Skip to main content

Flavanols: Catechins and Proanthocyanidins

  • Reference work entry
  • First Online:
Natural Products

Abstract

Flavanols are a wide group of polyphenols that include flavan-3-ols (e.g., catechin and proanthocyanidins), flavan-4-ols, and flavan-3,4-diols. They arise from plant secondary metabolism through condensation of phenylalanine derived from the shikimate pathway with malonyl-CoA obtained from citrate that is produced by the tricarboxylic acid cycle, leading to the formation of the key precursor in the flavonoids biosynthesis: the naringenin chalcone. The exact nature of the molecular species that undergo polymerization and the mechanism of assembly in proanthocyanidins are still unknown. From a structural point of view, flavanols comprise a C15 (C6-C3-C6) general structure composed by a benzopyran moiety (A and C rings) with an additional aromatic ring (B ring) linked to carbon C-2 of C ring. Flavanols are present in nature in monomeric, oligomeric, and polymeric forms and differ from each other essentially in the configuration of carbon C-2, the hydroxylation/methoxylation pattern of the rings, the type of linkage between each unit, and the degree of galloylation. Flavanols in foods are described to present several beneficial effects such as antioxidant and anticarcinogenic properties and also contribute to the sensory properties of some food products, such as astringency and color. Some of these aspects are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4CL:

4-Coumarate:CoA ligase

ANR:

Anthocyanidin reductase

ANS:

Anthocyanidin synthase

C:

Catechin

C3G:

Catechin-3-O-gallate

C4H:

Cinnamate 4-hidroxylase

CGCC:

Catechin-gallocatechin-catechin

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroxyflavonol 4-reductase

DP:

Degree of polymerization

E3G:

Epicatechin-3-O-glucoside

EC:

Epicatechin

EC3G:

Epicatechin-3-O-gallate

EGC:

Epigallocatechin

EEC:

Epicatechin-epicatechin-catechin

EGC3G:

Epigallocatechin-3-O-gallate

F3′5′H:

Flavonoid 3′,5′-hydroxylase

F3H:

Flavanone 3β-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

GC:

Gallocatechin

GC3G:

Gallocatechin-3-O-gallate

GCCC:

Gallocatechin-catechin-catechin

GCGCC:

Gallocatechin-gallocatechin-catechin

HCA-CoA:

Hydroxycinnamic acid-CoA

HMF:

Hydroxymethylfurfural

HPLC:

High-performance liquid chromatography

LAR:

Leucoanthocyanidin reductase

MW:

Molecular weight

PAL:

Phenylalanine ammonia lyase

PAs:

Proanthocyanidins

PCs:

Procyanidins

PDs:

Prodelphinidins

PPO:

Polyphenol oxidase

PRPs:

Proline-rich proteins

References

  1. Brieskorn CH, Betz R (1988) Procyanidin polymers, the crucial ingredients of the almond seed coat. Z Lebensm Unters Forsch 187:347–353

    Article  CAS  Google Scholar 

  2. De Freitas VAP, Glories Y, Bourgeois G, Vitry C (1998) Characterisation of oligomeric and polymeric procyanidins from grape seeds by liquid secondary ion mass spectrometry. Phytochemistry 49:1435–1441

    Article  Google Scholar 

  3. Heinonen IM, Meyer AS, Frankel EN (1998) Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J Agric Food Chem 46:4107–4112

    Article  CAS  Google Scholar 

  4. Lea AGH, Timberlake CF (1974) The phenolics of ciders. 1. Procyanidins. J Sci Food Agric 25:1537–1545

    Article  CAS  Google Scholar 

  5. McMurrough I, Baert T (1994) Identification of proanthocyanidins in beer and their direct measurement with a dual electrode electrochemical detector. J Inst Brew 100:409–416

    Article  CAS  Google Scholar 

  6. Ricardo-Da-Silva JM, Rosec JP, Bourzeix M, Mourgues J, Moutounet M (1992) Dimer and trimer procyanidins in carignan and mourvedre grapes and red wines. Vitis 31:55–63

    CAS  Google Scholar 

  7. Sioud FB, Luh BS (1966) Polyphenolic compounds in pear purée. Food Technol 20:535–538

    Google Scholar 

  8. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  Google Scholar 

  9. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  10. Haslam E (1989) Plant polyphenols, vegetable tannins revisited. Cambridge University Press, Cambridge

    Google Scholar 

  11. Hagerman AE, Butler LG (1981) The specificity of proanthocyanidin-protein interactions. J Biol Chem 256:4494–4497

    CAS  Google Scholar 

  12. Vidal S, Francis L, Guyot S, Marnet N, Kwiatkowski M, Gawel R, Cheynier V, Waters EJ (2003) The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J Sci Food Agric 83:564–573

    Article  CAS  Google Scholar 

  13. Bate-Smith EC (1954) Astringency in foods. Food 23:124–135

    CAS  Google Scholar 

  14. Berke B, de Freitas V (2007) A colorimetric study of oenin copigmented by procyanidins. J Sci Food Agric 87:260–265

    Article  CAS  Google Scholar 

  15. Berké B, de Freitas VAP (2005) Influence of procyanidin structures on their ability to complex with oenin. Food Chem 90:453–460

    Article  CAS  Google Scholar 

  16. Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am J Enol Vitic 52:67–87

    CAS  Google Scholar 

  17. Cruz L, Bras NF, Teixeira N, Mateus N, Ramos MJ, Dangles O, De Freitas V (2010) Vinylcatechin dimers are much better copigments for anthocyanins than catechin dimer procyanidin B3. J Agric Food Chem 58:3159–3166

    Article  CAS  Google Scholar 

  18. Gonzalez-Manzano S, Duenas M, Rivas-Gonzalo JC, Escribano-Bailon MT, Santos-Buelga C (2009) Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chem 114:649–656

    Article  CAS  Google Scholar 

  19. Gonzalez-Manzano S, Mateus N, de Freitas V, Santos-Buelga C (2008) Influence of the degree of polymerisation in the ability of catechins to act as anthocyanin copigments. Eur Food Res Technol 227:83–92

    Article  CAS  Google Scholar 

  20. Alcalde-Eon C, Escribano-Bailón MT, Santos-Buelga C, Rivas-Gonzalo JC (2004) Separation of pyranoanthocyanins from red wine by column chromatography. Anal Chim Acta 513:305–318

    Article  CAS  Google Scholar 

  21. Francia-Aricha EM, Guerra MT, RivasGonzalo JC, SantosBuelga C (1997) New anthocyanin pigments formed after condensation with flavanols. J Agric Food Chem 45:2262–2266

    Article  CAS  Google Scholar 

  22. Liao H, Cai Y, Haslam E (1992) Polyphenol interactions. Anthocyanins: co-pigmentation and colour changes in red wines. J Sci Food Agric 59:299–305

    Article  CAS  Google Scholar 

  23. Rivas-Gonzalo JC, Bravo-Haro S, Santosbuelga C (1995) Detection of compounds formed through the reaction of malvidin-3-monoglucoside and catechin in the presence of acetaldehyde. J Agric Food Chem 43:1444–1449

    Article  CAS  Google Scholar 

  24. Somers TC (1971) The polymeric nature of wine pigments. Phytochemistry 10:2175–2186

    Article  CAS  Google Scholar 

  25. Timberlake CF, Bridle P (1976) Interactions between anthocyanins phenolic compounds and acetaldehyde and their significance in red wines. Am J Enol Vitic 27:97–105

    CAS  Google Scholar 

  26. Vivar-Quintana AM, Santos-Buelga C, Francia-Aricha E, Rivas-Gonzalo JC (1999) Formation of anthocyanin-derived pigments in experimental red wines. Food Sci Technol Int 5:347–352

    Article  CAS  Google Scholar 

  27. Marmolle F, Leize E, Mila I, Van Dorsselaer A, Scalbert A, Albrecht-Gary AM (1997) Polyphenol metallic complexes: characterization by electrospray mass spectrometric and spectrophotometric methods. Analusis 25:M53–M55

    CAS  Google Scholar 

  28. Kennedy J, Powell H (1985) Polyphenol interactions with aluminium(III) and Iron(III): their possible involvement in the podzolization process. Aust J Chem 38:879–888

