Skip to main content

Scanning Probe Studies of Nanoscale Adhesion Between Solids in the Presence of Liquids and Monolayer Films

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Adhesion between solids is a ubiquitous phenomenon whose importance is magnified at the micrometer and nanometer scales, where the surface-to-volume ratio diverges as we approach the size of a single atom.

Numerous techniques for measuring adhesion at the atomic scale have been developed, but significant limitations exist. Instrumental improvements and reliable quantification are still needed. Recent studies have highlighted the unique and important effect of liquid capillaries, particularly water, at the nanometer scale. The results demonstrate that macroscopic considerations of classic meniscus theory must be modified to take into account new scaling and geometric relationships unique to the nanometer scale. More generally, a molecular scale description of wetting and capillary condensation as it applies to nanoscale interfaces is clearly desirable, but remains an important challenge.

The measurement of adhesion between self-assembled monolayers has proven to be a reliable way to probe the influence of surface chemistry and local environment on adhesion. To date, however, few of these systems have been investigated in detail quantitatively. The molecular origins of adhesion down to the single-bond level still need to be fully investigated. The most recent studies illustrate that, while new information about adhesion in these systems has been revealed, further enhancements of current techniques as well as the development of new methodologies coupled with accurate theoretical modeling are required to adequately tackle these complex measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

JKR:

Johnson–Kendall–Roberts

MEMS:

microelectromechanical system

NEMS:

nanoelectromechanical system

OTS:

octadecyltrichlorosilane

RH:

relative humidity

SAM:

scanning acoustic microscopy

SAM:

self-assembled monolayer

SFA:

surface force apparatus

SFM:

scanning force microscopy

UHV:

ultrahigh vacuum

References

  1. J. N. Israelachvili: Intermolecular and Surface Forces (Academic Press, London 1992)

    Google Scholar 

  2. K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, C. Wai Pang, T. W. Kenny, R. Fearing, R. J. Full: Adhesive force of a single gecko foot-hair, Nature 405, 681–685 (2000)

    CAS  Google Scholar 

  3. A. L. Baldwin, G. Thurston: Mechanics of endothelial cell architecture and vascular permeability, Crit. Rev. Biomed. Eng. 29, 247–278 (2001)

    CAS  Google Scholar 

  4. S. R. White, N. R. Sottos, P. H. Guebelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, S. Viswanathan: Autonomic healing of polymer composites, Nature 409, 794–797 (2001)

    CAS  Google Scholar 

  5. R. W. Carpick, M. Salmeron: Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chem. Rev. 97, 1163–1194 (1997)

    CAS  Google Scholar 

  6. M. P. De boer, T. A. Michalske: Accurate method for determining adhesion of cantilever beams, J. Appl. Phys. 86, 817–827 (1999)

    Google Scholar 

  7. M. P. De boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian: Adhesion hysteresis of silane-coated microcantilevers, Acta Mater. 48, 4531–4541 (2000)

    Google Scholar 

  8. R. Maboudian, R. T. Howe: Critical review: Adhesion in surface micromechanical structures, J. Vacuum Sci. Technol. 15, 1–20 (1997)

    CAS  Google Scholar 

  9. R. Maboudian, W. R. Ashurst, C. Carraro: Tribological challenges in micromechanical systems, Tribol. Lett. 12, 95–100 (2002)

    Google Scholar 

  10. R. Maboudian: Adhesion and friction issues associated with reliable operation of MEMS, MRS Bull. 23, 47–51 (1998)

    CAS  Google Scholar 

  11. J. N. Israelachvili: Thin film studies using multiple-beam interferometry, J. Colloid Interf. Sci. 44, 259–272 (1973)

    CAS  Google Scholar 

  12. J. N. Israelachvili, D. Tabor: The measurement of van der Waals dispersion forces in the range of 1.5 to 130 nm, Proc. R. Soc. Lond. A 331, 19–38 (1972)

    CAS  Google Scholar 

  13. G. Binnig, C. F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  14. J. N. Israelachvili, P. M. Mcguiggan, A. M. Homola: Dynamic properties of molecularly thin liquid films, Science 240, 189–191 (1988)

    CAS  Google Scholar 

  15. J. Peachey, J. Van Alsten, S. Granick: Design of an apparatus to measure the shear response of ultrathin liquid, Rev. Sci. Instrum. 62, 463–473 (1991)

    CAS  Google Scholar 

  16. P. Frantz, N. Agraït, M. Salmeron: Use of capacitance to measure surface forces. 1. Measuring distance of separation with enhanced spatial and time resolution, Langmuir 12, 3289–3294 (1996)

    CAS  Google Scholar 

  17. L. R. Fisher, J. N. Israelachvili: Direct measurement of the effect of meniscus forces on adhesion: a study of the applicability of macroscopic thermodynamics to microscopic liquid interfaces, Colloids and Surfaces 3, 303–319 (1981)

    CAS  Google Scholar 

  18. L. R. Fisher, J. N. Israelachvili: Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci, J. Colloid Interf. Sci. 80, 528–541 (1981)

