Skip to main content

Impedance Recording in Central Nervous System Surgery

  • Reference work entry
Textbook of Stereotactic and Functional Neurosurgery
  • 282 Accesses

Abstract

This chapter will first describe electrical bioimpedance and its relevance to neurosurgeons, and provide a brief historical review. Current and near-future techniques for central nervous system (CNS) tissue identification (e.g., brain vs. tumor) are then considered. A brief review of impedance ‘‘imaging’’ – electrical impedance tomography EIT) – is then presented, given EIT may assume a significant clinical role in the future. The final section presents the new field of charge transfer at the neuronal/subneuronal level, made possible in the past decade by advances in nanoelectrode techniques, and contrasts such a neural-electrical interface (NEI) with the traditional macro- and micro-electrodes for neuromodulation or deep brain stimulation (DBS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butson CR, Maks CB, McIntyre CC. Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol 2006;117:447–54.

    Article  PubMed  Google Scholar 

  2. Moss J, Ryder T, Aziz TZ, Graeber MB, Bain PG. Electron microscopy of tissue adherent to explanted electrodes in dystoniz and Parkinson’s disease. Brain 2004;127:2755–63.

    Article  PubMed  CAS  Google Scholar 

  3. Hoeber R. Eine methode die elektrische leitfaehigkeit im inner von zellen zu messen. Arch Ges Physiol 1910;133:237–59.

    Article  Google Scholar 

  4. Van Harreveld A, Ochs S. Cerebral impedance changes after circulatory arrest. Am J Physiol 1956;187:180–92.

    PubMed  Google Scholar 

  5. Schwan HP. The practical success of impedance techniquest from an historical perspective. In: Riu PJ, Rosell J, Bragos R, Casa O, editors. Electrical bioimpedance methods: applications to medicine and biotechnology. Ann NY Acad Sci 1999;873:1-12.

    Google Scholar 

  6. Grant FC. Localization of brain tumors by determination of the electrical resistance of the growth. JAMA 1923;81:2169–71.

    Google Scholar 

  7. Organ LW, Tasker RR, Moody NF. Brain tumor localization using an electrical impedance technique. J Neurosurg 1968;28:35–44.

    Article  PubMed  CAS  Google Scholar 

  8. Bullard DE, Makachinas TT. Measurement of tissue impedance in conjunction with computed tomography-guided stereotaxic biopsies. J Neurol Neurosurg Psychiatry 1987;50:397–401.

    Article  Google Scholar 

  9. Rajshekhar V. Continuous impedance monitoring during CT-guided stereotactic surgery: relative value in cystic and solid lesions. Br J Neurosurg 1992;6:439–44.

    Article  PubMed  CAS  Google Scholar 

  10. Gildenberg PL, Zanes C, Flitter M, et al. Impedance measuring device for detection of penetration of the spinal cord in anterior percutaneous cervical cordotomy. J Neurosurg 1969;30:87–92.

    Article  PubMed  CAS  Google Scholar 

  11. Taren JA, Davis R, Crosby EC. Target physiologic corroboration in stereotaxic cervical cordotomy. J Neurosurg 1969;30:569–84.

    Article  PubMed  CAS  Google Scholar 

  12. Bayford RH. Bioimpedance tomography (electrical impedance tomography). Ann Rev Biomed Eng 2006;8:63–91.

    Article  CAS  Google Scholar 

  13. McEwan A, Cusick G, Holder DS. A review of errors in multi-frequency EIT instrumentation. Physiol Meas 2007;28:S197–215.

    Article  PubMed  CAS  Google Scholar 

  14. Romsauerova A, McEwan A, Horesh L, Yerworth R, Bayford RH, Holder DS. Multi-frequency electrical impedance tomography (EIT) of the adult head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol Meas 2006;27:S147–61.

    Article  PubMed  CAS  Google Scholar 

  15. Oh SH, Lee BI, Woo EJ, et al. Electrical conductivity images of biological tissue phantoms in MREIT. Physiol Meas 2005;26:S279–88.

    Article  PubMed  Google Scholar 

  16. McIntyre CC, Miocinovic S, Butson CR. Computational analysis of deep brain stimulation. Expert Rev Med Devices 2007;4:615–22.

    Article  PubMed  Google Scholar 

  17. Nguyen-Vu TD, Chen H, Cassell AM, Andrews R, Meyyappan M, Li J. Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small 2006;2:89–94.

    Article  PubMed  CAS  Google Scholar 

  18. Nguyen-Vu TD, Chen H, Cassell AM, Andrews RJ, Meyyappan M, Li J. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans Biomed Eng 2007;54:1121–9.

    Article  PubMed  Google Scholar 

  19. Wang K, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett 2006;6:2043–8.

    Article  PubMed  CAS  Google Scholar 

  20. Llinas RR, Walton KD, Nakao M. Hunter I, Anquetil PA. Neuro - vascular central neruous recording/stimulating system: Using nonotechnology probes. J Nanopart Res 2005;7:111–127.

    Article  Google Scholar 

  21. Karuri NW, Liliensiek S, Teixeira AI. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J Cell Sci 2004;117:3153–64.

    Article  PubMed  CAS  Google Scholar 

  22. Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 2005;110:531–41.

    Article  PubMed  Google Scholar 

  23. Abidian M, Kim DH, Martin DC. Conducting polymer nanotubes for controlled drug release. Adv Mater 2006;18:405–9.

    Article  CAS  Google Scholar 

  24. Rebec GV, Christensen JR, Guerra C, Bardo MT. Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Res 1997;776:61–7.

    Article  PubMed  CAS  Google Scholar 

  25. Venton BJ, Wightman RM. Psychoanalytical electrochemistry: dopamine and behavior. Anal Chem 2003;75:414A–421A.

    Article  CAS  Google Scholar 

  26. Wightman RM, Heien MLAV, Wassum KM, et al. Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. Eur J Neurosci 2007;26:2046–54.

    Article  PubMed  Google Scholar 

  27. Li J, Ng HT, Cassell A, et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 2003;3:597–602.

    Article  CAS  Google Scholar 

  28. Li J, Koehne JE, Cassell AM, et al. Inlaid multi-walled carbon nanotube nanoelectrode arrays for electroanalysis. Electroanalysis 2005;17:15–27.

    Article  Google Scholar 

  29. Koehne JE, Chen H, Cassell AM, et al. Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. Clin Chem 2004;50:1886–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Andrews, R.J., Li, J., Kuhn, S.A., Walter, J., Reichart, R. (2009). Impedance Recording in Central Nervous System Surgery. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics