Skip to main content

Numerical Dynamo Simulations: From Basic Concepts to Realistic Models

  • Reference work entry
Handbook of Geomathematics

Abstract

The last years have witnessed an impressive growth in the number and quality of numerical dynamo simulations. The numerical models successfully describe many aspects of the geomagnetic field and also set out to explain the various fields of other planets. The success is somewhat surprising since numerical limitation force dynamo modelers to run their models at unrealistic parameters. In particular the Ekman number, a measure for the relative importance of viscous to Coriolis forces, is many orders of magnitude too large: Earth’s Ekman number is E = 10 − 15 while even today’s most advanced numerical simulations have to content themselves with E = 10 − 6. After giving a brief introduction into the basics of modern dynamo simulations the fundamental force balances are discussed and the question how well the modern models reproduce the geomagnetic field is addressed. First-level properties like the dipole dominance, realistic Elsasser and magnetic Reynolds numbers, and an Earth-like reversal behavior are already captured by larger Ekman number simulations around E = 10 − 3. However, low Ekman numbers are required for modeling torsional oscillations which are thought to be an important part of the decadal geomagnetic field variations. Moreover, only low Ekman number models seem to retain the huge dipole dominance of the geomagnetic field once the Rayleigh number has been increased to values where field reversals happen. These cases also seem to resemble the low-latitude field found at Earth’s core-mantle boundary more closely than larger Ekman numbers cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amit H, Olson P (2006) Time-averaged and time dependent parts of core flow. Phys Earth Planet Inter 155:120–139

    Article  Google Scholar 

  • Amit H, Olson P (2008) Geomagnetic dipole tilt changes induced by core flow. Phys Earth Planet Inter 166:226–238

    Article  Google Scholar 

  • Aubert J, Wicht J (2004) Axial versus equatorial dynamo models with implications for planetary magnetic fields. Earth Planet Sci Lett 221: 409–419

    Article  Google Scholar 

  • Aubert J, Amit H, Hulot G (2007) Detecting thermal boundary control in surface flows from numerical dynamos. Phys Earth Planet Inter 160:143–156

    Article  Google Scholar 

  • Aubert J, Amit H, Hulot G, Olson P (2008a) Thermochemical flows couple the Earths inner core growth to mantle heterogeneity. Nature 454: 758–761

    Article  Google Scholar 

  • Aubert J, Aurnou J, Wicht J (2008b) The magnetic structure of convection-driven numerical dynamos. Geophys J Int 172:945–956

    Article  Google Scholar 

  • Bloxham J, Zatman S, Dumberry M (2002) The origin of geomagnetic jerks. Nature 420:65–68

    Article  Google Scholar 

  • Braginsky S (1970) Torsional magnetohydrodynamic vibrations in the Earth’s core and variation in day length. Geomag Aeron 10:1–8

    Google Scholar 

  • Braginsky S, Roberts P (1995) Equations governing convection in Earth’s core and the geodynamo. Geophys Astrophys Fluid Dyn 79: 1–97

    Article  Google Scholar 

  • Breuer M, Wesseling S, Schmalzl J, Hansen U (2002) Effect of inertia in Rayleigh-B’enard convection. Phys Rev E 69:026320/1–10

    Google Scholar 

  • Bullard EC, Gellman H (1954) Homogeneous dynamos and terrestrial magnetism. Proc R Soc Lond A A 247:213–278

    MATH  MathSciNet  Google Scholar 

  • Busse FH (2002) Is low Rayleigh number convection possible in the Earth’s core? Geophys Res Lett 29:070000–1

    Article  Google Scholar 

  • Busse FH, Simitev R (2005a) Convection in rotating spherical shells and its dynamo states. In: Soward AM, Jones CA, Hughes DW, Weiss NO (eds) Fluid dynamics and dynamos in astrophysics and geophysics. CRC Press, Boca Raton, FL, pp 359–392

    Google Scholar 

  • Busse FH, Simitev R (2005b) Dynamos driven by convection in rotating spherical shells. Atronom Nachr 326: 231–240