    CAS  Google Scholar 

  19. J. N. Israelachvili: Adhesion, friction and lubrication of molecularly smooth surfaces. In: Fundamentals of Friction, ed. by I. L. Singer, H. M. Pollock (Kluwer, Dordrecht 1992) pp. 351–385

    Google Scholar 

  20. G. Reiter, A. L. Demirel, J. Peanasky, L. L. Cai, S. Granick: Stick to slip transition and adhesion of lubricated surfaces in moving contact, J. Chem. Phys. 101, 2606–2615 (1994)

    CAS  Google Scholar 

  21. S. Granick: Molecular tribology of fluids. In: Fundamentals of Friction, ed. by I. L. Singer, H. M. Pollock (Kluwer, Dordrecht 1992) p. 387

    Google Scholar 

  22. K. L. Johnson: Contact Mechanics (University Press, Cambridge 1987)

    Google Scholar 

  23. M. A. Lantz, S. J. O'shea, M. E. Welland: Simultaneous force and conduction measurements in atomic force microscopy, Phys. Rev. B 56, 15345–15352 (1997)

    CAS  Google Scholar 

  24. M. Enachescu, R. J. A. Van Den Oetelaar, R. W. Carpick, D. F. Ogletree, C. F. J. Flipse, M. Salmeron: An AFM study of an ideally hard contact: The diamond(111)/tungsten-carbide interface, Phys. Rev. Lett. 81, 1877–1880 (1998)

    CAS  Google Scholar 

  25. M. A. Lantz, S. J. O'shea, A. C. F. Hoole, M. E. Welland: Lateral stiffness of the tip and tip–sample contact in frictional force microscopy, Appl. Phys. Lett. 70, 970–972 (1997)

    CAS  Google Scholar 

  26. R. W. Carpick, D. F. Ogletree, M. Salmeron: Lateral stiffness: A new nanomechanical measurement with friction force microscopy, Appl. Phys. Lett. 70, 1548–1550 (1997)

    CAS  Google Scholar 

  27. O. Marti, B. Drake, P. K. Hansma: Atomic force microscopy of liquid-covered surfaces: atomic resolution images, Appl. Phys. Lett. 51, 484–486 (1987)

    CAS  Google Scholar 

  28. G. J. Germann, S. R. Cohen, G. Neubauer, G. M. Mcclelland, H. Seki, D. Coulman: Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces, J. Appl. Phys. 73, 163–167 (1993)

    CAS  Google Scholar 

  29. L. Howald, E. Meyer, R. Lüthi, H. Haefke, R. Overney, H. Rudin, H.-J. Güntherodt: Multifunctional probe microscope for facile operation in ultrahigh vacuum, Appl. Phys. Lett. 63, 117–119 (1993)

    CAS  Google Scholar 

  30. M. Kageshima, H. Yamada, K. Nakayama, H. Sakama, A. Kawau, T. Fujii, M. Suzuki: Development of an ultrahigh vacuum atomic force microscope for investigations of semiconductor surfaces, J. Vacuum Sci. Technol. B 11, 1987–1991 (1993)

    CAS  Google Scholar 

  31. J. A. Greenwood: Adhesion of elastic spheres, Proc. R. Soc. Lond. A 453, 1277–1297 (1997)

    CAS  Google Scholar 

  32. S. P. Jarvis, A. Oral, T. P. Weihs, J. B. Pethica: A novel force microscope and point contact probe, Rev. Sci. Instrum. 64, 3515–3520 (1993)

    CAS  Google Scholar 

  33. S. P. Jarvis, H. Yamada, S.-I. Yamamoto, H. Tokumoto: A new force controlled atomic force microscope for use in ultrahigh vacuum, Rev. Sci. Instrum. 67, 2281–2285 (1996)

    Google Scholar 

  34. S. A. Joyce, J. E. Houston: A new force sensor incorporating force-feedback control for interfacial force microscopy, Rev. Sci. Instrum. 62, 710–715 (1991)

    CAS  Google Scholar 

  35. S. A. Joyce, J. E. Houston, T. A. Michalske: Differentiation of topographical and chemical structures using an interfacial force microscope, Appl. Phys. Lett. 60, 1175 (1992)

    CAS  Google Scholar 

  36. P. D. Ashby, L. W. Chen, C. M. Lieber: Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy, J. Am. Chem. Soc. 122, 9467–9472 (2000)

    CAS  Google Scholar 

  37. H. I. Kim, V. Boiadjiev, J. E. Houston, X. Y. Zhu, J. D. Kiely: Tribological properties of self-assembled monolayers on Au, SiO x , Si surfaces, Tribol. Lett. 10, 97–101 (2001)

    CAS  Google Scholar 

  38. P. A. Taylor, J. S. Nelson, B. W. Dodson: Adhesion between atomically flat metallic surfaces, Phys. Rev. B 44, 5834–5841 (1991)

    CAS  Google Scholar 

  39. J. S. Nelson, B. W. Dodson, P. A. Taylor: Adhesive avalanche in covalently bonded materials, Phys. Rev. B 45, 4439–4444 (1992)

