938

    MathSciNet  MATH  Google Scholar 

  • Quas A (1996a) A C expanding map of the circle which is not weak-mixing. Israel J Math 93:359–372

    Article  MathSciNet  MATH  Google Scholar 

  • Quas A (1996b) Non-ergodicity for C expanding maps and g-measures. Ergodic Theory Dynam Systems 16:531–543

    MathSciNet  MATH  Google Scholar 

  • Rényi A (1957) Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hungar 8:477–493

    Article  MathSciNet  MATH  Google Scholar 

  • Riesz F (1938) Some mean ergodic theorems. J Lond Math Soc 13:274–278

    Article  MathSciNet  MATH  Google Scholar 

  • Rokhlin VA (1948) A 'general' measure-preserving transformation is not mixing. Dokl Akad Nauk SSSR Ser Mat 60:349–351

    MathSciNet  Google Scholar 

  • Rokhlin VA (1949) On endomorphisms of compact commutative groups. Izvestiya Akad Nauk SSSR Ser Mat 13:329–340

    MathSciNet  Google Scholar 

  • Rokhlin VA, Sinai Y (1961) Construction and properties of invariant measurable partitions. Dokl Akad Nauk SSSR 141:1038–1041

    MathSciNet  MATH  Google Scholar 

  • Rudin W (1966) Real and complex analysis. McGraw Hill, New York

    MATH  Google Scholar 

  • Rudolph DJ (1990) Fundamentals of measurable dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Ryzhikov VV (1993) Joinings and multiple mixing of the actions of finite rank. Funct. Anal Appl 27:128–140

    MathSciNet  MATH  Google Scholar 

  • Shields P, Thouvenot J-P (1975) Entropy zero × Bernoulli processes are closed in the \( \overline{d} \) -metric. Ann Probab 3:732–736

    Article  MathSciNet  MATH  Google Scholar 

  • Simányi N (2003) Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems. Invent Math 154:123–178

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Simányi N (2004) Proof of the ergodic hypothesis for typical hard ball systems. Ann Henri Poincaré 5:203–233

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Simányi N, Szász D (1999) Hard ball systems are completely hyperbolic. Ann Math 149:35–96

    Article  MathSciNet  MATH  Google Scholar 

  • Sinai YG (1959) On the notion of entropy of a dynamical system. Dokl Russ Acad Sci 124:768–771

    MATH  Google Scholar 

  • Sinai YG (1964) On a weak isomorphism of transformations with invariant measure. Mat Sb (NS) 63:23–42

    MathSciNet  Google Scholar 

  • Sinai YG (1970) Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat Nauk 25:141–192

    MathSciNet  MATH  Google Scholar 

  • Sinai Y (1976) Introduction to ergodic theory. Princeton University Press, Princeton. translation of the 1973 Russian original

    MATH  Google Scholar 

  • Sinai YG, Chernov NI (1987) Ergodic properties of some systems of two-dimensional disks and three-dimensional balls. Uspekhi Mat Nauk 42:153–174. 256

    MathSciNet  Google Scholar 

  • Smorodinsky M (1971) A partition on a Bernoulli shift which is not weakly Bernoulli. Math Syst Theory 5:201–203

    Article  MathSciNet  MATH  Google Scholar 

  • Veech W (1982) Gauss measures for transformations on the space on interval exchange maps. Ann Math 115:201–242

    Article  MathSciNet  MATH  Google Scholar 

  • Vershik A (1974) A description of invariant measures for actions of certain infinite-dimensional groups. Soviet Math Dokl 15:1396–1400

    MATH  Google Scholar 

  • Vershik A (1981) Uniform algebraic approximation of shift and multiplication operators. Soviet Math Dokl 24:97–100

    MATH  Google Scholar 

  • von Neumann J (1932) Proof of the quasi-ergodic hypothesis. Proc Nat Acad Sci USA 18:70–82

    Article  ADS  MATH  Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Williams D (1991) Probability with martingales. Cambridge, Cambridge

    Book  MATH  Google Scholar 

  • Young LS (1995) Ergodic theory of differentiable dynamical systems. In: Real and complex dynamical systems (HillerØd, 1993). Kluwer, Dordrecht, pp 293–336

    Chapter  Google Scholar 

  • Young LS (1998) Statistical properties of dynamical systems with some hyperbolicity. Ann Math 147:585–650

    Article  MathSciNet  MATH  Google Scholar 

  • Yuzvinskii SA (1967) Metric automorphisms with a simple spectrum. Soviet Math Dokl 8:243–245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Quas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Quas, A. (2017). Ergodicity and Mixing Properties. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_175-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_175-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Ergodicity and Mixing Properties
    Published:
    12 March 2023

    DOI: https://doi.org/10.1007/978-3-642-27737-5_175-3

  2. Original

    Ergodicity and Mixing Properties
    Published:
    11 August 2017

    DOI: https://doi.org/10.1007/978-3-642-27737-5_175-2