Skip to main content

Monitoring and Risk Analysis of PAHs in the Environment

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Environmental Materials Management

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a unique class of organic pollutants containing two or more fused aromatic rings, which are toxic and potential carcinogens. They are extensively studied compounds, and their occurrence has been reported from various places over the world which indicates their ubiquitous nature in our environment. Anthropogenic sources of PAHs are more dominant than their natural source which include sources like combustion engines, residential heating, industrial activities, and biomass burning. USEPA has already listed 16 PAHs [naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene] as most priority ones to be analyzed in various environmental matrices. More so, benzo(a)pyrene is termed as index or gold standard of the whole group of PAHs due to its high carcinogenic potency. Once in the atmosphere, depending on their physical and chemical properties, PAHs get distributed between gas, particle, and droplet phase. Aerial movement is one of the major pathways for environmental distribution and transboundary deposition of PAHs. Eventually, PAHs settle down in soils and street dust and enter into aquatic environment. Soil and street dust act as direct sink of atmospheric PAHs near to traffic and other combustion sources. From these environmental compartments, rainwater and storm water easily wash away PAHs to nearby aquatic bodies. Due to hydrophobic nature, PAHs in aquatic environment are preferably partitioned and accumulate into the particulate phase of sediment. PAHs, thus, occur in multicompartmental system of the environment and paved the way for multiple routes of exposure to this class of carcinogen. Therefore, extensive studies have been carried out for PAHs in different environmental matrices over the world, and many places are revealed with very high exposure levels of PAHs.

Environmental PAHs have harmful effects on different types of organisms of the ecosystem. PAHs attract considerable attention among researchers due to continuous rise in death toll of human cancer worldwide. Toxic equivalency factors (TEFs) were often employed to assess carcinogenic potential of individual PAHs. Here, the maximum TEF of one is assigned to BaP, and other individual PAHs are relative to BaP as BaP equivalents (BaPq). To characterize risk of PAHs to surrounding organisms and ecosystems in aquatic environment, ecosystem risk was often employed by researchers by using risk quotient (RQ) of individual PAHs. Risk quotients (RQ) value indicated the levels of risk posed by certain PAHs. Studies are revealed with high exposure risk in different environmental matrices in several places around the world. However, only a few recommendations or guidelines exist worldwide for concentration of PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aceves M, Grimalt JO (1993) Seasonally dependent size distributions of aliphatic and polycyclic aromatic hydrocarbons in urban aerosols from densely populated areas. Environ Sci Technol 27(13):2896–2908

    Article  Google Scholar 

  • Agarwal T (2009) Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J Hazard Mater 171(1–3):894–900

    Article  Google Scholar 

  • Agarwal T, Bucheli TD (2011) Is black carbon a better predictor of polycyclic aromatic hydrocarbon distribution in soils than total organic carbon. Environ Pollut 159(1):64–70

    Article  Google Scholar 

  • Alam MS et al (2013) Using atmospheric measurements of PAH and Quinone compounds at roadside and urban background sites to assess sources and reactivity. Atmos Environ 77:24–35

    Article  Google Scholar 

  • Alberty RA, Reif AK (1988) Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups I benzene series. J Phys Chem Ref Data 17(1):241–253

    Article  Google Scholar 

  • Allen JO et al (1996) Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts. Environ Sci Technol 30(3):1023–1031

    Article  Google Scholar 

  • American Conference of Governmental Industrial Hygienists (1995)

    Google Scholar 

  • Aryal RK et al (2005) Dynamic behaviour of fractional suspended solids and particle bound polycyclic aromatic hydrocarbons in highway runoff. Water Res 39(20):5126–5134

    Article  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1995) Toxicological profile for polycyclic aromatic hydrocarbons. U.S. Department of Health and Human Services, Public Health Service, Atlanta. Available at: http://www.atsdr.cdc.gov/toxprofiles/tp69pdf