    Google Scholar 

  40. R. Garcia, R. Perez: Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47, 197–301 (2002)

    CAS  Google Scholar 

  41. F. J. Giessibl: Forces and frequency shifts in atomic-resolution dynamic-force microscopy, Phys. Rev. B 56, 16010–15 (1997)

    CAS  Google Scholar 

  42. P. M. Hoffmann, A. Oral, R. A. Grimble, H. O. Ozer, S. Jeffery, J. B. Pethica: Direct measurement of interatomic force gradients using an ultra-low-amplitude atomic force microscope, Proc. R. Soc. Lond. A 457, 1161–1174 (2001)

    CAS  Google Scholar 

  43. K. R. Shull: Contact mechanics and the adhesion of soft solids, Mater. Sci. Eng. R R36, 1–45 (2002)

    CAS  Google Scholar 

  44. L. Xu, A. Lio, J. Hu, D. F. Ogletree, M. Salmeron: Wetting and capillary phenomena of water on mica, J. Phys. Chem. B 102, 540–548 (1998)

    CAS  Google Scholar 

  45. S. P. Timoshenko, J. N. Goodier: Theory of Elasticity (McGraw-Hill, New York 1987)

    Google Scholar 

  46. J. P. Cleveland, S. Manne, D. Bocek, P. K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)

    CAS  Google Scholar 

  47. J. E. Sader, I. Larson, P. Mulvaney, L. R. White: Method for the calibration of atomic force microscope cantilevers, Rev. Sci. Instrum. 66, 3789–3798 (1995)

    CAS  Google Scholar 

  48. M. Tortonese, M. Kirk: Characterization of application specific probes for SPMs, Proc. SPIE 3009, 53–60 (1997)

    CAS  Google Scholar 

  49. T. R. Albrecht, S. Akamine, T. E. Carver, C. F. Quate: Microfabrication of cantilever styli for the atomic force microscope, J. Vacuum Sci. Technol. A 8, 3386–96 (1990)

    CAS  Google Scholar 

  50. H.-J. Butt, P. Siedle, K. Seifert, K. Fendler, T. Seeger, E. Bamberg, A. L. Weisenhorn, K. Goldie, A. Engel: Scan speed limit in atomic force microscopy, J. Microsc. 169, 75–84 (1993)

    Google Scholar 

  51. J. M. Neumeister, W. A. Ducker: Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers, Rev. Sci. Instrum. 65, 2527–2531 (1994)

    Google Scholar 

  52. J. E. Sader: Parallel beam approximation for V-shaped atomic force microscope cantilevers, Rev. Sci. Instrum. 66, 4583–4587 (1995)

    CAS  Google Scholar 

  53. D. F. Ogletree, R. W. Carpick, M. Salmeron: Calibration of frictional forces in atomic force microscopy, Rev. Sci. Instrum. 67, 3298–3306 (1996)

    CAS  Google Scholar 

  54. R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, M. Guggisberg, M. Bammerlin, H.-J. Güntherodt: Nanotribology: An UHV-SFM study on thin films of C60 and AgBr, Surf. Sci. 338, 247–260 (1995)

    Google Scholar 

  55. U. D. Schwarz, P. Koster, R. Wiesendanger: Quantitative analysis of lateral force microscopy experiments, Rev. Sci. Instrum. 67, 2560–2567 (1996)

    CAS  Google Scholar 

  56. T. J. Senden, W. A. Ducker: Experimental determination of spring constants in atomic force microscopy, Langmuir 10, 1003–1004 (1994)

    Google Scholar 

  57. A. Torii, M. Sasaki, K. Hane, S. Okuma: A method for determining the spring constant of cantilevers for atomic force microscopy, Meas. Sci. Technol. 7, 179–184 (1996)

    CAS  Google Scholar 

  58. J. A. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: Part I - general principles and new measurement techniques, Trans. ASME J. Tribol. 116, 378–388 (1994)

    CAS  Google Scholar 

  59. Y. Q. Li, N. J. Tao, J. Pan, A. A. Garcia, S. M. Lindsay: Direct measurement of interaction forces between colloidal particles using the scanning force microscope, Langmuir 9, 637–641 (1993)

    CAS  Google Scholar 

  60. J. E. Sader, J. W. M. Chon, P. Mulvaney: Calibration of rectangular atomic force microscope cantilevers, Rev. Sci. Instrum. 70, 3967–3969 (1999)

    CAS  Google Scholar 

  61. J. S. Villarrubia: Morphological estimation of tip geometry for scanned probe microscopy, Surf. Sci. 321, 287–300 (1994)

    CAS  Google Scholar 

  62. J. S. Villarrubia: Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation, J. Res. Natl. Inst. Stand. Technol. (USA) 102, 425–454 (1997)

    Google Scholar 

  63. L. S. Dongmo, J. S. Villarrubia, S. N. Jones, T. B. Renegar, M. T. Postek, J. F. Song: Experimental test of blind tip reconstruction for scanning probe microscopy, Ultramicroscopy 85, 141–153 (2000)