    Article  MATH  Google Scholar 

  • Busse FH, Simitev RD (2006) Parameter dependences of convection-driven dynamos in rotating spherical fluid shells. Geophys Astrophys Fluid Dyn 100:341–361

    Article  MathSciNet  Google Scholar 

  • Carlut J, Courtillot V (1998) How complex is the time-averaged geomagnetic field over the past 5 Myr? Geophys J Int 134:527–544

    Article  Google Scholar 

  • Chan K, Li L, Liao X (2006) Modelling the core convection using finite element and finite difference methods. Phys Earth Planet Inter 157:124–138

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon, Oxford

    MATH  Google Scholar 

  • Christensen U, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and applications to planetary magnetic fields. Geophys J Int 116:97–114

    Article  Google Scholar 

  • Christensen U, Olson P (2003) Secular variation in numerical geodynamo models with lateral variations of boundary heat flow. Phys Earth Planet Inter 138:39–54

    Article  Google Scholar 

  • Christensen U, Tilgner A (2004) Power requirement of the geodynamo from Ohmic losses in numerical and laboratory dynamos. Nature 429:169—171

    Article  Google Scholar 

  • Christensen U, Wicht J (2007) Numerical dynamo simulations. In: Olson P (ed) Treatise on Geophysics, vol 8 (Core dynamics). Elsevier, New York, pp 245–282

    Chapter  Google Scholar 

  • Christensen UR (2002) Zonal flow driven by strongly supercritical convection in rotating spherical shells. Numerical Dynamo Simulations “Publisher:” Elsevier, New York J Fluid Mech 470:115–133

    MATH  Google Scholar 

  • Christensen UR (2006) A deep rooted dynamo for Mercury. Nature 444:1056–1058

    Article  Google Scholar 

  • Christensen UR (2010) Dynamo Scaling Laws and Applications to the Planets. accepted for publication at Space. Sci Rev

    Google Scholar 

  • Christensen UR, Aubert J, Busse FH et al (2001) A numerical dynamo benchmark. Phys Earth Planet Inter 128:25–34

    Article  Google Scholar 

  • Christensen UR, Holzwarth V, Reiners A (2009) Energy flux determines magnetic field strength of planets and stars. Nature 457:167–169

    Article  Google Scholar 

  • Clement B (2004) Dependency of the duration of geomagnetic polarity reversals on site latitude. Nature 428:637–640

    Article  Google Scholar 

  • Clune T, Eliott J, Miesch M, Toomre J, Glatzmaier G (1999) Computational aspects of a code to study rotating turbulent convection in spherical shells. Parallel Comp 25:361–380

    Article  MATH  Google Scholar 

  • Coe R, Hongre L, Glatzmaier A (2000) An examination of simulated geomagnetic reversals from a paleomagnetic perspective. Phil Trans R Soc Lond A358:1141–1170

    Article  Google Scholar 

  • Constable C (2000) On the rate of occurence of geomagnetic reversals. Phys Earth Planet Inter 118:181–193

    Article  Google Scholar 

  • Cowling T (1957) The dynamo maintainance of steady magnetic fields. Quart J Mech App Math 10:129–136

    Article  MATH  MathSciNet  Google Scholar 

  • Dormy E, Cardin P, Jault D (1998) Mhd flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet Sci Lett 158:15–24

    Article  Google Scholar 

  • Eltayeb I (1972) Hydromagnetic convection in a rapidly rotating fluid layer. Proc R Soc Lond A 326:229–254

    Article  MATH  Google Scholar 

  • Eltayeb I (1975) Overstable hydromagnetic convection in a rotating fluid layer. J Fluid Mech 71:161–179

    Article  MATH  Google Scholar 

  • Fearn D (1979) Thermal and magnetic instabilities in a rapidly rotating fluid sphere. Geophys Astrophys Fluid Dyn 14:103–126

    Article  MATH  Google Scholar 

  • Fournier A, Bunge H-P, Hollerbach R, Vilotte J-P (2005) A Fourier-spectral element algorithm for thermal convection in rotating axisymmetric containers. J Comp Phys 204:462–489

