Skip to main content

Recent Advances and Techniques in the Hazardous Gases Detection

  • Reference work entry
  • First Online:
Handbook of Ecomaterials
  • 179 Accesses

Abstract

Increasing number of toxic gases is posing a serious threat to mankind. The sources of these gases could be either natural (volcanic eruptions) or manmade (chemical industries or terrorism by chemical warfare reagents). Transportation of hazardous liquids or vapour liquid could pose a risk for leakage into surroundings and hence an immediate safety program is needed. Usually gas detectors are used which operate by measuring the concentration of gases that are battery operated. The various conventional techniques includes electrochemical sensors (work via electrical signals when a gas is detected), solid state semiconductors (get triggered when gas comes in their contact), Infrared sensors (interact with gas molecules changing the path of light) and catalytic sensors (work via catalytic oxidation more specifically for combustible gases which on oxidation bring about changes in the wiring resistance). Advanced nanotechnology (carbon nanotubes. Graphenes, quantum dots) and the supramolecular polymers has allowed to design much better efficient sensors that can easily sense the gases even when they occur at very low concentration that are more economical too. These sensors could be either wirelesss or could carry an electric current when exposed to some toxic or hazardous gas that has an NFC tag which resonates with the electromagnetic fields sent out by some electronic device if the sensor is distant enough from the source of gas. These sensors can prove a boon to defense services for soldiers which can easily detect chemical weapons. They are also useful to people who work around chemical factories, petroleum refineries and hazardous waste treatment and are prone to gas leakage. Hence the society could be made safer place to live in with the use of these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kulinyi S, Brandszájsz D, Amine H, Ádám M, Fürjes P, Bársony I, Dücso C (2005) Olfactory detection of methane, propane, butane and hexane using conventional transmitter norms. Sens Actuators B 111:286–292

    Article  Google Scholar 

  2. Caucheteur C, Debliquy M, Lahem D, Megret P (2008) Catalytic fiber Bragg grating sensor for hydrogen leak detection in air. IEEE Photon Technol Lett 20:96–98

    Article  Google Scholar 

  3. Tong M, Li J, Huang Y, Dai X (2006) Effect of electric field to catalytic sensor. In: Proceedings of 2006 IEEE international conference on information acquisition, Weihai, China, pp 1005–1009

    Google Scholar 

  4. Somov A, Baranov A, Suchkov A, Karelin A, Mironov S, Karpova E (2015) Improving interoperability of catalytic sensors. Sens Actuators B 221:1156–1161

    Article  Google Scholar 

  5. Brauns E, Morsbach E, Schnurpfeil G, Bäumer M, Lang W (2013) A miniaturized catalytic gas sensor for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sens Actuators B Chem 187:420–425

    Article  Google Scholar 

  6. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) A survey on gas sensing technology. Sensors 12:9635–9665, ISSN 1424-8220

    Article  Google Scholar 

  7. Hubert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors-a review. Sens Actuators B Chem 157:329–352

    Article  Google Scholar 

  8. Karpov EE, Karpov EF, Suchkov A, Mironov S, Calliari L (2013) Energy efficient planar catalytic sensor for methane measurement. Sens Actuators A Phys 194:176–180

    Article  Google Scholar 

  9. Karelin A, Karpov EE, Karpov EF, Mironov S, Napolsky K (2015) Applying catalytic sensor in non-volatile wireless sensors networks. Procedia Eng 120:1019–1023

    Article  Google Scholar 

  10. Antuña-Jiménez D, Blanco-López MC, Miranda-Ordieres AJ, Lobo-Castañón MJ (2015) Artificial enzyme-based catalytic sensor for the electrochemical detection of 5-hydroxyindole-3-acetic acid tumor marker in urine. Sens Actuators B Chem 220:688–694

    Article  Google Scholar 

  11. Brauns E, Morsbach E, Kunz S, Bäumer M, Lang W (2014) A fast and sensitive catalytic gas sensor for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sens Actuators B Chem 193:895–903

    Article  Google Scholar 

  12. Lee E-B, Hwang I-S, Cha J-H, Lee H-J, Ju B-K (2011) Micromachined catalytic combustible hydrogen gas sensors. Sens Actuators B Chem 153:392–397

    Article  Google Scholar 

  13. Lu W, Jing G, Bian X, Yu H, Cui T (2016) Micro catalytic methane sensors based on 3D quartz structures with cone-shaped cavities etched by high-resolution abrasive sand blasting. Sens Actuators A Phys 242:9–17

    Article  Google Scholar 

  14. JoŢca J, Harmel J, Joanny L, Ryzhikov A, Fajerwerg K (2017) Au/MOx (M=Zn, Ti) nanocomposites as highly efficient catalytic filters for chemical gas sensing at room temperature and in humid atmosphere. Sens Actuators B Chem 249:357–363

    Article  Google Scholar 

  15. Lim C-B, Einaga H, Sadaoka Y, Teraoka Y (2011) Preliminary study on catalytic combustion-type sensor for the detection of diesel particulate matter. Sens Actuators B Chem 160:463–470

    Article  Google Scholar 

  16. Wan H, Yin H, Lin L, Zeng X, Mason AJ (2018) Miniaturized planar room temperature ionic liquid electrochemical gas sensors for rapid multiple gas pollutants monitoring. Sens Actuators B Chem 255:638–646

    Article  Google Scholar 

  17. Jacquinot P (1999) Amperometric detection of gaseous ethanol and acetaldehyde at low concentrations on an Au-Nafion electrode. Analyst 124:871

    Article  Google Scholar 

  18. Yi WY, Lo KM, Mak T, Leung KS, Leung Y, Meng MLA (2015) Survey of wireless sensor network based air pollution monitoring systems. Sensors 15:31392–31427

    Article  Google Scholar 

  19. Park SJ, Park CS, Yoon H (2017) Polymers, chemo-electrical gas sensors based on conducting polymer hybrids. 9:155

    Google Scholar 

  20. Katulski RJ, Namiesnik J, Stefanski J, Sadowski J, Wardencki W, Szymanska K (2009) Mobile monitoring system for gaseous air pollution. Metrol Meas Syst XVI(4):667–682

    Google Scholar 

  21. Pandey SK (2007) The relative performance of NDIR-based sensors in the near real-time analysis of CO2 in air. Sensors 7:1683–1696

    Article  Google Scholar 

  22. Corsi C (2012) Infrared: a key technology for security systems. Adv Opt Technol 2012:838752

    Google Scholar 

  23. Kumar RV (2000) Handbook on the physics and chemistry of rare earths, vol 28. Elsevier, pp 131–185, ISSN 0168-1273, ISBN 0444503463

    Google Scholar 

  24. Vincent TA, Gardner JW (2016) A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm level. Sens Actuators B Chem 236:954–964

    Article  Google Scholar 

  25. Dinh T-V, Choi I-Y, Son Y-S, Kim J-C (2016) A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction. Sens Actuators B Chem 231:529–538

    Article  Google Scholar 

  26. Ebermann M, Lehmann S, Neumann N (2017) Tunable filter and detector technology for miniature infrared gas sensors. Olfaction and Electronic Nose 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN):1–3

    Google Scholar 

  27. Simon I, Arndt M (2002) Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sens Actuators A Phys 97–98:104–108

    Article  Google Scholar 

  28. Goto T, Itoh T, Sasaki Y, Shin W (2017) Heat transfer control of micro thermoelectric gas sensor for breath gas monitoring. Sens Actuators B Chem 249:571–580

    Article  Google Scholar 

  29. Simon I, Arndt M (2002) Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sens Actuators A Phys 97:104–108

    Article  Google Scholar 

  30. de Graaf G, Wolffenbuttel G (2012) Surface micromachined thermal conductivity detectors for gas sensing. In: Proceedings of the IEEE international instrumentation and measurement technology conference (I2MTC), Graz, pp 1861–1864

    Google Scholar 

  31. Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10(6):5469–5502

    Article  Google Scholar 

  32. Pike J, Chan S, Zhang F, Wang X, Hanson J (2006) Formation of stable Cu2O from reduction of CuO nanoparticles. J Appl Catal A 303:273

    Article  Google Scholar 

  33. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106

    Article  Google Scholar 

  34. Yamazoe N, Shimanoe K (2002) Theory of power laws for semiconductor gas sensors. Sens Actuators B Chem 128:566–573

    Article  Google Scholar 

  35. Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502–1503

    Article  Google Scholar 

  36. Vincenzi D, Butturi MA, Guidi V, Carotta MC, Martinelli G, Guarnieri V, Brida S, Margesin B, Giacomozzi F, Zen M, Giusti D, Soncini G, Vasiliev AA, Pisliakov AV (2000) Gas-sensing device implemented on a micromachined membrane: a combination of thick-film and very large scale integrated technologies. J Vac Sci Technol B 18:2441–2445

    Article  Google Scholar 

  37. Patel NG, Patel PD, Vaishnav VS (2003) Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens Actuators B Chem 96:180–189

    Article  Google Scholar 

  38. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  Google Scholar 

  39. Endres HE, Göttler W, Hartinger R, Drost S, Hellmich W, Müller G, Braunmühl CB, Krenkow A, Perego C, Sberveglieri G (1996) A thin-film SnO2 sensor system for simultaneous detection of CO and NO2 with neural signal evaluation. Sens Actuators B Chem 36:353–357

