Skip to main content

Limit Cycles in Planar Systems of Ordinary Differential Equations

  • Living reference work entry
  • First Online:
Handbook of the Mathematics of the Arts and Sciences
  • 197 Accesses

Abstract

The idea of a dynamical system is predicting the future of a given system with respect to some initial conditions. If the dynamical system is formulated as a differential equation, then there is usually a direct relation between the dynamical system and the processes involved. Today, we can easily say that dynamical systems can predict a huge number of phenomena, including chaos. The real question is, therefore, not whether complicated phenomena may occur, but whether restrictions on the possible dynamics exist.

In this chapter, we commence with major theorems that are frequently used for justifying phase space analysis. We continue with simple examples that either possess limit cycles and classes of differential equations that never possess limit cycles. We end up with the ideas behind two major theorems that put bounds for the number of limit cycles from above: Sansone’s (Annali di Matematica Pura ed Applicata, Serie IV 28:153–181, 1949) theorem and Zhang’s (Appl Anal 29:63–76, 1986) theorem. Both theorems apply to systems that have a clear mechanistic interpretation. We outline the major arguments behind the quite precise estimates used in these theorems and describe their differences. Our objective is not to formulate these theorems in their most general form, but we give references to recent extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Álvarez MJ, Gasull A, Prohens R (2010) Topological classification of polynomial complex differential equations with all critical points of centre type. J Differ Equ Appl 16(5–6):411–423

    Article  MathSciNet  Google Scholar 

  • Cherkas LA, Zhilevich LI (1970) Some criteria for the absence of limit cycles and for the existence of a single cycle. Differ Equ 6:891–897

    MATH  Google Scholar 

  • Cioni M, Villari G (2015) An extension of Dragilev’s theorem for the existence of periodic solutions of the Liénard equation. Nonlinear Anal 127:55–70

    Article  MathSciNet  Google Scholar 

  • Conway JB (1973) Functions of one complex variable. Springer, New York/Heidelberg/Berlin

    Book  Google Scholar 

  • Dragilev AV (1952) Periodic solutions of the differential equation of the differential equation of nonlinear oscillations. Acad Nauk SSSR Prikl Mat Meh 16:85–88

    MathSciNet  Google Scholar 

  • Duff GFD (1953) Limit cycles and rotated vector fields. Ann Math 57(1):15–31

    Article  MathSciNet  Google Scholar 

  • Dumortier F, Llibre J, Artés JC (2006) Qualitative theory of planar differential systems. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Garijo A, Gasull A, Jarque Z (2007) Local and global phase portrait of equation \(\dot {z}=f(z)\). Discret Contin Dyn Syst 17(2):309–329

    Article  MathSciNet  Google Scholar 

  • Grimshaw R (1993) Nonlinear ordinary differential equations. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Hadeler KP, Glas D (1983) Quasimonotone systems and convergence to equilibrium in a population generic model. J Math Anal Appl 95:297–303

    Article  MathSciNet  Google Scholar 

  • Hayashi M, Villari G, Zanolin F (2018) On the uniqueness of limit cycle for certain Liénard systems without symmetry. Electron J Qual Theory Differ Equ 55:1–10. http://www.math.u-szeged.hu/ejqtde

    Article  Google Scholar 

  • Hirsch MW, Smale S, Devaney RL (2013) Differential equations, dynamical systems, and an introduction to chaos. Academic, Oxford

    MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ilyashenko Y (1991) Finiteness theorems for limit cycles. Translations of mathematical monographs, vol 94. American Mathematical Society, Providence

    Google Scholar 

  • Ilyashenko Y (2002) Centennial history of Hilbert’s 16th problem. Bull Am Math Soc 39(3):301–354

    Article  MathSciNet  Google Scholar 

  • Jordan DW, Smith P (1990) Nonlinear ordinary differential equations, 2nd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Kamke E (1930) Über die eindeutige Bestimmtheit der Integrale von Differentialgleichungen. Mat Z 1:101–107