    Article  CAS  Google Scholar 

  29. Quesada IM, Bustos M, Blay M, Pujadas G, Ardevol A, Salvado MJ, Blade C, Arola L, Fernandez-Larrea J (2011) Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells. J Nutr Biochem 22:153–163

    Article  CAS  Google Scholar 

  30. Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53:75–100

    Article  CAS  Google Scholar 

  31. de Alarcon PA, Donovan ME, Forbes GB, Landaw SA, Stockman JA (1979) Iron absorption in the thalassemia syndromes and its inhibition by tea. New Engl J Med 300:5–8

    Article  Google Scholar 

  32. Drewitt PN, Butterworth KR, Springall CD, Moorhouse SR (1993) Plasma levels of aluminium after tea ingestion in healthy volunteers. Food Chem Toxicol 31:19–23

    Article  CAS  Google Scholar 

  33. Da Silva JMR, Darmon N, Fernandez Y, Mitjavila S (1991) Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J Agric Food Chem 39:1549–1552

    Article  Google Scholar 

  34. Bos MA, Vennat B, Meunier MT, Pouget MP, Pourrat A, Fialip J (1996) Procyanidins from tormentil: antioxidant properties towards lipoperoxidation and anti-elastase activity. Biol Pharmacol Bull 19:146–148

    Article  CAS  Google Scholar 

  35. Bagchi D, Garg A, Krohn RL, Bagchi M, Tran MX, Stohs SJ (1997) Oxygen free radical scavenging abilities of vitamins C and E, and A grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95:179–189

    CAS  Google Scholar 

  36. Plumb GW, De Pascual-Teresa S, Santos-Buelga C, Cheynier V, Williamson G (1998) Antioxidant properties of catechins and proanthocyanidins: effect of polymerisation, galloylation and glycosylation. Free Radic Res 29:351–358

    Article  CAS  Google Scholar 

  37. da Silva Porto PAL, Laranjinha JAN, de Freitas VAP (2003) Antioxidant protection of low density lipoprotein by procyanidins: structure/activity relationships. Biochem Pharmacol 66:947–954

    Article  CAS  Google Scholar 

  38. Porter ML, Krueger CG, Wiebe DA, Cunningham DG, Reed JD (2001) Cranberry proanthocyanidins associate with low-density lipoprotein and inhibit in vitro Cu2 + −induced oxidation. J Sci Food Agric 81:1306–1313

    Article  CAS  Google Scholar 

  39. Osakabe N, Yasuda A, Natsume M, Takizawa T, Terao J, Kondo K (2002) Catechins and their oligomers linked by C4 - > C8 bonds are major cacao polyphenols and protect low-density lipoprotein from oxidation in vitro. Exp Biol Med 227:51–56

    CAS  Google Scholar 

  40. Lourenco CF, Gago B, Barbosa RM, de Freitas V, Laranjinha J (2008) LDL isolated from plasma-loaded red wine procyanidins resist lipid oxidation and tocopherol depletion. J Agric Food Chem 56:3798–3804

    Article  CAS  Google Scholar 

  41. Ho KY, Huang JS, Tsai CC, Lin TC, Hsu YF, Lin CC (1999) Antioxidant activity of tannin components from vaccinium vitis-idaea L. J Pharm Pharmacol 51:1075–1078

    Article  CAS  Google Scholar 

  42. Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M-S, Nakayama T (2001) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50:373–377

    Article  CAS  Google Scholar 

  43. Bagchi D, Garg A, Krohn RL, Bagchi M, Bagchi DJ, Balmoori J, Stohs SJ (1998) Protective effects of grape seed proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen Pharmacol 30:771–776

    Article  CAS  Google Scholar 

  44. Preuss HG, Wallerstedt D, Talpur N, Tutuncuoglu SO, Echard B, Myers A, Bui M, Bagchi D (2000) Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: a pilot study. J Med 31:227–246

    CAS  Google Scholar 

  45. Fuster V (1994) Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology (published erratum appears in Circulation 1995 Jan 1 91(1):256). Circulation 90:2126–2146

    Google Scholar 

  46. Murphy KJ, Chronopoulos AK, Singh I, Francis MA, Moriarty H, Pike MJ, Turner AH, Mann NJ, Sinclair AJ (2003) Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am J Clin Nutr 77:1466–1473

    CAS  Google Scholar 

  47. Yamakoshi J, Kataoka S, Koga T, Ariga T (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142:139–149

    Article  CAS  Google Scholar 

  48. Das DK, Sato M, Ray PS, Maulik G, Engelman RM, Bertelli AAE, Bertelli A (1999) Cardioprotection of red wine: role of polyphenolic antioxidants. Drug Exp Clin Res 25:115–120

    CAS  Google Scholar 

  49. Boivin D, Blanchette M, Barrette S, Moghrabi A, Béliveau R (2007) Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFκB by edible berry juice. Anticancer Res 27:937–948

    CAS  Google Scholar 

  50. Gee JM, Johnson IT (2001) Polyphenolic compounds: interactions with the gut and implications for human health. Curr Med Chem 8:1245

    Article  CAS  Google Scholar 

  51. Tong H, Song X, Sun X, Sun G, Du F (2011) Immunomodulatory and antitumor activities of grape seed proanthocyanidins. J Agric Food Chem 59:11543–11547

    Article  CAS  Google Scholar 

  52. Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, Mitsunaga T, Hashimoto F, Kiso Y (2005) Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem 53:4593–4598

    Article  CAS  Google Scholar 

  53. Nakahara K, Kawabata S, Ono H, Ogura K, Tanaka T, Ooshima T, Hamada S (1993) Inhibitory effect of oolong tea polyphenols on glycosyltransferases of mutans Streptococci. Appl Environ Microbiol 59:968–973

    CAS  Google Scholar 

  54. Goncalves R, Soares S, Mateus N, de Freitas V (2007) Inhibition of trypsin by condensed tannins and wine. J Agric Food Chem 55:7596–7601

    Article  CAS  Google Scholar 

  55. McDougall GJ, Stewart D (2005) The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors (Oxford, England) 23:189–195

    Article  CAS  Google Scholar 

  56. Pan W-B, Chang F-R, Wei L-M, Wu Y-C (2003) New flavans, spirostanol sapogenins, and a pregnane genin from Tupistra chinensis and their cytotoxicity. J Nat Prod 66:161–168

    Article  CAS  Google Scholar 

  57. Sauvain M, Dedet J-P, Kunesch N, Poisson J (1994) Isolation of flavans from the Amazonian shrub faramea guianensis. J Nat Prod 57:403–406

    Article  CAS  Google Scholar 

  58. Garo E, Maillard M, Antus S, Mavi S, Hostettmann K (1996) Five flavans from Mariscus psilostachys. Phytochemistry 43:1265–1269

    Article  CAS  Google Scholar 

  59. Ferreira D, Steynberg JP, Roux DG, Brandt EV (1992) Diversity of structure and function in oligomeric flavanoids. Tetrahedron 48:1743–1803

    Article  CAS  Google Scholar 

  60. Ferreira D, Nel RJJ, Bekker R (1999) Condensed tannins. In: Barton DHR, Nakanishi K (eds) Comprehensive natural products chemistry. Pergamon (Elsevier), New York

    Google Scholar 

  61. Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134:613–617

    CAS  Google Scholar 

  62. Haslam E (1989) Plant polyphenols: vegetables tannins revisited. Cambridge University Press, Cambridge

    Google Scholar 

  63. Porter LJ (1988) Flavans and proanthocyanidins. In: Harborne JB (ed) The flavonoids: advances in research since 1980. Chapman & Hall, London

    Google Scholar 

  64. Porter LJ (1994) Flavans and proanthocyanidins. In: Harborne JB (ed) The flavonoids – advances in research since 1986. Chapman & Hall, London

    Google Scholar 

  65. Piretti MV, Ghedini M, Serrazanetti GP (1976) Isolation and identification of polyphenolic and terpenoid constituents of Vitis vinifera. Annal Chim 66:429–437