    Google Scholar 

  • Auqusto S et al (2012) Assessing human exposure to polycyclic aromatic hydrocarbon (PAHs) in a petrochemical region utilizing data from environmental biomonitors. J Toxic Environ Health A 75(13–15):819–830

    Article  Google Scholar 

  • Ausma S et al (2001) A micrometerological technique to monitor total hydrocarbon emissions from landfarms to the atmosphere. J Environ Qual 30(3):776–785

    Article  Google Scholar 

  • Baek SO et al (1991a) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fates and behaviour. Water Air Soil Pollut 60(3–4):279–300

    Article  Google Scholar 

  • Baek SO et al (1991b) Concentrations of particulate and gaseous polycyclic aromatic hydrocarbons in London air following a reduction in the lead content of petrol in the United Kingdom. Sci Total Environ 11:169–199

    Google Scholar 

  • Balcioglu EB et al (2014) T-PAH contamination in Mediterranean mussels (Mytilus Galloprovincialis, Lamarck, 1819) at various stations of the Turkish straits system. Mar Pollut Bull 88:344–346

    Article  Google Scholar 

  • Barran-Berdon AL et al (2012) Polycyclic aromatic hydrocarbons in soils from a brick manufacturing location in Central Mexico. Rev Int Contaminacion Ambient 28(4):277–288

    Google Scholar 

  • Bartoszek A (2002) Chemical and functional properties of food components, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Baumard P et al (1998) Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment. Estuar Coast Shelf Sci 47(1):77–90

    Article  Google Scholar 

  • Beyer J et al (2010) Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ Toxicol Pharmacol 30(3):224–244

    Article  Google Scholar 

  • Bidleman TF (1988) Atmospheric processes: wet and dry deposition of organic compounds are controlled by their vapour-particle partitioning. Environ Sci Technol 22(4):361–367

    Article  Google Scholar 

  • Birgül A et al (2011) Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmos Res 101(1–2):341–353

    Article  Google Scholar 

  • Bojakowska I, SokoÅ‚owska G (2001) Polycyclic aromatic hydrocarbons (PAHs) in recent lake and river sediments in Poland. In: Weber J, Jamroz E, Drozd J, Karczewska A (eds) Biogeochemical processes and cycling of elements in the environment, 1st edn. Polish Society of Humic Substances (PTSH), Wroclaw, pp 187–188

    Google Scholar 

  • Bosetti C et al (2007) Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol 18(3):431–446

    Article  Google Scholar 

  • Boström CE et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(3):451–488

    Article  Google Scholar 

  • Brun GL et al (2004) Atmospheric deposition of polycyclic aromatic hydrocarbons to Atlantic Canada: geographic and temporal distributions and trends 1980–2001. Environ Sci Technol 38(7):1941–1948

    Article  Google Scholar 

  • Buehler S et al (1998) Atmospheric deposition of toxic substances to the great lakes. IADN, Published by: environment Canada and the United States Environmental Protection Agency, ISBN: 0-662-31219-8, US EPA Report Number: 905-R-01-007, 1998

    Google Scholar 

  • Cachada A et al (2012) Levels, sources and potential human health risks of organic pollutants in urban soils. Sci Total Environ 430:184–192

    Article  Google Scholar 

  • Cao ZG et al (2010) Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology 19(5):827–837

    Article  Google Scholar 

  • Caricchia AM et al (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the City of Naples (Italy). Atmos Environ 33:3731–3738

    Article  Google Scholar 

  • CCME (2008) Carcinogenic and other polycyclic aromatic hydrocarbons (PAHs). Canadian Council of Ministers of the Environment. Scientific Supporting Document ISBN 978-1-896997-79-7

    Google Scholar 

  • Cherng SH (1996) Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene: a structure-activity relationship study. Mutat Res 367(4):177–185

