Skip to main content

Wine Polyphenols and Vascular Protective Effects

  • Reference work entry
  • First Online:
Natural Products

Abstract

Numerous studies indicate that regular intake of polyphenol-rich food and beverages such as red wine is associated with a protective effect on the cardiovascular system. In addition to the antioxidant property, polyphenols may also induce a beneficial effect on the cardiovascular system by several other mechanisms including the improvement of the vascular function. Indeed, experimental and clinical studies indicate that polyphenols are potent inducers of two major endothelial vasoprotective mechanisms, the formation of nitric oxide (NO) and the induction of endothelium-derived hyperpolarization (EDH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. St Leger AS, Cochrane AL, Moore F (1979) Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 1(8124):1017–1020

    Article  Google Scholar 

  2. Renaud S, de Lorgeril M (1994) Nutrition, atherosclerosis and coronary heart disease. Reprod Nutr Dev 34(6):599–607

    Article  CAS  Google Scholar 

  3. Renaud S, de Lorgeril M, Delaye J, Guidollet J, Jacquard F, Mamelle N, Martin JL, Monjaud I, Salen P, Toubol P (1995) Cretan Mediterranean diet for prevention of coronary heart disease. Am J Clin Nutr 61(6 Suppl):1360S–1367S

    CAS  Google Scholar 

  4. Mead A, Atkinson G, Albin D, Alphey D, Baic S, Boyd O, Cadigan L, Clutton L, Craig L, Flanagan C, Greene P, Griffiths E, Lee NJ, Li M, McKechnie L, Ottaway J, Paterson K, Perrin L, Rigby P, Stone D, Vine R, Whitehead J, Wray L, Hooper L (2006) Dietetic guidelines on food and nutrition in the secondary prevention of cardiovascular disease – evidence from systematic reviews of randomized controlled trials (second update, January 2006). J Hum Nutr Diet 19(6):401–419

    Article  CAS  Google Scholar 

  5. Serra-Majem L, Roman B, Estruch R (2006) Scientific evidence of interventions using the Mediterranean diet: a systematic review. Nutr Rev 64(2 Pt 2):S27–S47

    Article  Google Scholar 

  6. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337:a1344. doi:10.1136/bmj.a1344

    Article  Google Scholar 

  7. Di Castelnuovo A, Iacoviello L, Donati MB, De Gaetano G (2002) Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation 105(24):2836–2844

    Article  Google Scholar 

  8. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526

    Article  CAS  Google Scholar 

  9. St Leger AS, Cochrane AL, Moore F (1979) Ischaemic heart-disease and wine. Lancet 1(8129):1294

    Article  Google Scholar 

  10. Dauchet L, Amouyel P, Dallongeville J (2005) Fruit and vegetable consumption and risk of stroke: a meta-analysis of cohort studies. Neurology 65(8):1193–1197

    Article  Google Scholar 

  11. Dauchet L, Amouyel P, Hercberg S, Dallongeville J (2006) Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr 136(10):2588–2593

    CAS  Google Scholar 

  12. He FJ, Nowson CA, Lucas M, MacGregor GA (2007) Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J Hum Hypertens 21(9):717–728

    Article  CAS  Google Scholar 

  13. He FJ, Nowson CA, MacGregor GA (2006) Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 367(9507):320–326

    Article  Google Scholar 

  14. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296(10):1255–1265

    Article  CAS  Google Scholar 

  15. Arts IC, Hollman PC, Feskens EJ, Bueno de Mesquita HB, Kromhout D (2001) Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr 74(2):227–232

    CAS  Google Scholar 

  16. Ding EL, Hutfless SM, Ding X, Girotra S (2006) Chocolate and prevention of cardiovascular disease: a systematic review. Nutr Metab (Lond) 3:2

    Article  CAS  Google Scholar 

  17. Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, Ryder JJ, Hall WL, Cassidy A (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88(1):38–50

    CAS  Google Scholar 

  18. Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM (2007) Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study. Circulation 115(18):2390–2397

    Article  Google Scholar 

  19. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  CAS  Google Scholar 

  20. Bunting S, Gryglewski R, Moncada S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12(6):897–913

    CAS  Google Scholar 

  21. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    CAS  Google Scholar 

  22. Busse R, Fleming I (1995) Regulation and functional consequences of endothelial nitric oxide formation. Ann Med 27(3):331–340