    CAS  Google Scholar 

  66. Lee CY, Jaworsky AW (1990) Identification of some phenolics in white grapes. Am J Enol Vitic 41:87–89

    CAS  Google Scholar 

  67. Dueñas M, Hernández T, Estrella I (2007) Changes in the content of bioactive polyphenolic compounds of lentils by the action of exogenous enzymes. Effect on their antioxidant activity. Food Chem 101:90–97

    Article  CAS  Google Scholar 

  68. Bae YS, Burger JFW, Steynberg JP, Ferreira D, Hemingway RW (1994) Flavan and procyanidin glycosides from the bark of blackjack oak. Phytochemistry 35:473–478

    Article  CAS  Google Scholar 

  69. Haslam E (1975) Natural proanthocyanidins. In: Mabry H, Harborne JB, Mabry TJ (eds) The flavonoids. Chapman & Hall, London

    Google Scholar 

  70. Haslam E (1982) Proanthocyanidins. In: Harborne JB, Mabry TJ (eds) The flavonoids – advances in research. Chapman & Hall, London

    Google Scholar 

  71. Haslam E (1998) Practical polyphenols: from structure to molecular recognition and physiological action. Cambridge University Press, Cambridge

    Google Scholar 

  72. Ribereau-Gayon P (1972) Plant phenolics. Hafner Publishing, New York

    Google Scholar 

  73. Weinges K, Kaltenhauser W, Marx HD, Nader E, Nader F, Perner J, Seler D (1968) Procyanidine aus fruchten. Liebigs Ann Chem 711:184–204

    Article  CAS  Google Scholar 

  74. Thompson RS, Jacques D, Haslam E, Tanner RJN (1972) Plant proanthocyanidins. Part I. Introduction, the isolation, structure, and distribution in nature of plant proanthocyanidins. J Chem Soc Perkin Trans 1:1387–1399

    Article  Google Scholar 

  75. Barrett MW, Klyne W, Scopes PM, Fletcher AC, Porter LJ, Haslam E (1979) Plant proanthocyanidins. Part 6. Chiroptical studies. Part 95. Circular dichroism of procyanidins. J Chem Soc Perkin Trans 1:2375–2377

    Article  Google Scholar 

  76. Bohm BA (1998) Introduction to flavonoids. Harwood Academic, Amsterdam

    Google Scholar 

  77. Gravot A, Larbat R, Hehn A, Lievre K, Gontier E, Goergen JL, Bourgaud F (2004) Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives: cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation. Arch Biochem Biophys 422:71–80

    Article  CAS  Google Scholar 

  78. Pietrowska-Borek M, Stuible H-P, Kombrink E, Guranowski A (2003) 4-Coumarate:coenzyme a ligase has the catalytic capacity to synthesize and reuse various (Di)adenosine polyphosphates. Plant Physiol 131:1401–1410

    Article  CAS  Google Scholar 

  79. Kreuzaler F, Hahlbrock K (1972) Enzymatic synthesis of aromatic compounds in higher plants: formation of naringenin (5,7,4′-trihydroxyflavanone) from p-coumaroyl coenzyme A and malonyl coenzyme A. FEBS Lett 28:69–72

    Article  CAS  Google Scholar 

  80. Cain CC, Saslowsky DE, Walker RA, Shirley BW (1997) Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings. Plant Mol Biol 35:377–381

    Article  CAS  Google Scholar 

  81. Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7:786–791

    Article  CAS  Google Scholar 

  82. Ayabe SI, Akashi T (2006) Cytochrome P450s in flavonoid metabolism. Phytochem Rev 5:271–282

    Article  CAS  Google Scholar 

  83. Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu C-Y, Farcy E, Stevenson TW, Cornish EC (1993) Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276–279

    Article  CAS  Google Scholar 

  84. Lukačin R, Urbanke C, Gröning I, Matern U (2000) The monomeric polypeptide comprises the functional flavanone 3β-hydroxylase from Petunia hybrida. FEBS Lett 467:353–358

    Article  Google Scholar 

  85. Martens S, Teeri T, Forkmann G (2002) Heterologous expression of dihydroflavonol 4-reductases from various plants. FEBS Lett 531:453–458

    Article  CAS  Google Scholar 

  86. Petit P, Granier T, d’Estaintot BL, Manigand C, Bathany K, Schmitter J-M, Lauvergeat V, Hamdi S, Gallois B (2007) Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis. J Mol Biol 368:1345–1357

    Article  CAS  Google Scholar 

  87. Pelletier MK, Murrell JR, Shirley BW (1997) Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in arabidopsis (further evidence for differential regulation of “early” and “late” genes). Plant Physiol 113:1437–1445

    Article  CAS  Google Scholar 

  88. Heller W, Forkmann G (1993) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman & Hall, London

    Google Scholar 

  89. Xie D-Y, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  CAS  Google Scholar 

  90. Marles MAS, Ray H, Gruber MY (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–383

    Article  CAS  Google Scholar 

  91. Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656

    Article  CAS  Google Scholar 

  92. Ossipov V, Salminen J-P, Ossipova S, Haukioja E, Pihlaja K (2003) Gallic acid and hydrolysable tannins are formed in birch leaves from an intermediate compound of the shikimate pathway. Biochem Syst Ecol 31:3–16

    Article  CAS  Google Scholar 

  93. Forrest GI, Bendall DS (1969) Distribution of polyphenols in tea plants (Camellia sinensis L). Biochem J 113:741–755

    CAS  Google Scholar 

  94. Xie D-Y, Dixon RA (2005) Proanthocyanidin biosynthesis – still more questions than answers? Phytochemistry 66:2127–2144

    Article  CAS  Google Scholar 

  95. Saslowsky D, Winkel-Shirley B (2001) Localization of flavonoid enzymes in Arabidopsis roots. Plant J 27:37–48

    Article  CAS  Google Scholar 

  96. Baur PS, Walkinshaw CH (1974) Fine structure of tannin accumulations in callus cultures of Pinus elliottii (slash pine). Can J B 52:615–619

    Article  Google Scholar 

  97. Considine JA, Knox RB (1979) Development and histochemistry of the cells, cell walls, and cuticle of the dermal system of fruit of the grape, Vitis vinifera L. Protoplasma 99:347–365

    Article  Google Scholar 

  98. Felker FC, Peterson DM, Nelson OE (1984) Development of tannin vacuoles in chalaza and seed coat of barley in relation to early chalazal necrosis in the seg1 mutant. Planta 161:540–549

    Article  Google Scholar 

  99. Mueller WC, Greenwood AD (1978) The ultrastructure of phenolic-storing cells fixed with caffeine. J Exp Bot 29:757–764

    Article  Google Scholar 

  100. Pourcel L, Routaboul J-M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in arabidopsis seed coat. The Plant Cell Online 17:2966–2980

    Article  CAS  Google Scholar 

  101. Joutei KA, Glories Y, Mercier M (1997) Localisation des tanins dans la pellicule de baie de raisin. Vitis 33:133–138

    Google Scholar 

  102. Gagné S, Saucier C, Gény L (2006) Composition and cellular localization of Tannins in Cabernet Sauvignon skins during growth. J Agric Food Chem 54:9465–9471

    Article  CAS  Google Scholar 

  103. Zhao J, Pang Y, Dixon RA (2010) The mysteries of proanthocyanidin transport and polymerization. Plant Physiol 153:437–443

    Article  CAS  Google Scholar 

  104. Abrahams S, Lee E, Walker AR, Tanner GJ, Larkin PJ, Ashton AR (2003) The arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 35:624–636

    Article  CAS  Google Scholar 

  105. Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  CAS  Google Scholar 

  106. Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–872

    CAS  Google Scholar 

  107. Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci 105:14210–14215

    Article  CAS  Google Scholar 

  108. Botha JJ, Ferreira D, Roux DG (1981) Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4, 6]- and[4, 8]-biflavonoids. J Chem Soc Perkin Trans 1:1235–1245

    Article  Google Scholar 

  109. Delcour JA, Ferreira D, Roux DG (1983) Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. J Chem Soc Perkin Trans 1:1711–1717

    Article  Google Scholar 

  110. Hemingway RW, Laks PE (1985) Condensed tannins: a proposed route to 2R,3R-(2,3-cis)-proanthocyanidins. J Chem Soc, Chem Commun 1985(11):746–747