    CAS  Google Scholar 

  64. R. W. Carpick, N. Agraït, D. F. Ogletree, M. Salmeron: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope, J. Vacuum Sci. Technol. B 14, 1289–1295 (1996)

    CAS  Google Scholar 

  65. K. F. Jarausch, T. J. Stark, P. E. Russell: Silicon structures for in situ characterization of atomic force microscope probe geometry, J. Vacuum Sci. Technol. B 14, 3425–3430 (1996)

    CAS  Google Scholar 

  66. F. Atamny, A. Baiker: Direct imaging of the tip shape by AFM, Surf. Sci. 323, L314–L318 (1995)

    CAS  Google Scholar 

  67. S. S. Sheiko, M. Moller, E. M. C. M. Reuvekamp, H. W. Zandbergen: Evaluation of the probing profile of scanning force microscopy tips, Ultramicroscopy 53, 371–380 (1994)

    CAS  Google Scholar 

  68. C. Odin, J. P. Aimé, Z. El Kaakour, T. Bouhacina: Tip's finite size effects on atomic force microscopy in the contact mode: Simple geometrical considerations for rapid estimation of apex radius, tip angle based on the study of polystyrene latex balls, Surf. Sci. 317, 321–340 (1994)

    CAS  Google Scholar 

  69. K. L. Westra, D. J. Thomson: Atomic force microscope tip radius needed for accurate imaging of thin film surfaces, J. Vacuum Sci. Technol. B 12, 3176–3181 (1994)

    CAS  Google Scholar 

  70. P. Markiewicz, M. C. Goh: Atomic force microscope tip deconvolution using calibration arrays, Rev. Sci. Instrum. 66, 3186–3190 (1995)

    CAS  Google Scholar 

  71. R. Dixson, J. Schneir, T. Mcwaid, N. Sullivan, V. W. Tsai, S. H. Zaidi, S. R. J. Brueck: Toward accurate linewidth metrology using atomic force microscopy and tip characterization, Proc. SPIE 2725, 589–607 (1996)

    Google Scholar 

  72. P. Siedle, H.-J. Butt, E. Bamberg, D. N. Wang, W. Kuhlbrandt, J. Zach, M. Haider: Determining the form of atomic force microscope tips. In: X-Ray Optics and Microanalysis 1992, Proceedings of the Thirteenth International Congress, Manchester, UK, ed. by P. B. Kenway, P. J. Duke, G. W. Lorimer, T. Mulvey, J. W. Drummond, G. Love, A. G. Michette, M. Stedman (IOP, Bristol 1992)

    Google Scholar 

  73. S. Xu, M. F. Arnsdorf: Calibration of the scanning (atomic) force microscope with gold particles, J. Microsc. 3, 199–210 (1994)

    Google Scholar 

  74. U. D. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger: Friction force spectroscopy in the low-load regime with well-defined tips. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997)

    Google Scholar 

  75. S. J. O'shea, R. N. Atta, M. E. Welland: Characterization of tips for conducting atomic force microscopy, Rev. Sci. Instrum. 66, 2508–2512 (1995)

    Google Scholar 

  76. P. Niedermann, W. Hanni, N. Blanc, R. Christoph, J. Burger: Chemical vapor deposition diamond for tips in nanoprobe experiments, J. Vacuum Sci. Technol. A 14, 1233–1236 (1995)

    Google Scholar 

  77. L. M. Qian, X. D. Xiao, S. Z. Wen: Tip in situ chemical modification and its effects on tribological measurements, Langmuir 16, 662–670 (2000)

    CAS  Google Scholar 

  78. E. L. Florin, V. T. Moy, H. E. Gaub: Adhesion forces between individual ligand–receptor pairs, Science 264, 415–417 (1994)

    CAS  Google Scholar 

  79. V. T. Moy, E. L. Florin, H. E. Gaub: Intermolecular forces and energies between ligands and receptors, Science 266, 257–259 (1994)

    CAS  Google Scholar 

  80. G. U. Lee, L. A. Chrisey, R. J. Colton: Direct measurement of the forces between complementary strands of DNA, Science 266, 771–773 (1994)

    CAS  Google Scholar 

  81. S. S. Wong, E. Joselevich, A. T. Woolley, C. Chin Li, C. M. Lieber: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394, 52–55 (1998)

    CAS  Google Scholar 

  82. O. H. Willemsen, M. M. E. Snel, K. O. Van Der Werf, B. G. De Grooth, J. Greve, P. Hinterdorfer, H. J. Gruber, H. Schindler, Y. Van Kooyk, C. G. Figdor: Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy, Biophys. J. 75, 2220–2228 (1998)

    CAS  Google Scholar 

  83. W. A. Ducker, T. J. Senden, R. M. Pashley: Direct measurement of colloidal forces using an atomic force microscope, Nature 353, 239–241 (1991)

    CAS  Google Scholar 

  84. H. J. Butt: Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope, Biophys. J. 60, 1438–1444 (1991)

    CAS  Google Scholar 

  85. V. S. J. Craig, C. Neto: In situ calibration of colloid probe cantilevers in force microscopy: hydrodynamic drag on a sphere approaching a wall, Langmuir 17, 6018–6022 (2001)

    CAS  Google Scholar 

  86. R. J. Cannara, M. J. Brukman, R. W. Carpick: Cantilever tilt compensation for variable-load atomic force microscopy, Rev. Sci. Instrum. 76, 53706 (2005)

    Google Scholar 

  87. R. Staub, D. Alliata, C. Nicolini: Drift elimination in the calibration of scanning probe microscopes, Rev. Sci. Instrum. 66, 2513–2516 (1995)

    CAS  Google Scholar 

  88. S. M. Hues, C. F. Draper, K. P. Lee, R. J. Colton: Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy, Rev. Sci. Instrum. 65, 1561–1565 (1994)

    CAS  Google Scholar 

  89. J. Fu: In situ testing and calibrating of z-piezo of an atomic force microscope, Rev. Sci. Instrum. 66, 3785–3788 (1995)

    CAS  Google Scholar 

  90. J. Garnaes, L. Nielsen, K. Dirscherl, J. F. Jorgensen, J. B. Rasmussen, P. E. Lindelof, C. B. Sorensen: Two-dimensional nanometer-scale calibration based on one-dimensional gratings, Appl. Phys. A 66, 831–5 (1998)

    Google Scholar 

  91. J. F. Jorgensen, K. Carneiro, L. L. Madsen, K. Conradsen: Hysteresis correction of scanning tunneling microscope images, J. Vacuum Sci. Technol. B 1, 1702–1704 (1994)

    Google Scholar 

  92. J. F. Jorgensen, L. L. Madsen, J. Garnaes, K. Carneiro, K. Schaumburg: Calibration, drift elimination, and molecular structure analysis, J. Vacuum Sci. Technol. B 12, 1698–1701 (1994)

    Google Scholar 

  93. M. Jaschke, H. J. Butt: Height calibration of optical lever atomic force microscopes by simple laser interferometry, Rev. Sci. Instrum. 66, 1258–1259 (1995)

    CAS  Google Scholar 

  94. L. A. Nagahara, K. Hashimoto, A. Fujishima, D. Snowden-Ifft, P. B. Price: Mica etch pits as a height calibration source for atomic force microscopy, J. Vacuum Sci. Technol. B 12, 1694–7 (1993)

    Google Scholar 

  95. H. M. Brodowsky, U.-C. Boehnke, F. Kremer: Wide range standard for scanning probe microscopy height calibration, Rev. Sci. Instrum. 67, 4198–4200 (1996)

    CAS  Google Scholar 

  96. R. M. Overney, H. Takano, M. Fujihira: Elastic compliances measured by atomic force microscopy, Europhys. Lett. 26, 443–447 (1994)

    CAS  Google Scholar 

  97. M. S. Marcus, R. W. Carpick, D. Y. Sasaki, M. A. Eriksson: Material anisotropy revealed by phase contrast in intermittent contact atomic force microscopy, Phys. Rev. Lett. 88, 226103 (2002)

    Google Scholar 

  98. M. J. D'amato, M. S. Marcus, M. A. Eriksson, R. W. Carpick: Phase imaging and the lever-sample tilt angle in dynamic atomic force microscopy, Appl. Phys. Lett. 85, 4378–4380 (2004)

    Google Scholar 

  99. L.-O. Heim, M. Kappl, H.-J. Butt: Tilt of atomic force microscope cantilevers: Effect on spring constant and adhesion measurements, Langmuir 20, 2760–2764 (2004)

    CAS  Google Scholar 

  100. J. L. Hutter: Comment on tilt of atomic force microscope cantilevers: Effect on spring constant and adhesion measurements, Langmuir 21, 2630–2632 (2005)

    CAS  Google Scholar 

  101. P. G. De Gennes: Wetting: statistics and dynamics, Rev. Mod. Phys. 57, 827–863 (1985)

    Google Scholar 

  102. T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy, Phys. Rev. B 62, 13667–13673 (2000)

    CAS  Google Scholar 

  103. Y. Sugawara, M. Ohta, T. Konishi, S. Morita, M. Suzuki, Y. Enomoto: Effects of humidity and tip radius on the adhesive force measured with atomic force microscopy, Wear 168, 13–16 (1993)

    CAS  Google Scholar 

  104. M. Binggeli, C. M. Mate: Influence of capillary condensation of water on nanotribology studied by force microscopy, Appl. Phys. Lett. 65, 415–417 (1994)

    CAS  Google Scholar 

  105. X. Xiao, Q. Linmao: Investigation of humidity-dependent capillary force, Langmuir 16, 8153–8158 (2000)

    CAS  Google Scholar 

  106. F. M. Orr, L. E. Scriven, A. P. Rivas: Pendular rings between solids: meniscus properties and capillary force, J. Fluid Mech. 67, 723–742 (1975)

