Skip to main content

Advertisement

Log in

Endothelium-derived contracting factors mediate the Ang II-induced endothelial dysfunction in the rat aorta: preventive effect of red wine polyphenols

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II)-induced hypertension is associated with vascular oxidative stress and an endothelial dysfunction. This study examined the role of reactive oxygen species (ROS) and endothelium-derived contracting factors in Ang II-induced endothelial dysfunction and whether these effects are prevented by red wine polyphenols (RWPs), a rich source of natural antioxidants. Rats were infused with Ang II for 14 days. RWPs were administered in the drinking water 1 week before and during the Ang II infusion. Arterial pressure was measured in conscious rats. Vascular reactivity was assessed in organ chambers and cyclooxygenase-1 (COX-1) and COX-2 expression by Western blot and immunofluorescence analyses. Ang II-induced hypertension was associated with blunted endothelium-dependent relaxations and induction of endothelium-dependent contractions in the presence of nitro-L-arginine in response to acetylcholine (Ach). These effects were not affected by the combination of membrane permeant analogs of superoxide dismutase and catalase but were abolished by the thromboxane A2 (TP) receptor antagonist GR32191B and the COX-2 inhibitor NS-398. The COX-1 inhibitor SC-560 also prevented contractile responses to Ach. Ang II increased the expression of COX-1 and COX-2 in the aortic wall. RWPs prevented Ang II-induced hypertension, endothelial dysfunction, and upregulation of COX-1 and COX-2. Thus, Ang II-induced endothelial dysfunction cannot be explained by an acute formation of ROS reducing the bioavailability of nitric oxide but rather by COX-dependent formation of contracting factors acting on TP receptors. RWPs are able to prevent the Ang II-induced endothelial dysfunction mostly due to their antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luksha L, Agewall S, Kublickiene K (2009) Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis 202:330–344

    Article  CAS  PubMed  Google Scholar 

  2. Schulz E, Jansen T, Wenzel P, Daiber A, Munzel T (2008) Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal 10:1115–1126

    Article  CAS  PubMed  Google Scholar 

  3. Vanhoutte PM (1996) Endothelial dysfunction in hypertension. J Hypertens Suppl 14:S83–S93

    Article  CAS  PubMed  Google Scholar 

  4. Vanhoutte PM (1998) Endothelial dysfunction and vascular disease. Verh K Acad Geneeskd Belg 60:251–266

    CAS  PubMed  Google Scholar 

  5. Kahonen M, Tolvanen JP, Sallinen K, Wu X, Porsti I (1998) Influence of gender on control of arterial tone in experimental hypertension. Am J Physiol 275:H15–H22

    CAS  PubMed  Google Scholar 

  6. Vanhoutte PM, Feletou M, Taddei S (2005) Endothelium-dependent contractions in hypertension. Br J Pharmacol 144:449–458

    Article  CAS  PubMed  Google Scholar 

  7. Luscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348

    CAS  PubMed  Google Scholar 

  8. Zhou MS, Kosaka H, Tian RX, Abe Y, Chen QH, Yoneyama H, Yamamoto A, Zhang L (2001) L-Arginine improves endothelial function in renal artery of hypertensive Dahl rats. J Hypertens 19:421–429

    Article  CAS  PubMed  Google Scholar 

  9. Taylor PD, Oon BB, Thomas CR, Poston L (1994) Prevention by insulin treatment of endothelial dysfunction but not enhanced noradrenaline-induced contractility in mesenteric resistance arteries from streptozotocin-induced diabetic rats. Br J Pharmacol 111:35–41

    CAS  PubMed  Google Scholar 

  10. Tesfamariam B, Jakubowski JA, Cohen RA (1989) Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2. Am J Physiol 257:H1327–H1333

    CAS  PubMed  Google Scholar 

  11. Davidge ST, Zhang Y (1998) Estrogen replacement suppresses a prostaglandin H synthase-dependent vasoconstrictor in rat mesenteric arteries. Circ Res 83:388–395

    CAS  PubMed  Google Scholar 

  12. Ge T, Hughes H, Junquero DC, Wu KK, Vanhoutte PM, Boulanger CM (1995) Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H2 in the SHR aorta. Circ Res 76:1003–1010

    CAS  PubMed  Google Scholar 

  13. Heymes C, Habib A, Yang D, Mathieu E, Marotte F, Samuel J, Boulanger CM (2000) Cyclo-oxygenase-1 and -2 contribution to endothelial dysfunction in ageing. Br J Pharmacol 131:804–810

    Article  CAS  PubMed  Google Scholar 

  14. Matz RL, de Sotomayor MA, Schott C, Stoclet JC, Andriantsitohaina R (2000) Vascular bed heterogeneity in age-related endothelial dysfunction with respect to NO and eicosanoids. Br J Pharmacol 131:303–311

    Article  CAS  PubMed  Google Scholar 

  15. Yang D, Feletou M, Boulanger CM, Wu HF, Levens N, Zhang JN, Vanhoutte PM (2002) Oxygen-derived free radicals mediate endothelium-dependent contractions to acetylcholine in aortas from spontaneously hypertensive rats. Br J Pharmacol 136:104–110

    Article  CAS  PubMed  Google Scholar 

  16. Yang D, Feletou M, Levens N, Zhang JN, Vanhoutte PM (2003) A diffusible substance(s) mediates endothelium-dependent contractions in the aorta of SHR. Hypertension 41:143–148

    Article  CAS  PubMed  Google Scholar 

  17. Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Qt C, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK (1997) p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 80:45–51