    Google Scholar 

  111. Vaughn KC, Lax AR, Duke SO (1988) Polyphenol oxidase: the chloroplast oxidase with no established function. Physiol Plant 72:659–665

    Article  CAS  Google Scholar 

  112. Dixon RA, Xie D-Y, Sharma SB (2005) Proanthocyanidins – a final frontier in flavonoid research? New Phytol 165:9–28

    Article  CAS  Google Scholar 

  113. Guyot S, Cheynier V, Vercauteren J (1996) Structural determination of colourless and yellow dimers resulting from (+)-catechin coupling catalysed by grape polyphenoloxidase. Phytochemistry 42:1279–1288

    Article  CAS  Google Scholar 

  114. Lazarus SA, Adamson GE, Hammerstone JF, Schmitz HH (1999) High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages. J Agric Food Chem 47:3693–3701

    Article  CAS  Google Scholar 

  115. Rohr GE, Meier B, Sticher O (2000) Analysis of procyanidins. In: Rahman Atta-ur (ed) Studies in natural products chemistry. Elsevier, Amsterdam

    Google Scholar 

  116. Guyot S, Marnet N, Drilleau J-F (2000) Thiolysis − HPLC characterization of apple procyanidins covering a large range of polymerization states. J Agric Food Chem 49:14–20

    Article  CAS  Google Scholar 

  117. Gu L, Kelm M, Hammerstone JF, Beecher G, Cunningham D, Vannozzi S, Prior RL (2002) Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC − MS fluorescent detection method. J Agric Food Chem 50:4852–4860

    Article  CAS  Google Scholar 

  118. Lazarus SA, Hammerstone JF, Adamson GE, Schmitz HH (2001) High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in food and beverages. In: Lester P (ed) Method enzymol. Academic, New York

    Google Scholar 

  119. Matthews S, Mila I, Scalbert A, Donnelly DMX (1997) Extractable and non-extractable proanthocyanidins in barks. Phytochemistry 45:405–410

    Article  CAS  Google Scholar 

  120. Scalbert A (1992) Quantitative methods for the estimation of tannins in plant tissues. In: Hemingway RW, Laks PE (eds) Plant polyphenols. Plenum Press, New York

    Google Scholar 

  121. Le Bourvellec C, Bouchet B, Renard CMGC (2005) Non-covalent interaction between procyanidins and apple cell wall material. Part III: study on model polysaccharides. Biochim et Biophys Acta BBA – General Subjects 1725:10–18

    Article  CAS  Google Scholar 

  122. Hellström JK, Törrönen AR, Mattila PH (2009) Proanthocyanidins in common food products of plant origin. J Agric Food Chem 57:7899–7906

    Article  CAS  Google Scholar 

  123. Hellstrom JK, Mattila PH (2008) HPLC determination of extractable and unextractable proanthocyanidins in plant materials. J Agric Food Chem 56:7617–7624

    Article  CAS  Google Scholar 

  124. De Freitas VAP, Glories Y, Monique A (2000) Developmental changes of procyanidins in grapes of red vitis vinifera varieties and their composition in respective wines. Am J Enol Vitic 51:397–403

    Google Scholar 

  125. Del Bubba M, Giordani E, Pippucci L, Cincinelli A, Checchini L, Galvan P (2009) Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J Food Compos Anal 22:668–677

    Article  CAS  Google Scholar 

  126. Czochanska Z, Foo LY, Porter LJ (1979) Compositional changes in lower molecular weight flavans during grape maturation. Phytochemistry 18:1819–1822

    Article  CAS  Google Scholar 

  127. Kennedy JA, Matthews MA, Waterhouse AL (2000) Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55:77–85

    Article  CAS  Google Scholar 

  128. Nakayama TOM, Chichester CO (1963) Astringency of persimmons (Diospyros kaki, L). Nature 199:72–73

    Article  CAS  Google Scholar 

  129. Burda S, Oleszek W, Lee CY (1990) Phenolic compounds and their changes in apples during maturation and cold storage. J Agric Food Chem 38:945–948

    Article  CAS  Google Scholar 

  130. Jordão AM, Ricardo-da-Silva JM, Laureano O (2001) Evolution of catechins and oligomeric procyanidins during grape maturation of Castelão Francês and Touriga Francesa. Am J Enol Vitic 52:230–234

    Google Scholar 

  131. Bordiga M, Travaglia F, Locatelli M, Coïsson JD, Arlorio M (2011) Characterisation of polymeric skin and seed proanthocyanidins during ripening in six Vitis vinifera L. cv. Food Chem 127:180–187

    Article  CAS  Google Scholar 

  132. Ferreira D, Guyot S, Marnet N, Delgadillo I, Renard CMGC, Coimbra MA (2002) Composition of phenolic compounds in a Portuguese pear (Pyrus communis L Var. S. Bartolomeu) and changes after sun-drying. J Agric Food Chem 50:4537–4544

    Article  CAS  Google Scholar 

  133. Freitas VAPD, Glories Y (1999) Concentration and compositional changes of procyanidins in grape seeds and skin of white Vitis vinífera varieties. J Sci Food Agric 79:1601–1606

    Article  Google Scholar 

  134. Goldstein JL, Swain T (1963) Changes in tannins in ripening fruits. Phytochemistry 2:371–383

    Article  CAS  Google Scholar 

  135. Cortacero-Ramírez S, Segura-Carretero A, Cruces-Blanco C, Romero-Romero ML, Fernández-Gutiérrez A (2004) Simultaneous determination of multiple constituents in real beer samples of different origins by capillary zone electrophoresis. Anal Bioanal Chem 380:831–837

    Article  CAS  Google Scholar 

  136. Hayes PJ, Smyth MR, McMurrough I (1987) Comparison of electrochemical and ultraviolet detection methods in high-performance liquid chromatography for the determination of phenolic compounds commonly found in beers. Part 2. Analysis of beers. Analyst 112:1205–1207

    Article  CAS  Google Scholar 

  137. Alonso García A, Cancho Grande B, Simal Gándara J (2004) Development of a rapid method based on solid-phase extraction and liquid chromatography with ultraviolet absorbance detection for the determination of polyphenols in alcohol-free beers. J Chromatogr A 1054:175–180

    Google Scholar 

  138. Bartolomé B, Pena-Neira A, Gomez-Cordoves C (2000) Phenolics and related substances in alcohol-free beers. Eur Food Res Technol 210:419–423

    Article  Google Scholar 

  139. Andersen ML, Outtrup H, Skibsted LH (2000) Potential antioxidants in beer assessed by ESR spin trapping. J Agric Food Chem 48:3106–3111

    Article  CAS  Google Scholar 

  140. Arts ICW, van de Putte B, Hollman PCH (2000) Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agric Food Chem 48:1752–1757

    Article  CAS  Google Scholar 

  141. Jandera P, Skeifíková V, Rehová L, Hájek T, Baldriánová L, Skopová G, Kellner V, Horna A (2005) RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector. J Sep Sci 28:1005–1022

    Article  CAS  Google Scholar 

  142. Madigan D, McMurrough I, Smyth MR (1994) Determination of proanthocyanidins and catechins in beer and barley by high-performance liquid chromatography with dual-electrode electrochemical detection. Analyst 119:863–868

    Article  CAS  Google Scholar 

  143. McMurrough I, Madigan D, Kelly RJ, Smyth MR (1996) The role of flavonoid polyphenols in beer stability. J Am Soc Brew Chem 54:141–148

    CAS  Google Scholar 

  144. McMurrough I, Madigan D, Smyth MR (1996) Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley. J Agric Food Chem 44:1731–1735

    Article  CAS  Google Scholar 

  145. Rehova L, Skerikova V, Jandera P (2004) Optimisation of gradient HPLC analysis of phenolic compounds and flavonoids in beer using a CoulArray detector. J Sep Sci 27:1345–1359

    Article  CAS  Google Scholar 

  146. Carando S, Teissedre P-L, Pascual-Martinez L, Cabanis J-C (1999) Levels of flavan-3-ols in French wines. J Agric Food Chem 47:4161–4166