    Google Scholar 

  107. H. K. Christenson: Adhesion between surfaces in undersaturated vapors – a re-examination of the influence of meniscus curvature and surface forces, J. Colloid Interf. Sci. 121, 170–178 (1988)

    CAS  Google Scholar 

  108. E. Riedo, F. Levy, H. Brune: Kinetics of capillary condensation in nanoscopic sliding friction, Phys. Rev. Lett. 88, 185505/1–4 (2002)

    CAS  Google Scholar 

  109. D. Maugis, B. Gauthiermanuel: JKR–DMT transition in the presence of a liquid meniscus, J. Adhes. Sci. Technol. 8, 1311–1322 (1994)

    CAS  Google Scholar 

  110. A. Fogden, L. R. White: Contact elasticity in the presence of capillary condensation. 1. The nonadhesive Hertz problem, J. Colloid Interf. Sci. 138, 414–430 (1990)

    CAS  Google Scholar 

  111. K. L. Johnson, K. Kendall, A. D. Roberts: Surface energy and the contact of elastic solids, Proc. R. Soc. Lond. A 324, 301–313 (1971)

    CAS  Google Scholar 

  112. K. L. Johnson: Adhesion and friction between a smooth elastic asperity and a plane surface, Proc. R. Soc. Lond. A 453, 163–179 (1997)

    CAS  Google Scholar 

  113. K. Johnson, J. Greenwood: An adhesion map for the contact of elastic spheres, J. Colloid Interf. Sci. 192, 326–333 (1997)

    CAS  Google Scholar 

  114. T. Thundat, X. Y. Zheng, G. Y. Chen, R. J. Warmack: Role of relative humidity in atomic force microscopy imaging, Surf. Sci. 294, L939–L943 (1993)

    CAS  Google Scholar 

  115. M. Binggeli, R. Christoph, H.-E. Hintermann: Observation of controlled, electrochemically induced friction force modulations in the nano-Newton range, Tribol. Lett. 1, 13–21 (1995)

    CAS  Google Scholar 

  116. B. Bhushan, S. Sundararajan: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46, 3793–3804 (1998)

    CAS  Google Scholar 

  117. W. Gulbinski, D. Pailharey, T. Suszko, Y. Mathey: Study of the influence of adsorbed water on AFM friction measurements on molybdenum trioxide thin films, Surf. Sci. 475, 149–158 (2001)

    CAS  Google Scholar 

  118. M. He, A. S. Blum, D. E. Aston, C. Buenviaje, R. M. Overney, R. Luginbuhl: Critical phenomena of water bridges in nanoasperity contacts, J. Chem. Phys. 114, 1355–1360 (2001)

    CAS  Google Scholar 

  119. A. W. Adamson: Physical Chemistry of Surfaces, 5th edn. (Wiley, 1990) Chap. 16, pp. 591–615

    Google Scholar 

  120. C. M. Mate: Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording, J. Appl. Phys. 72(2), 3084–3090 (1992)

    CAS  Google Scholar 

  121. C. Gao: Theory of menisci and its applications, Appl. Phys. Lett. 71(13), 1801–1803 (1997)

    CAS  Google Scholar 

  122. G. Lian, C. Thornton, M. J. Adams: A theoretical study of the liquid bridge forces between two rigid spherical bodies, J. Colloid Interf. Sci. 161, 138–147 (1993)

    CAS  Google Scholar 

  123. C. D. Willett, M. J. Adams, S. A. Johnson, J. P. K. Seville: Capillary bridges between two spherical bodies, Langmuir 16, 9396–9405 (2000)

    CAS  Google Scholar 

  124. J. A. Greenwood, J. B. P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. Lond. A 295, 300–319 (1966)

    CAS  Google Scholar 

  125. R. Maboudian: Surface processes in MEMS technology, Surf. Sci. Rep. 30, 207–270 (1998)

    CAS  Google Scholar 

  126. R. Maboudian, W. R. Ashurst, C. Carraro: Self-assembled monolayers as anti-stiction coatings for MEMS: Characteristics and recent developments, Sensors Actuat. A 82, 219–223 (2000)

    Google Scholar 

  127. R. Maboudian, W. R. Ashurst, C. Carraro: Tribological challenges in micromechanical systems, Tribol. Lett. 12, 95–100 (2002)

    Google Scholar 

  128. K. Komvopoulous: Surface engineering and microtribology for microelectromechanical systems, Wear 200, 305–327 (1996)

    Google Scholar 

  129. A. Noy, D. V. Vezenov, C. M. Lieber: Chemical force microscopy, Annu. Rev. Mater. Sci 27, 381–421 (1997)

    CAS  Google Scholar 

  130. H. Takano, J. R. Kenseth, S.-S. Wong, J. C. O'brien, M. D. Porter: Chemical and biochemical analysis using scanning force microscopy, Chem. Rev. 99, 2845–2890 (1999)