    Article  MATH  MathSciNet  Google Scholar 

  • Glatzmaier G (1984) Numerical simulation of stellar convective dynamos. 1. The model and methods. J Comput Phys 55:461–484

    Article  Google Scholar 

  • Glatzmaier G (2002) Geodynamo simulations — how realistic are they? Ann Rev Earth Planet Sci 30:237–257

    Article  Google Scholar 

  • Glatzmaier G, Coe R (2007) Magnetic Polarity Reversals in the Core. In: Olson P (ed) Treatise on Geophysics, Vol 8, (Core dynamics). Elsevier, New York, pp 283–297

    Chapter  Google Scholar 

  • Glatzmaier G, Roberts P (1995) A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys Earth Planet Inter 91:63–75

    Article  Google Scholar 

  • Glatzmaier G, Roberts P (1996) An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Physica D 97:81–94

    Article  Google Scholar 

  • Glatzmaier G, Coe R, Hongre L, Roberts P (1999) The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401:885–890

    Article  Google Scholar 

  • Gubbins D (2001) The Rayleigh number for convection in the Earth’s core. Phys Earth Planet Inter 128:3–12

    Article  Google Scholar 

  • Gubbins D, Kelly P (1993) Persistent patterns in the geomagnetic field over the past 2.5 ma. Nature 365:829–832

    Article  Google Scholar 

  • Gubbins D, Love J (1998) Preferred vgp paths during geomagnetic polarity reversals: Symmetry considerations. Geophys Res Lett 25: 1079–1082

    Article  Google Scholar 

  • Gubbins D, Willis AP, Sreenivasan B (2007) Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys Earth Planet Inter 162:256–260

    Article  Google Scholar 

  • Harder H, Hansen U (2005) A finite-volume solution method for thermal convection and dynamo problems in spherical shells. Geophys J Int 161:522–532

    Article  Google Scholar 

  • Heimpel M, Aurnou J, Wicht J (2005) Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438:193–196

    Article  Google Scholar 

  • Hejda P, Reshetnyak M (2003) Control volume method for the dynamo problem in the sphere with the free rotating inner core. Stud Geophys Geod 47:147–159

    Article  Google Scholar 

  • Hejda P, Reshetnyak M (2004) Control volume method for the thermal convection problem in a rotating spherical shell: test on the benchmark solution. Stud Geophys Geod, 48, 741–746

    Article  Google Scholar 

  • Hongre L, Hulot G, Khokholov A (1998) An analysis of the geomangetic field over the past 2000 years. Phys Earth Planet Inter 106:311–335

    Article  Google Scholar 

  • Hulot G, Bouligand C (2005) Statistical paleomagnetic field modelling and symmetry considerations. Geophys J Int 161, doi:10.1111/j.1365–246X.2005.02612.

    Google Scholar 

  • Hulot G, Finlay C, Constable C, Olsen N, Mandea M (2010) The Magnetic Field of Planet Earth. accepted for publication at Space. Sci Rev

    Google Scholar 

  • Isakov A, Descombes S, Dormy E (2004) An integro-differential formulation of magnet induction in bounded domains:boundary element-finite volume method. J Comp Phys 197:540–554

    Article  Google Scholar 

  • Ivers D, James R (1984) Axisymmetric antidynamo theorems in non-uniform compressible fluids. Phil Trans R Soc Lond A 312:179–218

    Article  MATH  MathSciNet  Google Scholar 

  • Jackson A (1997) Time dependence of geostrophic core-surface motions. Phys Earth Planet Inter 103:293–311

    Article  Google Scholar 

  • Jackson A (2003) Intense equatorial flux spots on the surface of the Earth’s core. Nature 424:760–763

    Article  Google Scholar 

  • Jackson A, Finlay C (2007) Geomagnetic secular variation and applications to the core. In: Kono M (ed) Treatise on geophysics, vol 5, (Geomagnetism). Elsevier, New York, pp 147–193