    Article  CAS  Google Scholar 

  23. Schini-Kerth VB (1999) Vascular biosynthesis of nitric oxide: effect on hemostasis and fibrinolysis. Transfus Clin Biol 6(6):355–363

    Article  CAS  Google Scholar 

  24. Schini-Kerth VB, Fisslthaler B, Busse R (1994) CGRP enhances induction of NO synthase in vascular smooth muscle cells via a cAMP-dependent mechanism. Am J Physiol 267(6 Pt 2):H2483–H2490

    CAS  Google Scholar 

  25. Vanhoutte PM (1982) Role of the endothelium in control of vascular smooth muscle function. Verh K Acad Geneeskd Belg 44(5–6):411–418

    CAS  Google Scholar 

  26. Vanhoutte PM, Rimele TJ (1982) Role of the endothelium in the control of vascular smooth muscle function. J Physiol Paris 78(7):681–686

    Google Scholar 

  27. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24):9265–9269

    Article  CAS  Google Scholar 

  28. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    Article  CAS  Google Scholar 

  29. Fleming I, Busse R (1999) Signal transduction of eNOS activation. Cardiovasc Res 43(3):532–541

    Article  CAS  Google Scholar 

  30. Kuchan MJ, Frangos JA (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 266(3 Pt 1):C628–C636

    CAS  Google Scholar 

  31. Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R (1996) Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 78(5):750–758

    Article  CAS  Google Scholar 

  32. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284(1):R1–R12. doi:10.1152/ajpregu.00323.2002

    CAS  Google Scholar 

  33. Sowa G, Liu J, Papapetropoulos A, Rex-Haffner M, Hughes TE, Sessa WC (1999) Trafficking of endothelial nitric-oxide synthase in living cells. Quantitative evidence supporting the role of palmitoylation as a kinetic trapping mechanism limiting membrane diffusion. J Biol Chem 274(32):22524–22531

    Article  CAS  Google Scholar 

  34. Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459(6):793–806. doi:10.1007/s00424-009-0767-7

    Article  CAS  Google Scholar 

  35. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88(11):E68–E75

    Article  CAS  Google Scholar 

  36. Morris SM Jr (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157(6):922–930. doi:10.1111/j.1476-5381.2009.00278.x

    Article  CAS  Google Scholar 

  37. Gao Y (2010) The multiple actions of NO. Pflugers Arch 459(6):829–839. doi:10.1007/s00424-009-0773-9

    Article  CAS  Google Scholar 

  38. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A (1996) The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28(5):703–711

    Article  CAS  Google Scholar 

  39. Edwards G, Feletou M, Weston AH (2010) Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch 459(6):863–879. doi:10.1007/s00424-010-0817-1

    Article  CAS  Google Scholar 

  40. Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263(5579):663–665

    Article  CAS  Google Scholar 

  41. Fitzpatrick DF, Hirschfield SL, Coffey RG (1993) Endothelium-dependent vasorelaxing activity of wine and other grape products. Am J Physiol Heart Circ Physiol 265(2 Pt 2):H774–H778

    CAS  Google Scholar 

  42. Leikert JF, Rathel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM (2002) Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation 106(13):1614–1617

    Article  CAS  Google Scholar 

  43. Wallerath T, Li H, Godtel-Ambrust U, Schwarz PM, Forstermann U (2005) A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase. Nitric Oxide 12(2):97–104

    Article  CAS  Google Scholar 

  44. Wallerath T, Poleo D, Li H, Forstermann U (2003) Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects. J Am Coll Cardiol 41(3):471–478

    Article  CAS  Google Scholar 

  45. Ndiaye M, Chataigneau T, Andriantsitohaina R, Stoclet JC, Schini-Kerth VB (2003) Red wine polyphenols cause endothelium-dependent EDHF-mediated relaxations in porcine coronary arteries via a redox-sensitive mechanism. Biochem Biophys Res Commun 310(2):371–377. doi:S0006291X03018151 [pii]

    Article  CAS  Google Scholar 

  46. Ndiaye M, Chataigneau M, Lobysheva I, Chataigneau T, Schini-Kerth VB (2005) Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J 19(3):455–457. doi:4-2146fje [pii] 10.1096/fj.04-2146fje

    CAS  Google Scholar 

  47. Kane MO, Anselm E, Rattmann YD, Auger C, Schini-Kerth VB (2009) Role of gender and estrogen receptors in the rat aorta endothelium-dependent relaxation to red wine polyphenols. Vascul Pharmacol 51(2–3):140–146. doi:10.1016/j.vph.2009.05.002

    Article  CAS  Google Scholar 

  48. Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R (2002) Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol 135(6):1579–1587

    Article  CAS  Google Scholar 

  49. Andriambeloson E, Magnier C, Haan-Archipoff G, Lobstein A, Anton R, Beretz A, Stoclet JC, Andriantsitohaina R (1998) Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J Nutr 128(12):2324–2333

    CAS  Google Scholar 

  50. Auger C, Chaabi M, Anselm E, Lobstein A, Schini-Kerth VB (2010) The red wine extract-induced activation of endothelial nitric oxide synthase is mediated by a great variety of polyphenolic compounds. Mol Nutr Food Res 54(Suppl 2):S171–S183. doi:10.1002/mnfr.200900602

    Article  CAS  Google Scholar 

  51. Andriambeloson E, Kleschyov AL, Muller B, Beretz A, Stoclet JC, Andriantsitohaina R (1997) Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta. Br J Pharmacol 120(6):1053–1058

    Article  CAS  Google Scholar 

  52. Boban M, Modun D, Music I, Vukovic J, Brizic I, Salamunic I, Obad A, Palada I, Dujic Z (2006) Red wine induced modulation of vascular function: separating the role of polyphenols, ethanol, and urates. J Cardiovasc Pharmacol 47(5):695–701

    Article  CAS  Google Scholar 

  53. Benito S, Lopez D, Saiz MP, Buxaderas S, Sanchez J, Puig-Parellada P, Mitjavila MT (2002) A flavonoid-rich diet increases nitric oxide production in rat aorta. Br J Pharmacol 135(4):910–916

    Article  CAS  Google Scholar 

  54. Zenebe W, Pechanova O, Andriantsitohaina R (2003) Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity. Physiol Res 52(4):425–432

    CAS  Google Scholar 

  55. Duarte J, Andriambeloson E, Diebolt M, Andriantsitohaina R (2004) Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation. Physiol Res 53(6):595–602

    CAS  Google Scholar 

  56. Anselm E, Chataigneau M, Ndiaye M, Chataigneau T, Schini-Kerth VB (2007) Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS. Cardiovasc Res 73(2):404–413. doi:S0008-6363(06)00356-7 [pii] 10.1016/j.cardiores.2006.08.004

    Article  CAS  Google Scholar 

  57. Edirisinghe I, Burton-Freeman B, Tissa KC (2008) Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clin Sci (Lond) 114(4):331–337

    Article  CAS  Google Scholar 

  58. Auger C, Gerain P, Laurent-Bichon F, Portet K, Bornet A, Caporiccio B, Cros G, Teissedre PL, Rouanet JM (2004) Phenolics from commercialized grape extracts prevent early atherosclerotic lesions in hamsters by mechanisms other than antioxidant effect. J Agric Food Chem 52(16):5297–5302

    Article  CAS  Google Scholar 

  59. Mendes A, Desgranges C, Cheze C, Vercauteren J, Freslon JL (2003) Vasorelaxant effects of grape polyphenols in rat isolated aorta. Possible involvement of a purinergic pathway. Fund Clin Pharmacol 17(6):673–681

    Article  CAS  Google Scholar 

  60. Fitzpatrick DF, Fleming RC, Bing B, Maggi DA, O'Malley RM (2000) Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J Agric Food Chem 48(12):6384–6390

    Article  CAS  Google Scholar 

  61. Madeira SV, Auger C, Anselm E, Chataigneau M, Chataigneau T, Soares de Moura R, Schini-Kerth VB (2009) eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries. J Vasc Res 46(5):406–416. doi:000194271 [pii] 10.1159/000194271

    Article  CAS  Google Scholar 

  62. Burns J, Gardner PT, O'Neil J, Crawford S, Morecroft I, McPhail DB, Lister C, Matthews D, MacLean MR, Lean ME, Duthie GG, Crozier A (2000) Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J Agric Food Chem 48(2):220–230

    Article  CAS  Google Scholar 

  63. Cishek MB, Galloway MT, Karim M, German JB, Kappagoda CT (1997) Effect of red wine on endothelium-dependent relaxation in rabbits. Clin Sci (Lond) 93(6):507–511

    CAS  Google Scholar 

  64. Flesch M, Schwarz A, Bohm M (1998) Effects of red and white wine on endothelium-dependent vasorelaxation of rat aorta and human coronary arteries. Am J Physiol 275(4 Pt 2):H1183–H1190

