Skip to main content

Recent Developments on Metal Oxide - Based Gas Sensors for Environmental Pollution Control

  • Conference paper
  • First Online:
New Technologies, Development and Application IV (NT 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 233))

Abstract

Many toxic gases are released or emitted in the environment and exist in the atmosphere such as hydrocarbons (HCs), nitrogen oxides (NOx), carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), ammonia (NH3), hydrogen sulphide (H2S), and volatile organic compounds (VOCs) even in small concentrations can cause various health problems and poisoning. Therefore, sensitive technological devices are necessary to detect the presence of toxic and dangerous gases in the environment. Nanotechnology-based on metal oxide gas sensors can overcome this problem. Semiconductor metal oxide nanostructures have proven to be highly suitable for applications in sensors due to their high sensitivity, chemical, and thermal stability, and large surface-to-volume ratio. Apart from sensitivity, selectivity, stability, and speed parameters, recovery time, response time and power consumption are also other which determines sensor device. Metal oxide-based gas sensors work based on the change in electrical conductivity due to charge transfer between surface complexes and interacting molecules. This paper will discuss recently developed metal-oxide based sensors for the detection of toxic gases present in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taguchi, N.: Gas Detecting Device. U.S. Patent 3,695,848 A, 3 Oct 1972. https://patents.google.com/patent/US3695848A/en

  2. Wu, J., Feng, S., Wei, X., Shen, J., Lu, W., Shi, H., Tao, K., Lu, S., Sun, T., Yu, L., Du, C., Miao, J., Norford, L.K.: Facile synthesis of 3D Graphene flowers for ultrasensitive and highly reversible gas sensing. Adv. Funct. Mater. 26(41), 7462–7469 (2016). https://doi.org/10.1002/adfm.201603598

    Article  Google Scholar 

  3. United States Environmental Protection Agency: Primary National Ambient Air Quality Standards (NAAQS) for Nitrogen Dioxide, United States Environmental Protection Agency, Washington, DC, USA (2018). https://www.epa.gov/no2-pollution/primary-national-ambient-air-quality-standards-naaqs-nitrogen-dioxide

  4. Huo, F., Zhang, Y., Ning, P., Meng, X., Yin, C.: A novel isophorone-based red-emitting fluorescent probe for selective detection of sulfide anions in water for in vivo imaging. J. Mater. Chem. B 5(15), 2798–2803 (2017). https://doi.org/10.1039/C7TB00299H

    Article  Google Scholar 

  5. Keshtkar, S., Rashidi, A., Kooti, M., Askarieh, M., Pourhashem, S., Ghasemy, E., Izadi, N.: A novel highly sensitive and selective H2S gas sensor at low temperatures based on SnO2 quantum dots-C60 nanohybrid: experimental and theory study. Talanta 188, 531–539 (2018). https://doi.org/10.1016/j.talanta.2018.05.099

    Article  Google Scholar 

  6. Bratovcic, A.: Different applications of nanomaterials and their impact on the environment. SSRG Int. J. Mater. Sci. Eng. 5, 1–7 (2019). https://doi.org/10.14445/23948884/IJMSE-V5I1P101

    Article  Google Scholar 

  7. Du, N., Zhang, H., Chen, B.D., Ma, X.Y., Liu, Z.H., Wu, J.B., Yang, D.R.: Porous indium oxide nanotubes: layer-by-layer assembly on carbon-nanotube templates and application for room-temperature NH3 gas sensors. Adv. Mater. 19(12), 1641–1645 (2007). https://doi.org/10.1002/adma.200602128

    Article  Google Scholar 

  8. Kida, T., Nishiyama, A., Hua, Z., Suematsu, K., Yuasa, M., Shimanoe, K.: WO3 nanolamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30(9), 2571–2579 (2014). https://doi.org/10.1021/la4049105

    Article  Google Scholar 

  9. Hübner, M., Simion, C.E., Haensch, A., Barsan, N., Weimar, U.: CO sensing mechanism with WO3 based gas sensors. Sens. Actuators, B 151(1), 103–106 (2010). https://doi.org/10.1016/j.snb.2010.09.040

    Article  Google Scholar 

  10. Hoa, N.D., Duy, N.V., Hieu, N.V.: Crystalline mesoporous tungsten oxide nano plate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications. Mater. Res. Bull. 48(2), 440–448 (2013). https://doi.org/10.1016/j.materresbull.2012.10.047

    Article  Google Scholar 

  11. Yamazoe, N., Sakai, G., Shimanoe, K.: Oxide semiconductor gas sensors. Catal. Surv. Asia 7(1), 63–75 (2003). https://doi.org/10.1023/A:1023436725457

    Article  Google Scholar 

  12. Hoa, N.D., An, S.Y., Dung, N.Q., Quy, N.V., Kim, D.J.: Synthesis of p–type semiconducting cupric oxide thin films and their application to hydrogen detection. Sens. Actuators, B 146(1), 239–244 (2010). https://doi.org/10.1016/j.snb.2010.02.045

    Article  Google Scholar 

  13. Teoh, L.G., Hung, I.M., Shieh, J., Lai, W.H., Hon, M.H.: High sensitivity semiconductor NO2 gas sensor based on mesoporous WO3 thin film. Electrochem. Solid-State Lett. 6(8), G108–G111 (2003). https://doi.org/10.1149/1.1585252

    Article  Google Scholar 

  14. Tao, W.-H., Tsai, C.-H.: H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining. Sens. Actuators, B 81(2–3), 237–247 (2002). https://doi.org/10.1016/S0925-4005(01)00958-3

    Article  Google Scholar 

  15. Van Tong, P., Hoa, N.D., van Duy, N., van Hieu, N.: Micro wheels composed of self-assembled tungsten oxide nanorods for highly sensitive detection of low level toxic chlorine gas. RSC Adv. 5(32), 25204–25207 (2015). https://doi.org/10.1039/C5RA00916B

    Article  Google Scholar 

  16. Wang, X., Qiu, S., Liu, J., He, C., Lu, G., Liu, W.: Synthesis of mesoporous SnO2 spheres and application in gas sensors. Euro. J. Inorg. Chem. 2014(5), 863–869 (2014). https://doi.org/10.1002/ejic.201301212

    Article  Google Scholar 

  17. Wang, H., Qu, Y., Chen, H., Lin, Z., Dai, K.: Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment. Sens. Actuators, B 201, 153–159 (2014). https://doi.org/10.1016/j.snb.2014.04.049

    Article  Google Scholar 

  18. Bratovcic, A.: Synthesis, characterization, applications, and toxicity of lead oxide nanoparticles. IntechOpen (2020a). https://doi.org/10.5772/intechopen.91362

  19. Bratovcic, A.: Degradation of micro- and nano-plastics by photocatalytic methods. J. Nanosci. Nanotechnol. Appl. 3, 206 (2019b). https://doi.org/10.18875/2577-7920.3.304

  20. Korotcenkov, G.: Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. part 1: 1D and 2D nanostructures. Nanomaterials. 10(7), 1392 (2020). https://doi.org/10.3390/nano10071392

  21. Transparency market research, Metal-Oxide Gas Sensor Market Scope, Size, Share, Trends, Forecast by 2027 (transparencymarketresearch.com). Available 27 Nov 2020

    Google Scholar 

  22. Market research future, Gas Sensors Market Segment, Size, Share, Global Trends, 2025 | MRFR (marketresearchfuture.com). Available 27 Nov 2020

    Google Scholar 

  23. Deng, Y.: Sensing Mechanism and Evaluation Criteria of Semiconducting Metal Oxides Gas Sensors. In: Semiconducting Metal Oxides for Gas Sensing, Springer Nature Singapore Pte Ltd. (2019).https://doi.org/10.1007/978-981-13-5853-1_2

  24. Kanan, S.M., El-Kadri, O.M., Abu-Yousef, I.A., Kanan, M.C.: Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9(10), 8158–8196 (2009). https://doi.org/10.3390/s91008158

    Article  Google Scholar 

  25. Hjiri, M., Bahanan, F., Aida, M.S., El Mir, L., Neri, G.: High performance CO gas sensor based on ZnO nanoparticles. J. Inorga. Organom. Polym. Mater. 30(10), 4063–4071 (2020). https://doi.org/10.1007/s10904-020-01553-2

    Article  Google Scholar 

  26. Wang, S., Jia, F., Wang, X., Hu, L., Sun, Y., Yin, G., Zhou, T., Feng, Z., Kumar, P., Liu, B.: Fabrication of ZnO nanoparticles modified by uniformly dispersed ag nanoparticles: enhancement of gas sensing performance. ACS Omega. 5(10), 5209–5218 (2020). https://doi.org/10.1021/acsomega.9b04243

    Article  Google Scholar 

  27. Jaiswala, J, Singhb, P., Chandra, R.: Low-temperature highly selective and sensitive NO2 gas sensors using CdTe-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. Sens. Actuators, B 327, 128862 (2021). https://doi.org/10.1016/j.snb.2020.128862

  28. Tonezzer, M., Izidoro, S.C., Moraes, J.P.A., Dang, L.T.T.: Improved gas selectivity based on carbon modified SnO2 nanowires. Front. Mater. 6(277), 1–9 (2019). https://doi.org/10.3389/fmats.2019.00277

    Article  Google Scholar 

  29. Pargoletti, E., Hossain, U.H., Di Bernardo, I., Chen, H., Tran-Phu, T., Chiarello, G.L., Lipton-Duffin, J., Pifferi, V., Tricoli, A., Cappelletti, G.: Engineering of SnO2−Graphene oxide nanoheterojunctions for selective room-temperature chemical sensing and optoelectronic devices. ACS Appl. Mater. Interfaces 12(35), 39549–39560 (2020). https://doi.org/10.1021/acsami.0c09178

    Article  Google Scholar 

  30. Onkar, S.G., Raghuwanshi, F.C., Patil, D.R., Krishnakumar, T.: Synthesis, characterization and gas sensing study of SnO2 thick film sensor towards H2S, NH3, LPG and CO2. Mater. Today Proc. 23(2), 190–201 (2020). https://doi.org/10.1016/j.matpr.2020.02.017

    Article  Google Scholar 

  31. Maziarz, W.: TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Appl. Surf. Sci. 480, 361–370 (2019). https://doi.org/10.1016/j.apsusc.2019.02.139

    Article  Google Scholar 

  32. Kolhe, P.S., Mutadak, P., Maiti, N., Sonawan, K.M.: Synthesis of WO3 nanoflakes by hydrothermal route and its gas sensing application. Sens. Actuator A Phys. 304, 111877 (2020). https://doi.org/10.1016/j.sna.2020.111877

    Article  Google Scholar 

  33. Zhao, J., Hu, M., Liang, Y., Li, Q., Zhang, X., Wang, Z.: A room temperature sub-ppm NO2 gas sensor based on WO3 hollow spheres. New J. Chem. 44, 5064–5070 (2020). https://doi.org/10.1039/C9NJ06384F

    Article  Google Scholar 

  34. Shen, Y., Zhang, B., Cao, X., Wei, D., Ma, J., Jia, L., Gao, S., Cui, B., Jin, Y.: Microstructure and enhanced H2S sensing properties of Pt-loaded WO3 thin films. Sens. Actuators, B 193, 273–279 (2014). https://doi.org/10.1016/j.snb.2013.11.106

    Article  Google Scholar 

  35. Gönüllü, Y., Haidry, A.A., Saruhan, B.: Nanotubular Cr-doped TiO2 for use as high-temperature NO2 gas sensor. Sens. Actuators, B. 217, 78–87 (2015). https://doi.org/10.1016/j.snb.2014.11.065

  36. Yamaura, H., Jinkawa, T., Tamaki, J., Moriya, K., Miura, N., Yamazoe, N.: Indium oxide-based gas sensor for selective detection of CO. Sens. Actuators, B 36(1–3), 325–332 (1996). https://doi.org/10.1016/S0925-4005(97)80090-1