    Article  Google Scholar 

  • Chetwittayachan T et al (2002) A comparison of temporal variation of particle-bound polycyclic aromatic hydrocarbons (pPAHs) concentration in different urban environments: Tokyo, Japan, and Bangkok, Thailand. Atmos Environ 36(12):2027–2037

    Article  Google Scholar 

  • Christensen ER, Arora S (2007) Source apportionment of PAHs in sediments using factor analysis by time records: application to Lake Michigan, USA. Water Res 41(1):168–176

    Article  Google Scholar 

  • Chuang JC et al (1995) Monitoring methods for polycyclic aromatic hydrocarbons and their distribution in house dust and track in soil. Environ Sci Technol 29(2):494–500

    Article  Google Scholar 

  • Clement Associates (1990) Development of relative potency estimates for PAHs and hydrocarbon combustion product fractions compared to benzo[a]pyrene and their use in carcinogenic risk assessments. ICF Clement Associates, Fairfax

    Google Scholar 

  • Commission E (2013) Directive 2013/39/eu of the european parliament and of the council amending directives 2000/60/ec and 2008/105/ec as regards priority substances in the field of water policy, Off. J Eur Union 226:1–17

    Google Scholar 

  • Connel DW et al (1997) Polycyclic aromatic hydrocarbons (PAHs). In: McCombs K, Starkweather AW (eds) Introduction into environmental chemistry. CRC Press LLC, Boca Raton, pp 205–217

    Google Scholar 

  • Cornelissen G et al (2006) Strong sorption of native PAHs to pyrogenic and unburned carbonaceous Geosorbents in sediments. Environ Sci Technol 40(4):1197–1203

    Article  Google Scholar 

  • Corpus of Polish Law (Dziennik Ustaw) (2001)

    Google Scholar 

  • Dai J et al (2008) Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city. China Environ Monit Assess 147(1–3):317–326

    Article  Google Scholar 

  • Delgado-Saborit JM et al (2013) Analysis of atmospheric concentrations of Quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmos Environ 77:974–982

    Article  Google Scholar 

  • Delhomme O et al (2007) Solid-phase extraction and LC with fluorescence detection for analysis of PAHs in rainwater. Chromatographia 65(3–4):163–171

    Article  Google Scholar 

  • Department of Health and Human Services, Public Health Service, National Toxicology Program (2011) Report on carcinogens, 12th ed. Available at: http://ntp.niehs.nih.gov/ntp/roc/twelfth/roc12.pdf

  • Dias JR (1987) Handbook of polycyclic hydrocarbons. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Dickhut RM, Gustafson KE (1995) Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to southern Chesapeake Bay. Mar Pollut Bull 30(6): 385–396

    Article  Google Scholar 

  • Disposition of German Federal Department for worker safety (1989)

    Google Scholar 

  • Disposition of Swedish National Board of Occupational Safety and Health (1994)

    Google Scholar 

  • Dong C et al (2012) Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. Int J Environ Res Public Health 9(6):2175–2188

    Article  Google Scholar 

  • Douglas GS, Uhler AD (1993) Optimizing EPA methods for petroleumcontaminated site assessments. Environmental testing and analysis, May/June, 46–53

    Google Scholar 

  • Durant JL (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res 371:123–157

    Article  Google Scholar 

  • Edwards NT (1983) PAHs in terrestrial environment- a review. J Environ Q 12(4):427–441

    Article  Google Scholar 

  • EPRI (Electric Power Research Institute) (2000) Literature review of background polycyclic aromatic hydrocarbons. Final report

    Google Scholar 

  • Esen F et al (2008) Bulk deposition of polycyclic aromatic hydrocarbons (PAHs) in an industrial site of Turkey. Environ Pollut 152(2):461–467

    Article  Google Scholar 

  • Essumang DK et al (2006) Analysis of polycyclic aromatic hydrocarbons in street soil dust in Kumasi metropolis of Ghana. Environ Monit Assess 121(1–3):401–408