    CAS  PubMed  Google Scholar 

  18. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    Article  CAS  PubMed  Google Scholar 

  19. Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB (1995) Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide. J Clin Invest 95:1669–1675

    Article  CAS  PubMed  Google Scholar 

  20. Sarr M, Chataigneau M, Martins S, Schott C, El Bedoui J, Oak MH, Muller B, Chataigneau T, Schini-Kerth VB (2006) Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovasc Res 71:794–802

    Article  CAS  PubMed  Google Scholar 

  21. Andriambeloson E, Magnier C, Haan-Archipoff G, Lobstein A, Anton R, Beretz A, Stoclet JC, Andriantsitohaina R (1998) Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J Nutr 128:2324–2333

    CAS  PubMed  Google Scholar 

  22. Carando S, Teissedre PL (1999) Catechin and procyanidin levels in French wines: contribution to dietary intake. Basic Life Sci 66:725–737

    CAS  PubMed  Google Scholar 

  23. Jaimes EA, Tian RX, Pearse D, Raij L (2005) Up-regulation of glomerular COX-2 by angiotensin II: role of reactive oxygen species. Kidney Int 68:2143–2153

    Article  CAS  PubMed  Google Scholar 

  24. Akasaki T, Ohya Y, Kuroda J, Eto K, Abe I, Sumimoto H, Iida M (2006) Increased expression of gp91phox homologues of NAD(P)H oxidase in the aortic media during chronic hypertension: involvement of the renin-angiotensin system. Hypertens Res 29:813–820

    Article  CAS  PubMed  Google Scholar 

  25. Hitomi H, Kiyomoto H, Nishiyama A (2007) Angiotensin II and oxidative stress. Curr Opin Cardiol 22:311–315

    Article  PubMed  Google Scholar 

  26. Takenaka H, Kihara Y, Iwanaga Y, Onozawa Y, Toyokuni S, Kita T (2006) Angiotensin II, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension. J Mol Cell Cardiol 41:989–997

    Article  CAS  PubMed  Google Scholar 

  27. Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95:588–593

    CAS  PubMed  Google Scholar 

  28. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M, August M, Kleschyov AL, Tsilimingas N, Walter U, Forstermann U, Meinertz T, Griendling K, Munzel T (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58–E65

    Article  PubMed  Google Scholar 

  29. Wang D, Chabrashvili T, Wilcox CS (2004) Enhanced contractility of renal afferent arterioles from angiotensin-infused rabbits: roles of oxidative stress, thromboxane prostanoid receptors, and endothelium. Circ Res 94:1436–1442

    Article  CAS  PubMed  Google Scholar 

  30. Virdis A, Colucci R, Fornai M, Duranti E, Giannarelli C, Bernardini N, Segnani C, Ippolito C, Antonioli L, Blandizzi C, Taddei S, Salvetti A, Del Tacca M (2007) Cyclooxygenase-1 is involved in endothelial dysfunction of mesenteric small arteries from angiotensin II-infused mice. Hypertension 49:679–686

    Article  CAS  PubMed  Google Scholar 

  31. Tang EH, Vanhoutte PM (2008) Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics 32:409–418

    CAS  PubMed  Google Scholar 

  32. Derbyshire ZE, Halfter UM, Heimark RL, Sy TH, Vaillancourt RR (2005) Angiotensin II stimulated transcription of cyclooxygenase II is regulated by a novel kinase cascade involving Pyk2, MEKK4 and annexin II. Mol Cell Biochem 271:77–90

    Article  CAS  PubMed  Google Scholar 

  33. Hu ZW, Kerb R, Shi XY, Wei-Lavery T, Hoffman BB (2002) Angiotensin II increases expression of cyclooxygenase-2: implications for the function of vascular smooth muscle cells. J Pharmacol Exp Ther 303:563–573

    Article  CAS  PubMed  Google Scholar 

  34. Ohnaka K, Numaguchi K, Yamakawa T, Inagami T (2000) Induction of cyclooxygenase-2 by angiotensin II in cultured rat vascular smooth muscle cells. Hypertension 35:68–75

    CAS  PubMed  Google Scholar 

  35. Alvarez Y, Perez-Giron JV, Hernanz R, Briones AM, Garcia-Redondo A, Beltran A, Alonso MJ, Salaices M (2007) Losartan reduces the increased participation of cyclooxygenase-2-derived products in vascular responses of hypertensive rats. J Pharmacol Exp Ther 321:381–388

    Article  CAS  PubMed  Google Scholar 

  36. Barbieri SS, Cavalca V, Eligini S, Brambilla M, Caiani A, Tremoli E, Colli S (2004) Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radic Biol Med 37:156–165

    Article  CAS  PubMed  Google Scholar 

  37. Luceri C, Caderni G, Sanna A, Dolara P (2002) Red wine and black tea polyphenols modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced f344 rat colon tumors. J Nutr 132:1376–1379

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by VINIFLHOR (Ministry of Agriculture, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie B. Schini-Kerth.

Additional information

Modou O. Kane and Nelly Etienne-Selloum contributed equally in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kane, M.O., Etienne-Selloum, N., Madeira, S.V.F. et al. Endothelium-derived contracting factors mediate the Ang II-induced endothelial dysfunction in the rat aorta: preventive effect of red wine polyphenols. Pflugers Arch - Eur J Physiol 459, 671–679 (2010). https://doi.org/10.1007/s00424-009-0759-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0759-7

Keywords

Navigation