    Chapter  Google Scholar 

  • Jackson A, Jonkers A, Walker M (2000) Four centuries of geomagnetic secular variation from historical records. Phil Trans R Soc Lond A 358:957–990

    Article  Google Scholar 

  • Jault D (2003) Electromagnetic and topographic coupling, and LOD variations. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor & Francis, London, pp 56–76

    Chapter  Google Scholar 

  • Jault D, Gire C, LeMouël J-L (1988) Westward drift, core motion and exchanges of angular momentum between core and mantle. Nature 333:353–356

    Article  Google Scholar 

  • Johnson C, Constable C (1995) Time averaged geomagnetic field as recorded by lava flows over the past 5 Myr. Geophys J Int 122:489–519

    Article  Google Scholar 

  • Johnson C, Constable C, Tauxe L (2003) Mapping long-term changed in Earth’s magnetic field. Science 300:2044–2045

    Article  Google Scholar 

  • Johnson CL, McFadden P (2007) Time-averaged field and paleosecular variation. In: Kono M (ed) Treatise on geophysics, vol 5, (Geomagnetism). Elsevier, New York, pp 217–254

    Google Scholar 

  • Jones C, Roberts P (2000) The onset of magnetoconvection at large Prandtl number in a rotating layer II. Small magnetic diffusion. Geophys Astrophys Fluid Dyn 93:173–226

    Article  MathSciNet  Google Scholar 

  • Jonkers A (2003) Long-range dependence in the cenozoic reversal record. Phys Earth Planet Inter 135:253–266

    Article  Google Scholar 

  • Kageyama A, Sato T (1995) Computer simulation of a magnetohydrodynamic dynamo. II. Phys Plasmas 2:1421–1431

    Article  Google Scholar 

  • Kageyama A, Sato T (1997) Generation mechanism of a dipole field by a magnetohydrodynamic dynamo. Phys Rev E 55:4617–4626

    Article  MathSciNet  Google Scholar 

  • Kageyama A, Watanabe K, Sato T (1993) Simulation study of a magnetohydrodynamic dynamo: Convection in a rotating shell. Phys Fluids B 24:2793–2806

    Article  Google Scholar 

  • Kageyama A, Miyagoshi T, Sato T (2008) Formation of current coils in geodynamo simulations. Nature 454:1106–1109

    Article  Google Scholar 

  • Kageyama A, Yoshida M (2005) Geodynamo and mantle convection simulations on the earth simulator using the yin-yang grid. J Phys Conf Ser 16:325–338

    Article  Google Scholar 

  • Kaiser R, Schmitt P, Busse F (1994) On the invisible dynamo. Geophys Astrophys Fluid Dyn 77:93–109

    Article  Google Scholar 

  • Kelly P, Gubbins D (1997) The geomagnetic field over the past 5 million years. Geophys J Int 128:315–330

    Article  Google Scholar 

  • Kono M, Roberts P (2002) Recent geodynamo simulations and observations of the geomagnetic field. Rev Geophys 40:1013, doi:10.1029/2000RG000102

    Article  Google Scholar 

  • Korte M, Constable C (2005) Continuous geomagnetic field models for the past 7 millennia: 2. cals7k. Geochem Geophys Geosys 6, Art No Q02H16

    Google Scholar 

  • Korte M, Genevey A, Constable C, Frank U, Schnepp E (2005) Continuous geomagnetic field models for the past 7 millennia: 1. a new global data compilation. Geochem Geophys Geosys 6, Art No Q02H15

    Google Scholar 

  • Kuang W, Bloxham J (1997) An Earth-like numerical dynamo model. Nature 389:371–374

    Article  Google Scholar 

  • Kuang W, Bloxham J (1999) Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: weak and strong field dynamo action. J Comp Phys 153:51–81

    Article  MATH  MathSciNet  Google Scholar 

  • Kutzner C, Christensen U (2000) Effects of driving mechanisms in geodynamo models. Geophys Res Lett 27:29–32

    Article  Google Scholar 

  • Kutzner C, Christensen U (2002) From stable dipolar to reversing numerical dynamos. Phys Earth Planet Inter 131:29–45