    CAS  Google Scholar 

  131. D. L. Sedin, K. L. Rowlen: Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem. 72, 2183–2189 (2000)

    CAS  Google Scholar 

  132. T. Han, J. M. Williams, T. P. Beebe: Chemical bonds studied with functionalized atomic force microscopy tips, Anal. Chim. Acta 307, 365–376 (1995)

    CAS  Google Scholar 

  133. L. A. Wenzler, G. L. Moyes, L. G. Olson, J. M. Harris, T. P. Beebe: Single-molecule bond rupture force analysis of interactions between AFM tips and substrates modified with organosilanes, Anal. Chem. 69, 2855–2861 (1997)

    CAS  Google Scholar 

  134. L. A. Wenzler, G. L. Moyes, G. N. Raikar, R. L. Hansen, J. M. Harris, T. P. B.. Jr: Measurements of single-molecule bond rupture forces between self-assembled monolayers of organosilanes with the atomic force microscope, Langmuir 13, 3761–3768 (1997)

    CAS  Google Scholar 

  135. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, C. M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)

    CAS  Google Scholar 

  136. A. Noy, C. D. Frisbie, L. F. Rozsnyai, M. S. Wrighton, C. M. Lieber: Chemical force microscopy: Exploiting chemically-modified tips to quantify adhesion, friction and functional group distributions in molecular assemblies, J. Am. Chem. Soc. 117, 7943–7951 (1995)

    CAS  Google Scholar 

  137. D. V. Vezenov, A. Noy, L. F. Rozsnyai, C. M. Lieber: Force titrations, ionization state sensitive imaging of functional group distributions in molecular assemblies, J. Am. Chem. Soc. 119, 2006–2015 (1997)

    Google Scholar 

  138. S. S. Wong, A. T. Woolley, E. Joselevich, C. L. Cheung, C. M. Lieber: Covalently-functionalized single-walled carbon nanotube tips for chemical force microscopy, J. Am. Chem. Soc. 120, 8557–8558 (1998)

    CAS  Google Scholar 

  139. D. V. Vezenov, A. V. Zhuk, G. M. Whitesides, C. M. Likeber: Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers and polar solvents, J. Am. Chem. Soc. 124, 10578–10588 (2002)

    CAS  Google Scholar 

  140. J. E. Houston, H. I. Kim: Adhesion, friction, and mechanical properties of functionalized alkanethiol self-assembled monolayers, Acc. Chem. Res. 35, 547–553 (2002)

    CAS  Google Scholar 

  141. T. Ito, M. Namba, P. Buhlmann, Y. Umezawa: Modification of silicon nitride tips with trichlorosilane self-assembled monolayers (SAMs) for chemical force microscopy, Langmuir 13, 4323–4332 (1997)

    CAS  Google Scholar 

  142. H. I. Kim, M. Graupe, O. Oloba, T. Koini, S. Imaduddin, T. R. Lee, S. S. Perry: Molecularly specific studies of the frictional properties of monolayer films: A systematic comparison of CF3-, (CH3) (32.2) CH-, CH3-terminated films, Langmuir 15, 3179–3185 (1999)

    CAS  Google Scholar 

  143. H. I. Kim, J. E. Houston: Separating mechanical and chemical contributions to molecular-level friction, J. Am. Chem. Soc. 122, 12045–12046 (2000)

    CAS  Google Scholar 

  144. S. Lee, Y. S. Shon, R. Colorado, R. L. Guenard, T. R. Lee, S. S. Perry: The influence of packing densities and surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: A comparison of SAMs derived from normal and spiroalkanedithiols, Langmuir 16, 2220–2224 (2000)

    CAS  Google Scholar 

  145. Y. Leng, S. Jiang: Dynamic simulations of adhesion and friction in chemical force microscopy, J. Am. Chem. Soc. 124, 11764–11770 (2002)

    CAS  Google Scholar 

  146. T. Nakagawa, K. Ogawa, T. Kurumizawa: Discriminating molecular length of chemically adsorbed molecules using an atomic force microscope having a tip covered with sensor molecules (an atomic force microscope having chemical sensing function), Jpn. J. Appl. Phys. 32, 294–296 (1993)

    Google Scholar 

  147. T. Nakagawa, K. Ogawa, T. Kurumizawa: Atomic force microscope for chemical sensing, J. Vacuum Sci. Tech. B 12, 2215–2218 (1994)

    CAS  Google Scholar 

  148. S. K. Sinniah, A. B. Steel, C. J. Miller, J. E. Reutt-Robey: Solvent exclusion and chemical contrast in scanning force microscopy, J. Am. Chem. Soc. 118, 8925–8931 (1996)

    CAS  Google Scholar 

  149. H. Skulason, C. D. Frisbie: Detection of discrete interactiuons upon rupture of Au microcontacts to self-assembled monolayers terminated with -S(CO)CH3 or -SH, J. Am. Chem. Soc. 122, 9750–9760 (2000)

    CAS  Google Scholar 

  150. E. W. V. D. Vegte, G. Hadziioannou: Scanning force microscopy with chemical specificity: An extensive study of chemically specific tip–surface interactions and the chemical imaging of surface functional groups, Langmuir 13, 4357–4368 (1997)