    Article  CAS  Google Scholar 

  147. de Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC (2000) Quantitative analysis of flavan-3-ols in Spanish Foodstuffs And Beverages. J Agric Food Chem 48:5331–5337

    Article  CAS  Google Scholar 

  148. Frankel EN, Waterhouse AL, Teissedre PL (1995) Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J Agric Food Chem 43:890–894

    Article  CAS  Google Scholar 

  149. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Duran N (2003) Phenolic compounds and total antioxidant potential of commercial wines. Food Chem 82:409–416

    Article  CAS  Google Scholar 

  150. Rodríguez-Delgado MA, Malovaná S, Pérez JP, Borges T, García Montelongo FJ (2001) Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J Chromatogr A 912:249–257

    Article  Google Scholar 

  151. Teissedre P-L, Landrault N (2000) Wine phenolics: contribution to dietary intake and bioavailability. Food Res Int 33:461–467

    Article  CAS  Google Scholar 

  152. Tinttunen S, Lehtonen P (2001) Distinguishing organic wines from normal wines on the basis of concentrations of phenolic compounds and spectral data. Eur Food Res Technol 212:390–394

    Article  CAS  Google Scholar 

  153. Vitrac X, Monti JP, Vercauteren J, Deffieux G, Merillon JM (2002) Direct liquid chromatographic analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. Anal Chim Acta 458:103–110

    Article  CAS  Google Scholar 

  154. Burns J, Gardner PT, O’Neil J, Crawford S, Morecroft I, McPhail DB, Lister C, Matthews D, MacLean MR, Lean MEJ, Duthie GG, Crozier A (1999) Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J Agric Food Chem 48:220–230

    Article  CAS  Google Scholar 

  155. Goldberg DM, Karumanchiri A, Tsang E, Soleas GJ (1998) Catechin and epicatechin concentrations of red wines: regional and cultivar-related differences. Am J Enol Vitic 49:23–34

    CAS  Google Scholar 

  156. La Torre GL, Saitta M, Vilasi F, Pellicanò T, Dugo G (2006) Direct determination of phenolic compounds in Sicilian wines by liquid chromatography with PDA and MS detection. Food Chem 94:640–650

    Article  CAS  Google Scholar 

  157. Pavia C, Bufo SA, Scopa A, Scrano L, Guerrieri A, Cataldi TRI (2001) Determination of phenolic compounds of biological interest in some Italian red wines by HPLC-DAD. Adv Food Sci 23:100–107

    CAS  Google Scholar 

  158. Rodriguez-Delgado MA, Gonzalez-Hernandez G, Conde-Gonzalez JE, Perez-Trujillo JP (2002) Principal component analysis of the polyphenol content in young red wines. Food Chem 78:523–532

    Article  CAS  Google Scholar 

  159. Gu L, House SE, Wu X, Ou B, Prior RL (2006) Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 54:4057–4061

    Article  CAS  Google Scholar 

  160. Tomas-Barberán FA, Cienfuegos-Jovellanos E, Marín A, Muguerza B, Gil-Izquierdo A, Cerdá B, Zafrilla P, Morillas J, Mulero J, Ibarra A, Pasamar MA, Ramón D, Espín JC (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55:3926–3935

    Article  CAS  Google Scholar 

  161. Määttä-Riihinen KR, Kamal-Eldin A, Törrönen AR (2004) Identification and quantification of phenolic compounds in berries of fragaria and rubus species (Family Rosaceae). J Agric Food Chem 52:6178–6187

    Article  CAS  Google Scholar 

  162. Skupień K, Oszmiański J (2004) Comparison of six cultivars of strawberries (Fragaria x ananassa Duch.) grown in northwest Poland. Eur Food Res Technol 219:66–70

    Article  CAS  Google Scholar 

  163. Karadeniz F, Durst RW, Wrolstad RE (2000) Polyphenolic composition of raisins. J Agric Food Chem 48:5343–5350

    Article  CAS  Google Scholar 

  164. Lee CY, Kagan V, Jaworski AW, Brown SK (1990) Enzymic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars. J Agric Food Chem 38:99–101

    Article  CAS  Google Scholar 

  165. Tomás-Barberán FA, Gil MI, Cremin P, Waterhouse AL, Hess-Pierce B, Kader AA (2001) HPLC − DAD − ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J Agric Food Chem 49:4748–4760

    Article  CAS  Google Scholar 

  166. Donovan JL, Meyer AS, Waterhouse AL (1998) Phenolic composition and antioxidant activity of prunes and prune juice (Prunus domestica). J Agric Food Chem 46:1247–1252

    Article  CAS  Google Scholar 

  167. Dragovic-Uzelac V, Pospišil J, Levaj B, Delonga K (2005) The study of phenolic profiles of raw apricots and apples and their purees by HPLC for the evaluation of apricot nectars and jams authenticity. Food Chem 91:373–383

    Article  CAS  Google Scholar 

  168. Chang S, Tan C, Frankel EN, Barrett DM (2000) Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars. J Agric Food Chem 48:147–151

    Article  CAS  Google Scholar 

  169. Podsędek A, Wilska-Jeszka J, Anders B, Markowski J (2000) Compositional characterisation of some apple varieties. Eur Food Res Technol 210:268–272

    Article  Google Scholar 

  170. van der Sluis AA, Dekker M, de Jager A, Jongen WMF (2001) Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agric Food Chem 49:3606–3613

    Article  CAS  Google Scholar 

  171. Vrhovsek U, Rigo A, Tonon D, Mattivi F (2004) Quantitation of polyphenols in different apple varieties. J Agric Food Chem 52:6532–6538

    Article  CAS  Google Scholar 

  172. Guyot S, Le Bourvellec C, Marnet N, Drilleau JF (2002) Procyanidins are the most abundant polyphenols in dessert apples at maturity. LWT- Food Sci Technol 35:289–291

    Article  CAS  Google Scholar 

  173. Kondo S, Tsuda K, Muto N, Ueda JE (2002) Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Sci Hortic 96:177–185

    Article  CAS  Google Scholar 

  174. Pérez-Ilzarbe J, Hernández T, Estrella I (1991) Phenolic compounds in apples: varietal differences. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 192:551–554

    Article  Google Scholar 

  175. Sanoner P, Guyot S, Marnet N, Molle D, Drilleau JF (1999) Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J Agric Food Chem 47:4847–4853

    Article  CAS  Google Scholar 

  176. Tsao R, Yang R, Young JC, Zhu H (2003) Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J Agric Food Chem 51:6347–6353

    Article  CAS  Google Scholar 

  177. Alonso-Salces RM, Barranco A, Abad B, Berrueta LA, Gallo B, Vicente F (2004) Polyphenolic profiles of Basque cider apple cultivars and their technological properties. J Agric Food Chem 52:2938–2952

    Article  CAS  Google Scholar 

  178. Guyot S, Marnet N, Sanoner P, Drilleau J-F (2003) Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J Agric Food Chem 51:6240–6247

    Article  CAS  Google Scholar 

  179. Schieber A, Keller P, Carle R (2001) Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J Chromatogr A 910:265–273

    Article  CAS  Google Scholar 

  180. Escarpa A, González M (2000) Evaluation of high-performance liquid chromatography for determination of phenolic compounds in pear horticultural cultivars. Chromatographia 51:37–43

    Article  CAS  Google Scholar 

  181. Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, Gebhardt S (2006) Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem 54:9966–9977

    Article  CAS  Google Scholar 

  182. Mar Verde Méndez C, Forster M, Rodríguez-Delgado M, Rodríguez-Rodríguez E, Díaz Romero C (2003) Content of free phenolic compounds in bananas from Tenerife (Canary Islands) and Ecuador. Eur Food Res Technol 217:287–290

    Article  CAS  Google Scholar 

  183. Rösch D, Bergmann M, Knorr D, Kroh LW (2003) Structure − antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J Agric Food Chem 51:4233–4239

    Article  CAS  Google Scholar 

  184. Lee CY, Jaworski A (1987) Phenolic compounds in white grapes grown in New York. Am J Enol Vitic 38:277–281

    CAS  Google Scholar 

  185. Betés-Saura C, Andrés-Lacueva C, Lamuela-Raventós RM (1996) Phenolics in white free run juices and wines from Penedès by high-performance liquid chromatography: changes during vinification. J Agric Food Chem 44:3040–3046