    Article  Google Scholar 

  • Kutzner C, Christensen U (2004) Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys J Int 157: 1105–1118

    Article  Google Scholar 

  • Matsui H, Buffett B (2005) Sub-grid scale model for convection-driven dynamos in a rotating plane layer. submitted to Elsevier

    Google Scholar 

  • Olsen N, Haagmans R, Sabaka TJ et al (2006) The Swarm End-to-End mission simulator study: A demonstration of separating the various contributions to Earth’s magnetic field using synthetic data. Earth Planets Space 58:359–370

    Google Scholar 

  • Olson P, Christensen U (2002) The time-averaged magnetic field in numerical dynamos with nonuniform boundary heat flow. Geophys J Int 151:809–823

    Article  Google Scholar 

  • Olson P, Christensen U (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250:561–571

    Article  Google Scholar 

  • Olson P, Christensen U, Glatzmaier G (1999) Numerical modeling of the geodynamo: Mechanism of field generation and equilibration. J Geophys Res 104:10,383–10,404

    Google Scholar 

  • Roberts P (1972) Kinematic dynamo models. Phil Trans R Soc Lond A 271:663–697

    Google Scholar 

  • Roberts P (2007) Theory of the geodynamo. In: Olson P (ed) Treatise on geophysics, vol 8, (Core dynamics). Elsevier, New York, pp 245–282

    Google Scholar 

  • Roberts P, Jones C (2000) The onset of magnetoconvection at large Prandtl number in a rotating layer I. Finite magnetic diffusion. Theory of the Geodynamo Geophs Astrophys Fluid Dyn 92:289–325

    MathSciNet  Google Scholar 

  • Rotvig J, Jones C (2002) Rotating convection-driven dynamos at low ekman number. Phys Rev E 66:056308

    Article  MathSciNet  Google Scholar 

  • Ryan DA, Sarson GR (2007) Are geomagnetic field reversals controlled by turbulence within the Earth’s core? Geophys Res Lett 34:2307

    Article  Google Scholar 

  • Sakuraba A (2002) Linear magnetoconvection in rotating fluid spheres permeated by a uniform axial magnetic field. Geophys Astrophys Fluid Dyn 96:291–318

    Article  MathSciNet  Google Scholar 

  • Sakuraba A, Kono M (2000) Effect of a uniform magnetic field on nonlinear magnetocenvection in a rotating fluid spherical shell. Geophys Astrophys Fluid Dyn 92:255–287

    Article  MathSciNet  Google Scholar 

  • Sakuraba A, Roberts P (2009) Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci 2:802–805

    Article  Google Scholar 

  • Schmalzl J, Breuer M, Hansen U (2002) The influence of the Prandtl number on the style of vigorous thermal convection. Geophys Astrophys Fluid Dyn 96:381–403

    Article  Google Scholar 

  • Simitev R, Busse F (2005) Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J Fluid Mech 532:365–388

    Article  MATH  MathSciNet  Google Scholar 

  • Simitev RD, Busse FH (2009) Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Europhys Lett 85:19001

    Article  Google Scholar 

  • Sreenivasan B, Jones CA (2006) The role of inertia in the evolution of spherical dynamos. Geophys J Int 164:467–476

    Article  Google Scholar 

  • St Pierre M (1993) The strong-field branch of the childress-soward dynamo. In Proctor MRE et al (eds) Solar and planetary dynamos, pp 329–337

    Google Scholar 

  • Stanley S, Bloxham J (2004) Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428: 151–153

    Article  Google Scholar 

  • Stanley S, Glatzmaier G (2010) Dynamo models for planets other than earth. Space Science Reviews, DOI: 10.1007/s11214-009-9573-y, Only online so far.