    Article  Google Scholar 

  40. Wisitsoraat A, Tuantranont A, Comini E, Sberveglieri G (2007) Gas sensing properties of CNT-SnO2 nanocomposite thin film prepared by E-beam evaporation. In: Proceedings of 2007 IEEE sensors, Atlanta, GA, USA, pp 550–553

    Google Scholar 

  41. Jarmo K, Jani M, Niina H, Teemu K, Géza T, Maria S, Andrey S, Jyri-Pekka M, Heli J, Krisztián K (2011) Gas sensors based on anodic tungsten oxide. Sens Actuators B Chem 153:293–300

    Article  Google Scholar 

  42. Hallil H, Chebila F, Menini P, Pons P, Aubert H (2010) Feasibility of wireless gas detection with an FMCW RADAR interrogation of passive RF gas sensor. In: Proceedings of 2010 IEEE sensors, Kona, HI, USA, pp 759–762

    Google Scholar 

  43. Vaishanv VS, Patel PD, Patel NG (2006) Indium tin oxide thin-film sensor for detection of volatile organic compounds (VOCs). Mater Manuf Proces 21:257–261

    Article  Google Scholar 

  44. Wiegleb G, Heitbaum J (1994) Semiconductor gas sensor for detecting NO and CO traces in ambient air of road traffic. Sens Actuators B Chem 17:93–99

    Article  Google Scholar 

  45. Akiyama M, Tamaki J, Miura N, Yamazoe N (1991) Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2. Chem Lett 20:1611–1614

    Article  Google Scholar 

  46. Tamaki J, Zhang Z, Fujimori K, Akiyama M, Harada T, Miura N, Yamazoe N (1994) Grain-size effects in tungsten oxide-based sensor for nitrogen oxides. J Electrochem Soc 141:2207–2210

    Article  Google Scholar 

  47. Vilaseca M, Coronas J, Cirera A, Cornet A, Morante J, Santamarià J (2003) Use of zeolite films to improve the selectivity of reactive gas sensors. Catal Today 82:179–185

    Article  Google Scholar 

  48. Wongrat E, Chanlek N, Chueaiarrom C, Thupthimchun W, Samransuksamer B, Choopun S (2017) Acetone gas sensors based on ZnO nanostructures decorated with Pt and Nb. Ceram Int 43:S557–S566

    Article  Google Scholar 

  49. Wong KKL, Tang Z, Sin JKO, Chan PCH, Cheung PW, Hiraoka H (1995) Study on selectivity enhancement of tin dioxide gas sensor using non-conducting polymer membrane. In: Proceedings of 1995 Hong Kong electron devices meeting, Hong Kong, China, pp 42–45

    Google Scholar 

  50. Thai TT, Yang L, DeJean GR, Tentzeris MM (2011) Nanotechnology enables wireless gas sensing. IEEE Microw Mag 12:84–95

    Article  Google Scholar 

  51. Deshmukh K, Ahamed MB, Deshmukh RR, Khadheer Pasha SK, Chidambaram K, Sadasivuni KK, Ponnamma D, Al-Maadeed MAA (2015) Polym Plast Technol Eng

    Google Scholar 

  52. Singh V, Joung D, Zhai L, Das S, Khondaker SL, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  53. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  Google Scholar 

  54. Seong JK (2010) The effect on the gas selectivity of CNT-based gas sensors by binder in SWNT/silane sol solutions. IEEE Sens J 10:173–177

    Article  Google Scholar 

  55. Yang L, Rongwei Z, Staiculescu D, Wong CP, Tentzeris MM (2009) A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas Wirel Propag Lett 8:653–656

    Article  Google Scholar 

  56. Keat GO, Kefeng Z, Grimes CA (2002) A wireless, passive carbon nanotube-based gas sensor. IEEE Sens J 2:82–88

    Article  Google Scholar 

  57. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  Google Scholar 

  58. Parlak O, Tiwari A, Turner APF, Tiwari A (2013) pH induced on/off-switchable graphene bioelectronics. Biosens Bioelectron 49:53–62

    Article  Google Scholar 

  59. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Khadheer Pasha SK, AlMaadeed MAA, Chidambaram K (2016) Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res 23:159

    Article  Google Scholar 

  60. Mehdipour A, Rosca I, Sebak A, Trueman CW, Hoa SV (2010) Advanced carbon-fiber composite materials for RFID tag antenna applications. Appl Comput Electromagn Soc J 25:218–229

    Google Scholar 

  61. Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, Bleloch A, Gass M, Novoselov KS, Katsnelson MI, Geim AK (2008) Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett 8:2442

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakhi Thareja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bansal, P., Thareja, R. (2019). Recent Advances and Techniques in the Hazardous Gases Detection. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_152

Download citation

Publish with us

Policies and ethics