    Article  Google Scholar 

  • Kamke E (1932) Zur Theorie der Systeme gewöhnlicher Differentialgleichungen II. Acta Math 58:57–85

    Article  MathSciNet  Google Scholar 

  • Kuang Y, Freedman HI (1988) Uniqueness of limit cycles in Gause-type models of predator-prey systems. Math Biosci 88:67–84

    Article  MathSciNet  Google Scholar 

  • LaSalle JP (1960) Some extensions of Lyapunovs second method. IRE Trans Circuit Theory CT–7:520–527

    Google Scholar 

  • Liénard A (1928) Étude des oscillations entretenues. Revue Gén Électr 23:906–924

    Google Scholar 

  • Lindström T (1993) Qualitative analysis of a predator-prey system with limit cycles. J Math Biol 31:541–561

    Article  MathSciNet  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  • Mallet-Paret J, Sell GR (1996) The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay. J Differ Equ 125:441–489

    Article  Google Scholar 

  • Michel AM, Hou L, Liu D (2015) Stability of dynamical systems, 2nd edn. Birkhäuser, Cham

    Google Scholar 

  • Müller M (1927a) Über das fundamentaltheorem in der theorie der gewöhnlichen differentialgleichungen. Mat Z 26(1):619–645

    Article  Google Scholar 

  • Müller M (1927b) Über die Eindeutigkeit der Integrale eines systems gewöhnlicher Differentialgleihungen und die Konvergenz einer Gattung von Verfahrenzur Approximationdieser Integrale. Sitzungsber Heidelb Akad Wiss Math-Natur Kl 9, 2–38

    Google Scholar 

  • Perko L (1987) On the accumulation of limit cycles. Proc Am Math Soc 99:515–526

    Article  MathSciNet  Google Scholar 

  • Perko LM (1993) Rotated vector fields. J Differ Equ 103:127–145

    Article  MathSciNet  Google Scholar 

  • Perko L (2001) Differential equations and dynamical systems. Springer, New York

    Book  Google Scholar 

  • Saff EB, Snider AD (2003) Fundamentals of complex analysis with applications to engineering and science, 3rd edn. Pearson Education, Upper Saddle River

    MATH  Google Scholar 

  • Sansone G (1949) Sopra l’equazione di A. Liénard delle oscillazioni di rilassimento. Ann Mat Pura Appl Ser IV 28:153–181

    Article  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Smith HL (2011) An introduction to delay differential equations with applications to life sciences. Springer, New York

    Book  Google Scholar 

  • Sverdlove R (1979) Vector fields defined by complex functions. J Differ Equ 34:427–439

    Article  MathSciNet  Google Scholar 

  • Viro O (2008) From the sixteenth Hilbert problem to tropical geometry. Jpn J Math 3:185–214

    Article  MathSciNet  Google Scholar 

  • Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memorie della R. Accademia Nationale dei Lincei 6 2:31–113

    MATH  Google Scholar 

  • Wiggins S (2003) Introduction to applied nonlinear dynamical systems and chaos, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Xiao D-M, Zhang Z-F (2003) On the uniqueness and nonexistence of limit cycles for predator-prey systems. Nonlinearity 16:1185–1201

    Article  MathSciNet  Google Scholar 

  • Ye Y-Q et al (1986) Theory of limit cycles, 2nd edn. American Mathematical Society, Providence

    Google Scholar 

  • Zhang Z-F (1980) Theorem of existence of exact n limit cycles in \(|\dot {x}|\leq n\) for the differential equation \(\ddot {x}+\mu \sin \dot {x}+x=0\). Sci Sin 23(12):1502–1510

    Google Scholar 

  • Zhang Z-F (1986) Proof of the uniqueness theorem of limit cycles of generalized Liénard equations. Appl Anal 29:63–76

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Lindström .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lindström, T. (2020). Limit Cycles in Planar Systems of Ordinary Differential Equations. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70658-0_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70658-0_34-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70658-0

  • Online ISBN: 978-3-319-70658-0

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics