Advertisement

Table of contents

  1. Front Matter
    Pages i-xix
  2. General Issues, Historical Background, and Future Perspectives

  3. Observational and Measurement Key Technologies

    1. Front Matter
      Pages 69-70
    2. Henri Laur, Volker Liebig
      Pages 69-92
    3. Nils Olsen, Gauthier Hulot, Terence J. Sabaka
      Pages 105-124
  4. Modeling of the System Earth (Geosphere, Cryosphere, Hydrosphere, Atmosphere, Biosphere, Anthroposphere)

    1. Front Matter
      Pages 125-126
    2. Helmut Moritz
      Pages 125-158
    3. Erik W. Grafarend, Matthias Klapp, Zdeněk Martinec
      Pages 159-252
    4. Willi Freeden, Michael Schreiner
      Pages 269-302
    5. Detlef Wolf
      Pages 303-332
    6. Luciana Fenoglio-Marc, Erwin Groten
      Pages 353-370
    7. Sergey Danilov, Jens Schröter
      Pages 371-398
    8. Rainer Helmig, Jennifer Niessner, Bernd Flemisch, Markus Wolff, Jochen Fritz
      Pages 417-457
    9. Johannes Wicht, Stephan Stellmach, Helmut Harder
      Pages 459-502
    10. Terence J. Sabaka, Gauthier Hulot, Nils Olsen
      Pages 503-538
    11. Rupert Klein
      Pages 625-648
    12. Nils Dorband, Martin Fengler, Andreas Gumann, Stefan Laps
      Pages 649-678
    13. Maxim Ilyasov, Isabel Ostermann, Alessandro Punzi
      Pages 679-711
  5. Analytic, Algebraic, and Operator Theoretical Methods

    1. Front Matter
      Pages 739-740
    2. Paul N. Eggermont, Vincent LaRiccia, M. Zuhair Nashed
      Pages 739-762
    3. Markus Grasmair, Markus Haltmeier, Otmar Scherzer
      Pages 763-784
    4. Jef Caers, Kwangwon Park, Céline Scheidt
      Pages 865-889
    5. Volker Michel
      Pages 949-972
    6. Ralf Hielscher, David Mainprice, Helmut Schaeben
      Pages 973-1003
  6. Statistical and Stochastic Methods

    1. Front Matter
      Pages 1049-1050
    2. Martin Grothaus, Thomas Raskop
      Pages 1049-1076
    3. Peiliang Xu
      Pages 1129-1157
    4. Helmut Pruscha
      Pages 1159-1184
  7. Computational and Numerical Methods

    1. Front Matter
      Pages 1185-1186
    2. Kerstin Hesse, Ian H. Sloan, Robert S. Womersley
      Pages 1185-1219
    3. Stephan Dahlke
      Pages 1221-1241
    4. Inna Kozlov, Alexander Petukhov
      Pages 1243-1259
    5. Amir Z. Averbuch, Valery A. Zheludev, Dan D. Kosloff
      Pages 1261-1287

About this book

Introduction

During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important.

The ‘Handbook Geomathematics’ as a central reference work in this area comprises the following scientific fields: (I) observational and measurement key technologies (II) modelling of the system Earth (geosphere, cryosphere, hydrosphere, atmosphere, biosphere) (III) analytic, algebraic, and operator-theoretic methods (IV) statistical and stochastic methods (V) computational and numerical analysis methods (VI) historical background and future perspectives.

Keywords

Constructive approximation Differential equations Geomathematics Inverse problems Mathematical modelling Number Theory Numerical methods Potential theory

Editors and affiliations

  • Willi Freeden
    • 1
  • M. Zuhair Nashed
    • 2
  • Thomas Sonar
    • 3
  1. 1.Geomathematics GroupTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Department of MathematicsUniversity of Central FloridaOrlandoUSA
  3. 3.Computational MathematicsTechnische Universität BraunschweigBraunschweigGermany

Bibliographic information