    Google Scholar 

  151. V. Tsukruk, V. N. Bliznyuk: Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces, Langmuir 14, 446–455 (1998)

    CAS  Google Scholar 

  152. E. W. V. D. Vegte, G. Hadziioannou: Acid-base properties and the chemical imaging of surface-bound functional groups with scanning force microscopy, J. Phys. Chem. B 101, 9563–9569 (1997)

    Google Scholar 

  153. J. Zhang, J. Kirkham, C. Robinson, M. L. Wallwork, D. A. Smith, A. Marsh, M. Wong: Determination of the ionization state of 11-thioundecyl-1-phosphonic acid in self-assembled monolayers by chemical force microscopy, Anal. Chem. 72, 1973–1978 (2000)

    CAS  Google Scholar 

  154. B. Xu, X. Xiao, N. J. Tao: Measurements of single-molecule electromechanical properties, J. Am. Chem. Soc. 125, 16164–16165 (2003)

    CAS  Google Scholar 

  155. A. Lio, C. Morant, D. F. Ogletree, M. Salmeron: Atomic force microscopy study of the pressure-dependent structural and frictional properties of n-alkanethiols on gold, J. Phys. Chem. B 101, 4767–4773 (1997)

    CAS  Google Scholar 

  156. S.-S. Wong, H. Takano, M. D. Porter: Mapping orientation differences of terminal functional groups by friction force microscopy, Anal. Chem. 70, 5209–5212 (1998)

    CAS  Google Scholar 

  157. A. Lio, D. H. Charych, M. Salmeron: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkysilanes on mica, J. Phys. Chem. B 101, 3800–3805 (1997)

    CAS  Google Scholar 

  158. X. Xiao, J. Hu, D. H. Charych, M. Salmeron: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy, Langmuir 12, 235–237 (1996)

    CAS  Google Scholar 

  159. G.-Y. Liu, M. Salmeron: Reversible displacement of chemisorbed n-alkane thiol molecules on Au(111) surface: An atomic force microscopy study, Langmuir 10, 367–370 (1994)

    CAS  Google Scholar 

  160. A. B. Tutein, S. J. Stuart, J. A. Harrison: Indentation analysis of linear-chain hydrocarbon monolayers anchored to diamond, J. Phys. Chem. B 103, 11357–11365 (1999)

    CAS  Google Scholar 

  161. R. L. Pizzolatto, Y. J. Yang, L. K. Wolf, M. C. Messmer: Conformational aspects of modal chromatographic surfaces studied by sum-frequency generation, Anal. Chem. Acta 397, 81–92 (1999)

    CAS  Google Scholar 

  162. E. W. V. D. Vegte, A. Subbotin, G. Hadziioannou: Nanotribological properties of unsymmetrical n-dialkyl sulfide monolayers on gold: Effect of chain length on adhesion, friction and imaging, Langmuir 16, 3249–3256 (2000)

    Google Scholar 

  163. Y.-S. Lo, J. Simons, T. P. B. Jr: Temperature dependence of the biotin–avidin bond rupture force studied by atomic force microscopy, J. Phys. Chem. B 106, 9847–9857 (2002)

    CAS  Google Scholar 

  164. Y.-S. Lo, N. D. Huefner, W. S. Chan, F. Stevebs, J. M. Harris, J. T. P. Beebe: Specific interactions between biotin and avidin studies by atomic force microscopy using the Poisson statistical analysis method, Langmuir 15, 1373–1382 (1999)

    CAS  Google Scholar 

  165. J. H. Hoh, J. P. Cleavland, C. B. Prater, J.-P. Revel, P. K. Hansma: Quantitized adhesion detected with the atomic force microscope, J. Am. Chem. Soc. 114, 4917–4918 (1992)

    CAS  Google Scholar 

  166. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, H. E. Gaub: How strong is a covalent bond?, Science 283, 1727–1730 (1999)

    CAS  Google Scholar 

  167. H. Skulason, C. D. Frisbie: Contact mechanics modeling of pull-off measurements: Effect of solvent, probe radius, and chemical binding probability on the detection of single-bond rupture forces by atomic force microscopy, Anal. Chem. 74, 3096–3104 (2002)

    CAS  Google Scholar 

  168. H. Schonherr, V. Chechik, C. J. M. Stirling, G. J. Vancso: Monitoring surface reactions at an AFM tip: An approach to following reaction kinetics in self-assembled monolayers on the nanometer scale, J. Am. Chem. Soc. 122, 3679–3687 (2000)

    Google Scholar 

  169. M. P. L. Werts, E. W. V. D. Vegte, G. Hadziioannou: Surface chemical reactions probed with scanning force microscopy, Langmuir 13, 4939–4942 (1997)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Carpick Prof. , James Batteas Dr. or Maarten Boer Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Carpick, R., Batteas, J., Boer, M. (2007). Scanning Probe Studies of Nanoscale Adhesion Between Solids in the Presence of Liquids and Monolayer Films. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_32

Download citation

Publish with us

Policies and ethics