    Article  Google Scholar 

  • European Communities (Drinking Water) Regulations (2007) Handbook on implementation for Water Services Authorities for public water supplies, (S.I. 278 of 2007), section 2, pp 1–12

    Google Scholar 

  • European economic community (1980) Guidelines for drinking water quality, (80/778/EEC)

    Google Scholar 

  • Feng X et al (2009) Large polycyclic aromatic hydrocarbons: synthesis and discotic organization. Pure Appl Chem 81(12):2203–2224

    Article  Google Scholar 

  • Finalyson-Pitts BJ, Pitts JN (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New York

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory experiments and applications. Academic, New York

    Google Scholar 

  • Fisher GF (2001) Source apportionment of polycyclic aromatic hydrocarbon wet and dry deposition at Massachusetts Bay. PhD. Department of Chemistry, University of Massachusetts Lowell

    Google Scholar 

  • Gaga EO (2004) Investigation of polycyclic aromatic hydrocarbon (PAH) Deposition in Ankara. PhD. The Middle East of Technical University

    Google Scholar 

  • Garban B et al (2002) Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites. Atmos Environ 36(34):5395–5403

    Article  Google Scholar 

  • Gaspari L et al (2003) Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as marker of DNA damage and infertility. Mutat Res 535(2):155–160

    Article  Google Scholar 

  • Ghose MK et al (2004) Assessment of the impacts of vehicular emissions on urban air quality and its management in Indian context: the case of Kolkata (Calcutta). Environ Sci Pol 7(4):345–351

    Article  Google Scholar 

  • Gocht T et al (2007) Long-term atmospheric bulk deposition of polycyclic aromatic hydrocarbons (Pahs) in rural areas of southern Germany. Atmos Environ 41(6):1315–1327

    Article  Google Scholar 

  • Golomb D et al (1997) Atmospheric deposition of toxics onto Massachusetts Bay-II. Polycyclic aromatic hydrocarbons. Atmos Environ 31(9):1361–1368

    Article  Google Scholar 

  • Golomb D et al (2001) Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters. Atmos Environ 35:6245–6258

    Article  Google Scholar 

  • Grimmer G (1983) Environmental carcinogens: polycyclic aromatic hydrocarbons: chemistry, occurrence, biochemistry, carcinogenity. CRC Press, Boca Raton

    Google Scholar 

  • Grynkiewicz M et al (2002) Determination of polycyclic aromatic hydrocarbons in bulk precipitation and runoff waters in an urban region (Poland). Atmos Environ 36(2):361–369

    Article  Google Scholar 

  • Gustafson KE, Dickhut RM (1997) Gaseous exchange of polycyclic aromatic hydrocarbons across the air-water interface of southern Chesapeake Bay. Environ Sci Technol 31(6):1623–1629

    Article  Google Scholar 

  • Guzzella L, Depaolis A (1994) Polycyclic aromatic hydrocarbons in sediments of the Adriatic Sea. Mar Pollut Bull 28(3):159–165

    Article  Google Scholar 

  • Harvey GR (1998) In: Neilson AH (ed) The handbook of environmental chemistry. Springer, Berlin

    Google Scholar 

  • Hassanien MA, Abdel-Latif NM (2008) Polycyclic aromatic hydrocarbons in road dust over greater Cairo, Egypt. J Hazard Mater 151(1):247–254

    Article  Google Scholar 

  • Hidlemann LM et al (1991) Chemical composition of emission from urban sources of fine organic aerosol. Environ Sci Technol 25(4):744–759

    Article  Google Scholar 

  • Hofmann EJ et al (1984) Urban runoff as a source of polycyclic aromatic hydrocarbon to coastal waters. Environ Sci Technol 18(8):580–587

    Article  Google Scholar 

  • Holoubek I et al (2000) The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Res 109(2):283–292

    Google Scholar 

  • Howsam M, Jones KC (1998) In: Neilson AH (ed) The handbook of environmental chemistry. Springer, Berlin