    Article  Google Scholar 

  37. Xu, L.H., Wu, T.M.: Synthesis of highly sensitive ammonia gas sensor of polyaniline/graphene nanoribbon/indium oxide composite at room temperature. J. Mater. Sci. Mater. Electron. 31, 7276–7283 (2020). https://doi.org/10.1007/s10854-020-03299-6

  38. Ayesh, A.I., Abu-Hani, A.F.S., Mahmou, S.T., Haik, Y.: Selective H2S sensor based on CuO nanoparticles embedded in organic membranes. Sens. Actuators, B. 231, 593–600 (2016). https://doi.org/10.1016/j.snb.2016.03.078

  39. Zhao, G., Xuan, J., Liu, X., Jia, F., Sun, Y., Sun, M., Yin, G., Liu, B.: Low-cost and high-performance ZnO nanoclusters gas sensor based on new-type FTO electrode for the low-concentration H2S gas detection. Nanomaterials 9(3), 435 (2019). https://doi.org/10.3390/nano9030435

    Article  Google Scholar 

  40. Rodnyi, P.A., Khodyuk, I.V.: Optical and luminescence properties of zinc oxide (review). Opt. Spectrosc. 111, 776–785 (2011). https://doi.org/10.1134/S0030400X11120216

    Article  Google Scholar 

  41. Singh, S.C.: Zinc oxide nanostructures; synthesis characterizations and device applications. J. Nanoengin. Nanomanuf. 3(4), 283–310 (2013). https://doi.org/10.1166/jnan.2013.1147

    Article  Google Scholar 

  42. Meng, F., Hou, N., Ge, S., Sun, B., Jin, Z., Shen, W., Kong, L., Guo, Z., Sun, Y., Wu, H., Wang, C., Li, M.: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs). J Alloy. Compd. 626, 124–130 (2015). https://doi.org/10.1016/j.jallcom.2014.11.175

    Article  Google Scholar 

  43. Runa, A., Zhang, X., Wen, G., Zhang, B., Fu, W., Yang, H.: Actinomorphic flower-like n-ZnO/p-ZnFe2O4 composite and its improved NO2 gas-sensing property. Mater. Lett. 225, 73–76 (2018). https://doi.org/10.1016/j.matlet.2018.04.087

    Article  Google Scholar 

  44. Li, B., Zhou, Q., Peng, S., Liao, Y.: Recent advances of SnO2-based sensors for detecting volatile organic compounds. Front. Chem. 8(321), 1–6 (2020). https://doi.org/10.3389/fchem.2020.00321

    Article  Google Scholar 

  45. Cirera, A., Vila, A., Dieguez, A., Cabot, A., Cornet, A., Morante, J.R.: Microwave processing for the low cost, mass production of undoped and in situ catalytic doped nanosized SnO2 gas sensor powders. Sens. Actuators, B 64(1–3), 65–69 (2000). https://doi.org/10.1016/S0925-4005(99)00485-2

  46. Zhang, Q.Y., Zhou, Q., Lu, Z.R., Wei, Z.J., Xu, L.N., Gui, Y.G.: Recent advances of SnO2-based sensors for detecting fault characteristic gases extracted from power transformer oil. Front. Chem. 6, 364 (2018). https://doi.org/10.3389/fchem.2018.00364

    Article  Google Scholar 

  47. Ma, C.M., Hong, G.B., Lee, S.C.: Facile synthesis of tin dioxide nanoparticles for photocatalytic degradation of congo red dye in aqueous solution. Catalysts 10(7), 792 (2020). https://doi.org/10.3390/catal10070792

    Article  Google Scholar 

  48. Wang, C., Peng, W., Li, Z., Liang, Y., Zhong, S., Zhang, Q.: Synthesis and characterization of nano SnO2 modification on LiNi0.8Mn0.1Ni0.1O2 cathode materials for lithium ion batteries. Front. Energy Res. 7, 125 (2019). https://doi.org/10.3389/fenrg.2019.00125