    CAS  Google Scholar 

  65. German JB, Walzem RL (2000) The health benefits of wine. Annu Rev Nutr 20:561–593

    Article  CAS  Google Scholar 

  66. Soares De Moura R, Costa Viana FS, Souza MA, Kovary K, Guedes DC, Oliveira EP, Rubenich LM, Carvalho LC, Oliveira RM, Tano T, Gusmao Correia ML (2002) Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J Pharm Pharmacol 54(11):1515–1520

    Article  CAS  Google Scholar 

  67. Dal-Ros S, Bronner C, Schott C, Kane MO, Chataigneau M, Schini-Kerth VB, Chataigneau T (2009) Angiotensin II-induced hypertension is associated with a selective inhibition of endothelium-derived hyperpolarizing factor-mediated responses in the rat mesenteric artery. J Pharmacol Exp Ther 328(2):478–486. doi:10.1124/jpet.108.145326

    Article  CAS  Google Scholar 

  68. Rakici O, Kiziltepe U, Coskun B, Aslamaci S, Akar F (2005) Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery. Int J Cardiol 105(2):209–215

    Article  Google Scholar 

  69. Chan SL, Tabellion A, Bagrel D, Perrin-Sarrado C, Capdeville-Atkinson C, Atkinson J (2008) Impact of chronic treatment with red wine polyphenols (RWP) on cerebral arterioles in the spontaneous hypertensive rat. J Cardiovasc Pharmacol 51(3):304–310

    Article  CAS  Google Scholar 

  70. Nagaoka T, Hein TW, Yoshida A, Kuo L (2007) Resveratrol, a component of red wine, elicits dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels. Invest Ophthalmol Vis Sci 48(9):4232–4239

    Article  Google Scholar 

  71. Auger C, Kim JH, Chabert P, Chaabi M, Anselm E, Lanciaux X, Lobstein A, Schini-Kerth VB (2010) The EGCg-induced redox-sensitive activation of endothelial nitric oxide synthase and relaxation are critically dependent on hydroxyl moieties. Biochem Biophys Res Commun 393(1):162–167. doi:10.1016/j.bbrc.2010.01.112

    Article  CAS  Google Scholar 

  72. Chambliss KL, Shaul PW (2002) Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev 23(5):665–686

    Article  CAS  Google Scholar 

  73. Chalopin M, Tesse A, Martinez MC, Rognan D, Arnal JF, Andriantsitohaina R (2010) Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium. PLoS One 5(1):e8554

    Article  CAS  Google Scholar 

  74. Padilla E, Ruiz E, Redondo S, Gordillo-Moscoso A, Slowing K, Tejerina T (2005) Relationship between vasodilation capacity and phenolic content of Spanish wines. Eur J Pharmacol 517(1–2):84–91

    Article  CAS  Google Scholar 

  75. de Moura RS, Miranda DZ, Pinto AC, Sicca RF, Souza MA, Rubenich LM, Carvalho LC, Rangel BM, Tano T, Madeira SV, Resende AC (2004) Mechanism of the endothelium-dependent vasodilation and the antihypertensive effect of Brazilian red wine. J Cardiovasc Pharmacol 44(3):302–309

    Article  Google Scholar 

  76. Ndiaye M, Chataigneau T, Chataigneau M, Schini-Kerth VB (2004) Red wine polyphenols induce EDHF-mediated relaxations in porcine coronary arteries through the redox-sensitive activation of the PI3-kinase/Akt pathway. Br J Pharmacol 142(7):1131–1136. doi:10.1038/sj.bjp. 0705774

    Article  CAS  Google Scholar 

  77. Chaves AA, Joshi MS, Coyle CM, Brady JE, Dech SJ, Schanbacher BL, Baliga R, Basuray A, Bauer JA (2009) Vasoprotective endothelial effects of a standardized grape product in humans. Vascul Pharmacol 50(1–2):20–26. doi:10.1016/j.vph.2008.08.004

    Article  CAS  Google Scholar 

  78. Aprikian O, Duclos V, Guyot S, Besson C, Manach C, Bernalier A, Morand C, Remesy C, Demigne C (2003) Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J Nutr 133(6):1860–1865

    CAS  Google Scholar 

  79. Mullen W, Edwards CA, Serafini M, Crozier A (2008) Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J Agric Food Chem 56(3):713–719

    Article  CAS  Google Scholar 

  80. Tsang C, Auger C, Mullen W, Bornet A, Rouanet JM, Crozier A, Teissedre PL (2005) The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br J Nutr 94(2):170–181

    Article  CAS  Google Scholar 

  81. Sano A, Yamakoshi J, Tokutake S, Tobe K, Kubota Y, Kikuchi M (2003) Procyanidin B1 is detected in human serum after intake of proanthocyanidin-rich grape seed extract. Biosci Biotechnol Biochem 67(5):1140–1143

    Article  CAS  Google Scholar 

  82. Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, Fraga CG, Schmitz HH, Keen CL (2002) Procyanidin dimer B2 [epicatechin-(4beta-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76(4):798–804

    CAS  Google Scholar 

  83. Machha A, Mustafa MR (2005) Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J Cardiovasc Pharmacol 46(1):36–40

    Article  CAS  Google Scholar 

  84. Peng N, Clark JT, Prasain J, Kim H, White CR, Wyss JM (2005) Antihypertensive and cognitive effects of grape polyphenols in estrogen-depleted, female, spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 289(3):R771–R775

    Article  CAS  Google Scholar 

  85. Sarr M, Chataigneau M, Martins S, Schott C, El Bedoui J, Oak MH, Muller B, Chataigneau T, Schini-Kerth VB (2006) Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovasc Res 71(4):794–802. doi:10.1016/j.cardiores.2006.05.022

    Article  CAS  Google Scholar 

  86. Bernatova I, Pechanova O, Babal P, Kysela S, Stvrtina S, Andriantsitohaina R (2002) Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am J Physiol Heart Circ Physiol 282(3):H942–H948

    CAS  Google Scholar 

  87. Pechanova O, Bernatova I, Babal P, Martinez MC, Kysela S, Stvrtina S, Andriantsitohaina R (2004) Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J Hypertens 22(8):1551–1559

    Article  CAS  Google Scholar 

  88. Jimenez R, Lopez-Sepulveda R, Kadmiri M, Romero M, Vera R, Sanchez M, Vargas F, O'Valle F, Zarzuelo A, Duenas M, Santos-Buelga C, Duarte J (2007) Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase. Free Radic Biol Med 43(3):462–473

    Article  CAS  Google Scholar 

  89. Kane MO, Etienne-Selloum N, Madeira SV, Sarr M, Walter A, Dal-Ros S, Schott C, Chataigneau T, Schini-Kerth VB (2010) Endothelium-derived contracting factors mediate the Ang II-induced endothelial dysfunction in the rat aorta: preventive effect of red wine polyphenols. Pflugers Arch 459(5):671–679. doi:10.1007/s00424-009-0759-7

    Article  CAS  Google Scholar 

  90. Dal-Ros S, Oswald-Mammosser M, Pestrikova T, Schott C, Boehm N, Bronner C, Chataigneau T, Geny B, Schini-Kerth VB (2010) Losartan prevents portal hypertension-induced, redox-mediated endothelial dysfunction in the mesenteric artery in rats. Gastroenterology 138(4):1574–1584. doi:10.1053/j.gastro.2009.10.040

    Article  CAS  Google Scholar 

  91. Dal-Ros S, Zoll J, Lang AL, Auger C, Keller N, Bronner C, Geny B, Schini-Kerth VB (2011) Chronic intake of red wine polyphenols by young rats prevents aging-induced endothelial dysfunction and decline in physical performance: role of NADPH oxidase. Biochem Biophys Res Commun 404(2):743–749

    Article  CAS  Google Scholar 

  92. Sarr M, Chataigneau M, Martins S, Schott C, El Bedoui J, Oak MH, Muller B, Chataigneau T, Schini-Kerth VB (2006) Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovasc Res 71(4):794–802

    Article  CAS  Google Scholar 

  93. Idris Khodja N, Chataigneau T, Auger C, Schini-Kerth VB (2012) Grape-derived polyphenols improve aging-related endothelial dysfunction in rat mesenteric artery: role of oxidative stress and the angiotensin system. PLoS One 7(2):e32039. doi:10.1371/journal.pone.0032039

    Article  CAS  Google Scholar 

  94. Dal-Ros S, Bronner C, Auger C, Schini-Kerth VB (2012) Red wine polyphenols improve an established aging-related endothelial dysfunction in the mesenteric artery of middle-aged rats: role of oxidative stress. Biochem Biophys Res Commun 419(2):381–387. doi:10.1016/j.bbrc.2012.02.031

    Article  CAS  Google Scholar 

  95. Mladenka P, Zatloukalova L, Filipsky T, Hrdina R (2010) Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radic Biol Med 49(6):963–975. doi:10.1016/j.freeradbiomed.2010.06.010

    Article  CAS  Google Scholar 

  96. Dal-Ros S, Bronner C, Schott C, Kane MO, Chataigneau M, Schini-Kerth VB, Chataigneau T (2009) Angiotensin II-induced hypertension is associated with a selective inhibition of endothelium-derived hyperpolarizing factor-mediated responses in the rat mesenteric artery. J Pharmacol Exp Ther 328(2):478–486

    Article  CAS  Google Scholar 

  97. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97(8):1916–1923

    Article  CAS  Google Scholar 

  98. Hashemi M, Kelishadi R, Hashemipour M, Zakerameli A, Khavarian N, Ghatrehsamani S, Poursafa P (2010) Acute and long-term effects of grape and pomegranate juice consumption on vascular reactivity in paediatric metabolic syndrome. Cardiol Young 20(1):73–77. doi:10.1017/S1047951109990850

    Article  Google Scholar 

  99. Andrade AC, Cesena FH, Consolim-Colombo FM, Coimbra SR, Benjo AM, Krieger EM, Luz PL (2009) Short-term red wine consumption promotes differential effects on plasma levels of high-density lipoprotein cholesterol, sympathetic activity, and endothelial function in hypercholesterolemic, hypertensive, and healthy subjects. Clinics (Sao Paulo) 64(5):435–442

    Article  Google Scholar 

  100. Agewall S, Wright S, Doughty RN, Whalley GA, Duxbury M, Sharpe N (2000) Does a glass of red wine improve endothelial function? Eur Heart J 21(1):74–78

    Article  CAS  Google Scholar 

  101. Djousse L, Ellison RC, McLennan CE, Cupples LA, Lipinska I, Tofler GH, Gokce N, Vita JA (1999) Acute effects of a high-fat meal with and without red wine on endothelial function in healthy subjects. Am J Cardiol 84(6):660–664

    Article  CAS  Google Scholar 

  102. Coimbra SR, Lage SH, Brandizzi L, Yoshida V, da Luz PL (2005) The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients. Braz J Med Biol Res 38(9):1339–1347

    Article  CAS  Google Scholar 

  103. Papamichael C, Karatzis E, Karatzi K, Aznaouridis K, Papaioannou T, Protogerou A, Stamatelopoulos K, Zampelas A, Lekakis J, Mavrikakis M (2004) Red wine’s antioxidants counteract acute endothelial dysfunction caused by cigarette smoking in healthy nonsmokers. Am Heart J 147(2):E5

    Article  CAS  Google Scholar 

  104. Karatzi K, Papamichael C, Aznaouridis K, Karatzis E, Lekakis J, Matsouka C, Boskou G, Chiou A, Sitara M, Feliou G, Kontoyiannis D, Zampelas A, Mavrikakis M (2004) Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease. Coron Artery Dis 15(8):485–490

    Article  Google Scholar 

  105. Schroeter H, Heiss C, Balzer J, Kleinbongard P, Keen CL, Hollenberg NK, Sies H, Kwik-Uribe C, Schmitz HH, Kelm M (2006) (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci USA 103(4):1024–1029

    Article  CAS  Google Scholar 

  106. Engler MB, Engler MM, Chen CY, Malloy MJ, Browne A, Chiu EY, Kwak HK, Milbury P, Paul SM, Blumberg J, Mietus-Snyder ML (2004) Flavonoid-rich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults. J Am Coll Nutr 23(3):197–204

    CAS  Google Scholar 

  107. Hermann F, Spieker LE, Ruschitzka F, Sudano I, Hermann M, Binggeli C, Luscher TF, Riesen W, Noll G, Corti R (2006) Dark chocolate improves endothelial and platelet function. Heart 92(1):119–120

    Article  CAS  Google Scholar 

  108. Faridi Z, Njike VY, Dutta S, Ali A, Katz DL (2008) Acute dark chocolate and cocoa ingestion and endothelial function: a randomized controlled crossover trial. Am J Clin Nutr 88(1):58–63. doi:88/1/58 [pii]

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Auger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Auger, C., Schini-Kerth, V.B. (2013). Wine Polyphenols and Vascular Protective Effects. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_79

Download citation

Publish with us

Policies and ethics