    Google Scholar 

  • Stanley S, Bloxham J, Hutchison W, Zuber M (2005) Thin shell dynamo models consistent with mercury’s weak observed magnetic field. Earth Planet Sci Lett DOI: 10.1007/s11214-009-9573-y 234:341–353

    Google Scholar 

  • Stellmach S, Hansen U (2004) Cartesian convection-driven dynamos at low ekman number. Phys Rev E 70:056312

    Article  Google Scholar 

  • Stieglitz R, Müller U (2001) Experimental demonstration of the homogeneous two-scale dynamo. Phys Fluids 1:561–564

    Article  Google Scholar 

  • Takahashi F, Matsushima M (2006) Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys Res Lett 33:L10202

    Article  Google Scholar 

  • Takahashi F, Matsushima M, Honkura Y (2008a) Scale variability in convection-driven MHD dynamos at low Ekman number. Phys Earth Planet Inter 167:168–178

    Article  Google Scholar 

  • Takahashi F, Tsunakawa H, Matsushima M, Mochizuki N, Honkura Y (2008b) Effects of thermally heterogeneous structure in the lowermost mantle on the geomagnetic field strength. Earth Planet Sci Lett 272:738–746

    Article  Google Scholar 

  • Taylor J (1963) The magneto-hydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc R Soc Lond A 274:274–283

    Article  MATH  Google Scholar 

  • Tilgner A (1996) High-Rayleigh-number convection in spherical shells. Phys Rev E 53:4847–4851

    Article  Google Scholar 

  • Wicht J (2002) Inner-core conductivity in numerical dynamo simulations. Phys Earth Planet Inter 132:281–302

    Article  Google Scholar 

  • Wicht J (2005) Palaeomagnetic interpretation of dynamo simulations. Geophys J Int 162:371–380

    Article  Google Scholar 

  • Wicht J, Aubert J (2005) Dynamos in action. GWDG-Bericht 68:49–66

    Google Scholar 

  • Wicht J, Christensen U (2010) Taylor state and torsional oscillations in numerical dynamo models. Geophys. J. Int. DOI: 10.1111/j.1365-246x.2010.04581.x, Published online only.

    Google Scholar 

  • Wicht J, Olson P (2004) A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geochem Geophys Geosyst 5, doi:10.1029/2003GC000602

    Google Scholar 

  • Wicht J, Mandea M, Takahashi F et al (2007) The Origin of Mercury’s Internal Magnetic Field. Space Sci Rev 132:261–290

    Article  Google Scholar 

  • Wicht J, Stellmach S, Harder H (2009) Numerical models of the geodynamo: From fundamental Cartesian models to 3d simulations of field reversals. In: Glassmeier K, Soffel H, Negendank J (eds) Geomagnetic field variations – Space–time structure, processes, and effects on system Earth. Springer, Berlin/Heidelberg/New York, pp 107–158

    Google Scholar 

  • Wicht J, Tilgner A (2010) Theory and modeling of planetary dynamos. Space Science Review, DOI: 10.1007/s11214-010-9638-y, Published online only.

    Google Scholar 

  • Willis AP, Sreenivasan B, Gubbins D (2007) Thermal core mantle interaction: Exploring regimes for locked dynamo action. Phys Earth Planet Inter 165:83–92 DOI:10.1007/s11214-010- 9638-y

    Article  Google Scholar 

  • Zatman S, Bloxham J (1997) Torsional oscillations and the magnetic field within the Earth’s core. Nature 388:760–761

    Article  Google Scholar 

  • Zhang K, Gubbins D (2000a) Is the geodynamo process intrinsically unstable? Geophys J Int 140:F1–F4

    Article  Google Scholar 

  • Zhang K, Gubbins D (2000b) Scale disparities and magnetohydrodynamics in the Earth’s core. Phil Trans R Soc Lond A 358: 899–920

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang K, Schubert G (2000) Magnetohydrodynamics in rapidly rotating spherical systems. Ann Rev Fluid Mech 32:409–433

    Article  MathSciNet  Google Scholar 

  • Zhang K-K, Busse F (1988) Finite amplitude convection and magnetic field generation in in a rotating spherical shell. Geophys Astrophys Fluid Dyn 44:33–53

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wicht, J., Stellmach, S., Harder, H. (2010). Numerical Dynamo Simulations: From Basic Concepts to Realistic Models. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01546-5_16

Download citation

Publish with us

Policies and ethics