    Article  Google Scholar 

  186. Van Gorsel H, Li CY, Kerbel EL, Smits M, Kader AA (1992) Compositional characterization of prune juice. J Agric Food Chem 40:784–789

    Article  Google Scholar 

  187. Gökmen V, Acar J, Kahraman N (2003) Influence of conventional clarification and ultrafiltration on the phenolic composition of golden delicious apple juice. J Food Qual 26:257–266

    Article  Google Scholar 

  188. Gökmen V, Artık N, Acar J, Kahraman N, Poyrazoğlu E (2001) Effects of various clarification treatments on patulin, phenolic compound and organic acid compositions of apple juice. Eur Food Res Technol 213:194–199

    Article  Google Scholar 

  189. Kahle K, Kraus M, Richling E (2005) Polyphenol profiles of apple juices. Mol Nutr Food Res 49:797–806

    Article  CAS  Google Scholar 

  190. Suarez Valles B, Santamaria Victorero J, Mangas Alonso JJ, Blanco Gomis D (1994) High-performance liquid chromatography of the neutral phenolic compounds of low molecular weight in apple juice. J Agric Food Chem 42:2732–2736

    Article  CAS  Google Scholar 

  191. Spanos GA, Wrolstad RE, Heatherbell DA (1990) Influence of processing and storage on the phenolic composition of apple juice. J Agric Food Chem 38:1572–1579

    Article  CAS  Google Scholar 

  192. Delage E, Bohuon G, Baron A, Drilleau JF (1991) High-performance liquid chromatography of the phenolic compounds in the juice of some French cider apple varieties. J Chromatogr A 555:125–136

    Article  CAS  Google Scholar 

  193. Kermasha S, Goetghebeur M, Dumont J, Couture R (1995) Analyses of phenolic and furfural compounds in concentrated and non-concentrated apple juices. Food Res Int 28:245–252

    Article  CAS  Google Scholar 

  194. Poyrazoğlu E, Gökmen V, Artιk N (2002) Organic acids and phenolic compounds in pomegranates (Punica granatum L.) grown in Turkey. J Food Compos Anal 15:567–575

    Google Scholar 

  195. Dawes HM, Keene JB (1999) Phenolic composition of kiwifruit juice. J Agric Food Chem 47:2398–2403

    Article  CAS  Google Scholar 

  196. Friedman M, Kim S-Y, Lee S-J, Han G-P, Han J-S, Lee K-R, Kozukue N (2005) Distribution of catechins, theaflavins, caffeine, and theobromine in 77 teas consumed in the United States. J Food Sci 70:C550–C559

    Article  CAS  Google Scholar 

  197. Begoña Barroso M, van de Werken G (1999) Determination of green and black tea composition by capillary electrophoresis. J High Resolut Chromatogr 22:225–230

    Article  Google Scholar 

  198. Ding M, Yang H, Xiao S (1999) Rapid, direct determination of polyphenols in tea by reversed-phase column liquid chromatography. J Chromatogr A 849:637–640

    Article  CAS  Google Scholar 

  199. Khokhar S, Magnusdottir SGM (2002) Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem 50:565–570

    Article  CAS  Google Scholar 

  200. Kuhr S, Engelhardt UH (1991) Determination of flavanols, theogallin. Zeitschrift fuer Lebensmittel Untersuchung und Forschung 192:526–529

    Article  CAS  Google Scholar 

  201. Lin J-K, Lin C-L, Liang Y-C, Lin-Shiau S-Y, Juan IM (1998) Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J Agric Food Chem 46:3635–3642

    Article  CAS  Google Scholar 

  202. Lin Y-L, Juan IM, Chen Y-L, Liang Y-C, Lin J-K (1996) Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. J Agric Food Chem 44:1387–1394

    Article  CAS  Google Scholar 

  203. Long H, Zhu Y, Huang T, Coury LA, Kissinger PT (2001) Identification and determination of polyphenols in tea by liquid chromatography with multi-channel electrochemical detection. J Liq Chromatogr Relat Technol 24:1105–1114

    Article  CAS  Google Scholar 

  204. Pelillo M, Biguzzi B, Bendini A, Gallina Toschi T, Vanzini M, Lercker G (2002) Preliminary investigation into development of HPLC with UV and MS-electrospray detection for the analysis of tea catechins. Food Chem 78:369–374

    Article  CAS  Google Scholar 

  205. Stewart AJ, Mullen W, Crozier A (2005) On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Mol Nutr Food Res 49:52–60

    Article  CAS  Google Scholar 

  206. Wang H, Helliwell K, You X (2000) Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC. Food Chem 68:115–121

    Article  CAS  Google Scholar 

  207. Liang Y, Lu J, Zhang L, Wu S, Wu Y (2003) Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem 80:283–290

    Article  CAS  Google Scholar 

  208. Luximon-Ramma A, Bahorun T, Crozier A, Zbarsky V, Datla KP, Dexter DT, Aruoma OI (2005) Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res Int 38:357–367

    Article  CAS  Google Scholar 

  209. Rechner AR, Wagner E, van Buren L, van de Put F, Wiseman S, Rice-Evans CA (2002) Black tea represents a major source of dietary phenolics among regular tea drinkers. Free Radic Res 36:1127–1135

    Article  CAS  Google Scholar 

  210. Xu JZ, Leung LK, Huang Y, Chen Z-Y (2003) Epimerisation of tea polyphenols in tea drinks. J Sci Food Agric 83:1617–1621

    Article  CAS  Google Scholar 

  211. Proestos C, Komaitis M (2006) Ultrasonically assisted extraction of phenolic compounds from aromatic plants: comparison with conventional extraction techniques. J Food Qual 29:567–582

    Article  CAS  Google Scholar 

  212. Alonso ÁM, Castro R, Rodríguez MC, Guillén DA, Barroso CG (2004) Study of the antioxidant power of brandies and vinegars derived from Sherry wines and correlation with their content in polyphenols. Food Res Int 37:715–721

    Article  CAS  Google Scholar 

  213. García-Parrilla MC, González GA, Heredia FJ, Troncoso AM (1997) Differentiation of wine vinegars based on phenolic composition. J Agric Food Chem 45:3487–3492

    Article  Google Scholar 

  214. Natera R, Castro R, Hernández MJ, García-Barroso C (2003) Chemometric studies of vinegars from different raw materials and processes of production. J Agric Food Chem 51:3345–3351

    Article  CAS  Google Scholar 

  215. Milbury PE, Chen C-Y, Dolnikowski GG, Blumberg JB (2006) Determination of flavonoids and phenolics and their distribution in almonds. J Agric Food Chem 54:5027–5033

    Article  CAS  Google Scholar 

  216. Natsume M, Osakabe N, Yamagishi M, Takizawa T, Nakamura T, Miyatake H, Hatano T, Yoshida T (2000) Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci Biotechnol Biochem 64:2581–2587

    Article  CAS  Google Scholar 

  217. Lee KW, Kim YJ, Kim D-O, Lee HJ, Lee CY (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 51:6516–6520

    Article  CAS  Google Scholar 

  218. Loomis WD (1974) Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. In: Sidney FLP (ed) Method enzymol. Academic, New York

    Google Scholar 

  219. Gustavson KH (1954) Interaction of vegetable tannins with polyamides as proof of the dominant function of the peptide bond of collagen for its binding of tannins. J Polym Sci 12:317–324

    Article  CAS  Google Scholar 

  220. Simon C, Barathieu K, Laguerre M, Schmitter JM, Fouquet E, Pianet I, Dufourc EJ (2003) Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach. Biochemistry 42:10385–10395

    Article  CAS  Google Scholar 

  221. Haslam E (1974) Polyphenol-protein interactions. Biochem J 139:285

    CAS  Google Scholar 

  222. Jöbstl E, Howse JR, Fairclough JPA, Williamson MP (2006) Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J Agric Food Chem 54:4077–4081