  49. Mohamedkhair, A.K., Drmosh, Q.A., Yamani, Z.H.: Silver nanoparticle-decorated tin oxide thin films: synthesis, characterization, and hydrogen gas sensing. Front. Mater. 6, 188 (2019). https://doi.org/10.3389/fmats.2019.00188

    Article  Google Scholar 

  50. Shimizu, Y., Matsunaga, N., Hyodo, T., Egashira, M.: Improvement of SO2 sensing properties of WO3 by noble metal loading. Sens. Actuators, B 77(1–2), 35–40 (2001). https://doi.org/10.1016/S0925-4005(01)00669-4

    Article  Google Scholar 

  51. Maekawa, T., Tamaki, J., Miura, N., Yamazoe, N.: Gold-loaded tungsten oxide sensor for detection of ammonia in air. Chem. Lett. 21(4), 639–642 (1992)

    Article  Google Scholar 

  52. Tong, X., Shen, W., Chen, X., Corriou, J.-P.: A fast response and recovery H2S gas sensor based on free-standing TiO2 nanotube array films prepared by one-step anodization method. Ceram. Int. 43(16), 14200–14209 (2017). https://doi.org/10.1016/j.ceramint.2017.07.165

    Article  Google Scholar 

  53. Bratovcic, A. (2020b). A recent developments in photocatalytic water splitting by TiO2 modified photocatalysts. Res. Dev. Material. Sci. 14(1), 1491–1498. RDMS.000827. https://doi.org/10.31031/RDMS.2020.14.000827

  54. Bratovcic, A.: New solar photocatalytic technologies for water purification as support for the implementation of industry 4.0. In: Karabegović, I., Kovačević, A., Banjanović, L., Dašić, P. (eds.) Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing. IGI Global, USA, pp. 385–412 (2020c). https://doi.org/10.4018/978-1-7998-2725-2.ch017

  55. Bratovcic, A., Odobasic, A., Sestan, I.: The level of knowledge on the use of titanium dioxide as a photocatalyst in Bosnia and Herzegovina. Am. J. Eng. Res. 6(2), 51–55 (2017). https://www.ajer.org/papers/v6(02)/I06025155.pdf

  56. Kimura, M., Sakai, R., Sato, S., Fukawa, T., Ikehara, T., Maeda, R., Mihara, T.: Sensing of vaporous organic compounds by TiO2 porous films covered with polythiophene layers. Adv. Funct. Mater. 22(3), 469–476 (2012). https://doi.org/10.1002/adfm.201101953

    Article  Google Scholar 

  57. Wang, Y., Du, G., Liu, H., Liu, D., Qin, S., Wang, N., Hu, C., Tao, X., Jiao, J., Wang, J., Wang, Z.L.: Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications. Adv. Funct. Mater. 18(7), 1131–1137 (2008). https://doi.org/10.1002/adfm.200701120

    Article  Google Scholar 

  58. Nisar, J., Topalian, Z., De Sarkar, A., Österlund, L., Ahuja, R.: TiO2-based gas sensor: a possible application to SO2. ACS Appl. Mater. Interfaces. 5(17), 8516–8522 (2013). https://doi.org/10.1021/am4018835

    Article  Google Scholar 

  59. Haija, M.A., Abu-Hani, A.F.S., Hamdan, N., Stephen, S., Ayesh, A.I.: Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J. Alloy. Compd. 690, 461–468 (2017). https://doi.org/10.1016/j.jallcom.2016.08.174

    Article  Google Scholar 

  60. Rydosz, A.: Theuse of copper oxide thin films in gas-sensing applications. Coatings 8(12), 425 (2018). https://doi.org/10.3390/coatings8120425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amra Bratovcic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bratovcic, A. (2021). Recent Developments on Metal Oxide - Based Gas Sensors for Environmental Pollution Control. In: Karabegović, I. (eds) New Technologies, Development and Application IV. NT 2021. Lecture Notes in Networks and Systems, vol 233. Springer, Cham. https://doi.org/10.1007/978-3-030-75275-0_105

Download citation

Publish with us

Policies and ethics