    Article  CAS  Google Scholar 

  223. Oh HI, Hoff JE, Armstrong GS, Haff LA (1980) Hydrophobic interaction in tannin-protein complexes. J Agric Food Chem 28:394–398

    Article  CAS  Google Scholar 

  224. Wróblewski K, Muhandiram R, Chakrabartty A, Bennick A (2001) The molecular interaction of human salivary histatins with polyphenolic compounds. Eur J Biochem 268:4384–4397

    Article  Google Scholar 

  225. Hatano T, Hemingway RW (1996) Association of (+)-catechin and catechin-(4[small alpha][rightward arrow] 8)-catechin with oligopeptides. Chem Commun 1996:2537–2538

    Google Scholar 

  226. Hatano T, Yoshida T, Hemingway RW (2001) Interaction of flavanoids with peptides and proteins and conformations of dimeric flavanoids in solution Basic Life Sci. 66(1999):509–526; Fac Pharm Sci., Okayama Univ., Tsushima, Okayama 700, Japan; EN)

    Google Scholar 

  227. Goldstein JL, Swain T (1965) The inhibition of enzymes by tannins. Phytochemistry 4:185–192

    Article  CAS  Google Scholar 

  228. Bate-Smith EC (1954) Flavonoid compounds in foods. In: Mrak EM, Stewart GF (eds) Advances in food research. Academic, New York

    Google Scholar 

  229. Kalyanaraman B, Premovic PI, Sealy RC (1987) Semiquinone anion radicals from addition of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and catecholamines. An ESR spin stabilization study. J Biol Chem 262:11080–11087

    CAS  Google Scholar 

  230. Haslam E (1979) Vegetable tannins. Recent Adv Phytochem 12:475–523

    Google Scholar 

  231. Beart JE, Lilley TH, Haslam E (1985) Plant polyphenols – secondary metabolism and chemical defence: some observations. Phytochemistry 24:33–38

    Article  CAS  Google Scholar 

  232. Lesschaeve I, Noble AC (2005) Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am J Clin Nutr 81:330S–335S

    CAS  Google Scholar 

  233. Barry GG (1993) Oral astringency: a tactile component of flavor. Acta Psychol 84:119–125

    Article  Google Scholar 

  234. Kallithraka S, Bakker J, Clifford MN (1998) Evidence that salivary proteins are involved in astringency. J Sens Stud 13:29–43

    Article  Google Scholar 

  235. Sarni-Manchado P, Cheynier V, Moutounet M (1998) Interactions of grape seed tannins with salivary proteins. J Agric Food Chem 47:42–47

    Article  Google Scholar 

  236. Soares S, Mateus N, de Freitas V (2007) Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching. J Agric Food Chem 55:6726–6735

    Article  CAS  Google Scholar 

  237. Freitas VD, Mateus N (2002) Nephelometric study of salivary protein–tannin aggregates. J Sci Food Agric 82:113–119

    Article  CAS  Google Scholar 

  238. Poncet-Legrand C, Edelmann A, Putaux JL, Cartalade D, Sarni-Manchado P, Vernhet A (2006) Poly(l-proline) interactions with flavan-3-ols units: influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocoll 20:687–697

    Article  CAS  Google Scholar 

  239. Schwarz B, Hofmann T (2008) Is there a direct relationship between oral astringency and human salivary protein binding? Eur Food Res Technol 227:1693–1698

    Article  CAS  Google Scholar 

  240. de Freitas V, Mateus N (2001) Structural features of procyanidin interactions with salivary proteins. J Agric Food Chem 49:940–945

    Article  CAS  Google Scholar 

  241. Ricardo-da-Silva JM, Cheynier V, Souquet J-M, Moutounet M, Cabanis J-C, Bourzeix M (1991) Interaction of grape seed procyanidins with various proteins in relation to wine fining. J Sci Food Agric 57:111–125

    Article  CAS  Google Scholar 

  242. Goto T (1987) Structure, stability and color variation of natural anthocyanins. Prog Chem Org Nat Prod 52:113–158

    CAS  Google Scholar 

  243. Goto T, Kondo T (1991) Structure and molecular stacking of anthocyanins – flower color variation. Angew Chem Int Ed Engl 30:17–33

    Article  Google Scholar 

  244. Brouillard R, Mazza G, Saad Z, Albrechtgary AM, Cheminat A (1989) The copigmentation reaction of anthocyanins – a microprobe for the structural study of aqueous – solutions. J Am Chem Soc 111:2604–2610

    Article  CAS  Google Scholar 

  245. Mistry TV, Cai Y, Lilley TH, Haslam E (1991) Polyphenol interactions. Part 5. Anthocyanin co-pigmentation. J Chem Soc, Perkin Trans 2:1287–1296

    Google Scholar 

  246. Baranac JM, Petranović NA, Dimitrić-Marković JM (1996) Spectrophotometric study of anthocyan copigmentation reactions. J Agric Food Chem 44:1333–1336

    Article  CAS  Google Scholar 

  247. Asen S, Stewart RN, Norris KH (1972) Co-pigmentation of anthocyanins in plant tissues and its effect on color. Phytochemistry 11:1139–1144

    Article  CAS  Google Scholar 

  248. Asenstorfer RE, Iland PG, Tate ME, Jones GP (2003) Charge equilibria and pK(a) of malvidin-3-glucoside by electrophoresis. Anal Biochem 318:291–299

    Article  CAS  Google Scholar 

  249. Dangles O (1997) Anthocyanin complexation and colour expression. Analusis 25:M50–M52

    CAS  Google Scholar 

  250. Robinson GM, Robinson R (1931) A survey of anthocyanins. I. Biochem J 25:1687–1705

    CAS  Google Scholar 

  251. Brouillard R (1983) The in vivo expression of anthocyanin color in plants. Phytochemistry 22:1311–1323

    Article  CAS  Google Scholar 

  252. Lambert SG, Asenstorfer RE, Williamson NM, Iland PG, Jones GP (2011) Copigmentation between malvidin-3-glucoside and some wine constituents and its importance to colour expression in red wine. Food Chem 125:106–115

    Article  CAS  Google Scholar 

  253. Malien-Aubert C, Dangles O, Amiot MJ (2002) Influence of procyanidins on the color stability of oenin solutions. J Agric Food Chem 50:3299–3305

    Article  CAS  Google Scholar 

  254. Haslam E (2003) Thoughts on thearubigins. Phytochemistry 64:61–73

    Article  CAS  Google Scholar 

  255. Kuhnert N (2010) Unraveling the structure of the black tea thearubigins. Arch Biochem Biophys 501:37–51

    Article  CAS  Google Scholar 

  256. Li H, Guo A, Wang H (2008) Mechanisms of oxidative browning of wine. Food Chem 108:1–13

    Article  CAS  Google Scholar 

  257. Tanaka T, Betsumiya Y, Mine C, Kouno I (2000) Theanaphthoquinone, a novel pigment oxidatively derived from theaflavin during tea-fermentation. Chem Commun 2000(15):1365–1366

    Article  Google Scholar 

  258. Tanaka T, Matsuo Y, Kouno I (2005) A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate. J Agric Food Chem 53:7571–7578

    Article  CAS  Google Scholar 

  259. Bhatia IS, Ullah MR (1962) Metabolism of polyphenols in the tea leaf. Nature 193:658–659

    Article  CAS  Google Scholar 

  260. Hashimoto F, Nonaka G-I, Nishioka I (1989) Tannins and related compounds. LXXVII. Novel chalcan-flavan dimers, assamicains A, B and C, and a new flava-3-ol and proanthocyanidins from the fresh leaves of Camellia sinensis L. var assamica Kitamura. Chem Pharm Bull 37:77–85

    Article  CAS  Google Scholar 

  261. Hashimoto F, Nonaka G-I, Nishioka I (1989) Tannins and related compounds. XC. 8-C-ascorbyl-(−)-epigallocatechin-3-O-gallate and novel dimeric flavan-3-ols, oolonghomobisflavans A and B, from oolong tea. Chem Pharm Bull 37:3255–3263

    Article  CAS  Google Scholar 

  262. Junquera B, Gonzalez-San Jose ML, Diez C (1992) Enzymic browning of grapes and wines. Rev Esp de Ciencia y Tecnologia de Alimentos 32:481–491

    CAS  Google Scholar 

  263. Macheix JJ, Sapis JC, Fleuriet A (1991) Phenolic compounds and polyphenoloxidase in relation to browning in grapes and wines. Crit Rev Food Sci Nutr 30:441–486

    Article  CAS  Google Scholar 

  264. Boulton RB, Singleton VL, Bisson LF, Kunkee RE (2001) Principles and practices of winemaking (Chinese trans). China Light Industry Press, Beijing

    Google Scholar 

  265. Zhai H, Du J, Guan X, Qiao X, Pan Z (2001) Cultivating and processing technologies for wine grapes. China Agricultural Press, Beijing

    Google Scholar 

  266. Wang Z (1990) Food enzymology. China Light Industry Press, Beijing

    Google Scholar 

  267. Fernández-Zurbano P, Ferreira V, Escudero A, Cacho J (1998) Role of hydroxycinnamic acids and flavanols in the oxidation and browning of white wines. J Agric Food Chem 46:4937–4944

    Article  Google Scholar 

  268. Fernandez-Zurbano P, Ferreira V, Pena C, Escudero A, Serrano F, Cacho J (1995) Prediction of oxidative browning in white wines as a function of their chemical composition. J Agric Food Chem 43:2813–2817

    Article  CAS  Google Scholar 

  269. Robards K, Prenzler PD, Tucker G, Swatsitang P, Glover W (1999) Phenolic compounds and their role in oxidative processes in fruits. Food Chem 66:401–436

    Article  CAS  Google Scholar 

  270. Singleton VL (1987) Oxygen with phenols and related reactions in musts, wines, and model systems: observations and practical implications. Am J Enol Vitic 38:69–77

    CAS  Google Scholar 

  271. Es-Safi NE, Fulcrand H, Cheynier V, Moutounet M (1999) Studies on the acetaldehyde-induced condensation of (−)-epicatechin and malvidin 3-O-glucoside in a model solution system. J Agric Food Chem 47:2096–2102

    Article  CAS  Google Scholar 

  272. Es-Safi NE, Fulcrand H, Cheynier V, Moutounet M (1999) Competition between (+)-catechin and (−)-epicatechin in acetaldehyde-induced polymerization of flavanols. J Agric Food Chem 47:2088–2095

    Article  CAS  Google Scholar 

  273. Es-Safi NE, Le Guerneve C, Cheynier V, Moutounet M (2000) New phenolic compounds formed by evolution of (+)-catechin and glyoxylic acid in hydroalcoholic solution and their implication in color changes of grape-derived foods. J Agric Food Chem 48:4233–4240

    Article  CAS  Google Scholar 

  274. Es-Safi NE, Le Guerneve C, Fulcrand H, Cheynier V, Moutounet M (1999) New polyphenolic compounds with xanthylium skeletons formed through reaction between (+)-catechin and glyoxylic acid. J Agric Food Chem 47:5211–5217

    Article  CAS  Google Scholar 

  275. Jurd L, Somers TC (1970) The formation of xanthylium salts from proanthocyanidins. Phytochemistry 9:419–427

    Article  CAS  Google Scholar 

  276. Fulcrand H, Doco T, EsSafi NE, Cheynier V, Moutounet M (1996) Study of the acetaldehyde induced polymerisation of flavan-3-ols by liquid chromatography ion spray mass spectrometry. J Chromatogr A 752:85–91

    Article  CAS  Google Scholar 

  277. Fulcrand H, Cheynier V, Oszmianski J, Moutounet M (1997) An oxidized tartaric acid residue as a new bridge potentially competing with acetaldehyde in flavan-3-ol condensation. Phytochemistry 46:223–227

    Article  CAS  Google Scholar 

  278. Fulcrand H, Es-Safi EN, Cheynier V, Moutounet M (1998) A new oxidative pathway contributing to wine browning. In: 19th international conference on polyphenols, Lille,  pp 255–258

    Google Scholar 

  279. Es-Safi NE, Cheynier V, Moutounet M (2000) Study of the reactions between (+)-catechin and furfural derivatives in the presence or absence of anthocyanins and their implication in food color change. J Agric Food Chem 48:5946–5954

    Article  CAS  Google Scholar 

  280. Es-Safi NE, Cheynier V, Moutounet M (2002) Role of aldehydic derivatives in the condensation of phenolic compounds with emphasis on the sensorial properties of fruit-derived foods. J Agric Food Chem 50:5571–5585

    Article  CAS  Google Scholar 

  281. de Freitas V, Sousa C, Silva AMS, Santos-Buelga C, Mateus N (2004) Synthesis of a new catechin-pyrylium derived pigment. Tetrahedron Lett 45:9349–9352

    Article  CAS  Google Scholar 

  282. Sousa C, Mateus N, Perez-Alonso J, Santos-Buelga C, De Freitas V (2005) Preliminary study of oaklins, a new class of brick-red catechinpyrylium pigments resulting from the reaction between catechin and wood aldehydes. J Agric Food Chem 53:9249–9256

    Article  CAS  Google Scholar 

  283. Salas E, Atanasova V, Poncet-Legrand C, Meudec E, Mazauric JP, Cheynier V (2004) Demonstration of the occurrence of flavanol-anthocyanin adducts in wine and in model solutions. Anal Chim Acta 513:325–332

    Article  CAS  Google Scholar 

  284. Salas E, Poncet-Legrand C, Fulcrand H, Meudec E, Cheynier V (2004) Structure and properties of a flavanol-anthocyanin adduct. In: 228th National meeting of the American-Chemical-Society, Philadelphia, 22–26 Aug 2004. American-Chemical-Society, Philadelphia, pp 112-CELL

    Google Scholar 

  285. Vivar-Quintana AM, Santos-Buelga C, Francia-Aricha E, Rivas-Gonzalo JC (1999) Formation of anthocyanin-derived pigments in experimental red wines. J Food Sci Technol Intern 5:347–352

    Article  CAS  Google Scholar 

  286. Pissarra J, Lourenco S, Gonzalez-Paramas AM, Mateus N, Buelga CS, Silva AMS, De Freitas V (2004) Structural characterization of new malvidin 3-glucoside-catechin aryl/alkyl-linked pigments. J Agric Food Chem 52:5519–5526

    Article  CAS  Google Scholar 

  287. Pissarra J, Lourenço S, González-Paramás AM, Mateus N, Santos Buelga C, Silva AMS, De Freitas V (2005) Isolation and structural characterization of new anthocyanin-alkyl-catechin pigments. Food Chem 90:81–87

    Article  CAS  Google Scholar 

  288. Pissarra J, Lourenco S, Gonzalez-Paramas AM, Mateus N, Santos-Buelga C, De Freitas V (2004) Formation of new anthocyanin-alkyl/aryl-flavanol pigments in model solutions. Anal Chim Acta 513:215–221

    Article  CAS  Google Scholar 

  289. Pissarra J, Mateus N, Rivas-Gonzalo J, Buelga CS, de Freitas V (2003) Reaction between malvidin 3-glucoside and (+)-catechin in model solutions containing different aldehydes. J Food Sci 68:476–481

    Article  CAS  Google Scholar 

  290. Mateus N, Silva AMS, Rivas-Gonzalo JC, Santos-Buelga C, de Freitas V (2003) A New Class of Blue Anthocyanin-Derived Pigments Isolated from Red Wines. J Agric Food Chem 51:1919–1923

    Article  CAS  Google Scholar 

  291. Mateus N, Oliveira J, Santos-Buelga C, Silva AMS, de Freitas V (2004) NMR structure characterization of a new vinylpyranoanthocyanin-catechin pigment (a portisin). Tetrahedron Lett 45:3455–3457

    Article  CAS  Google Scholar 

  292. Joslyn MA, Goldstein JL (1964). Astringency of fruits and fruit products in relation to phenolic content. Adv Food Res 13:179–217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor de Freitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Oliveira, J., Mateus, N., de Freitas, V. (2013). Flavanols: Catechins and Proanthocyanidins. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_58

Download citation

Publish with us

Policies and ethics