    Google Scholar 

  • Hussain K (2014) Atmospheric deposition of polycyclic aromatic hydrocarbon: study from Guwahati, Assam. Ph D. Tezpur University

    Google Scholar 

  • Hussain K, Hoque RR (2015) Seasonal attributes of urban soil PAHs of the Brahmaputra Valley. Chemosphere 119:794–802

    Article  Google Scholar 

  • Hussain K et al (2014) Understanding levels and sources of PAHs in water of Bharalu tributary of the Brahmaputra River. Asian J Water Environ Pollut 11(2):89–98

    Google Scholar 

  • Hussain K et al (2016a) Atmospheric bulk deposition of PAHs over Brahmaputra Valley: characteristics and influence of meteorology. Aerosol Air Qual Res 16:1675–1689

    Article  Google Scholar 

  • Hussain K et al (2016b) Street dust bound PAHs, carbon and heavy metals in Guwahati City – seasonality, toxicity and sources. Sustain Cities Soc 19:17–25

    Article  Google Scholar 

  • Hussain K et al (2016c) Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the river Brahmaputra in Guwahati, India. Ecotoxicol Environ Saf 122:61–67

    Article  Google Scholar 

  • Hussein I et al (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • IARC (1983) Approaches to classifying chemical carcinogens according to mechanism of action. IARC intern. tech.: Rep. No. 83/001

    Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42, IARC monographs on the evaluation of carcinogenic risks to humans, supplement 7. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • IARC (International Agency for Research on Cancer) (1996) Printing processes and printing inks, carbon black and some nitro compounds, in IARC monographs on the evaluation of carcinogenic risks to humans, vol 65, World Health Organization International Agency for Research on Cancer, Lyon

    Google Scholar 

  • IPCS/WHO (International Programme on Chemical Safety/World Health Organization) (1998) Selected non-heterocyclic polycyclic aromatic hydrocarbons. Environmental Health Criteria 202

    Google Scholar 

  • Irene VK et al (2003) Urban environmental quality and human wellbeing- towards a conceptual framework and demarcation of concepts; a literature study. Landsc Urban Plan 65:5–18

    Article  Google Scholar 

  • Jacob J, Seidel A (2002) Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr 778:31–48

    Google Scholar 

  • Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(1):69–90

    Article  Google Scholar 

  • Jiang YF et al (2009) Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of shanghai, China. Chemosphere 75(8):1112–1118

    Article  Google Scholar 

  • Jones KC et al (1989) Organic contamination in welsh soil: polynuclear aromatic hydrocarbons. Environ Sci Technol 23(5):540–550

    Article  Google Scholar 

  • Junge CE (1977) In: Suffet IH (ed) Fate of pollutants in the air and water environments, part 1. Willey, New York

    Google Scholar 

  • Kalf DF et al (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf 36(1):89–97. 1997

    Article  Google Scholar 

  • Kamens RM et al (1989) The behaviour of oxygenated polycyclic aromatic hydrocarbons on atmospheric soot particles. Environ Sci Technol 23(7):801–806

    Article  Google Scholar 

  • Kennaway E (1995) The identification of a carcinogenic compound in coal-tar. Br Med J 2(4942): 749–752

    Article  Google Scholar 

  • Khesina AY (1994) Urban air-pollution by carcinogenic and genotoxicpolyaromatic hydrocarbons in the former USSR. Environ Health Perspect 102:49–53

    Article  Google Scholar 

  • Kislov VV et al (2013) Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. J Phys Chem A 117(23):4794–4816

    Article  Google Scholar 

  • Kjaerheim K (1999) Occupational cancer research in the Nordic countries. Environ Health Perspect 107(2):233–238

    Article  Google Scholar 

  • Kuo CY et al (2013) Comparison of polycyclic aromatic hydrocarbon emissions on gasoline- and diesel-dominated routes. Environ Monit Assess 185:5749–5761

    Article  Google Scholar 

  • Lai IC et al (2011) Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast. J Environ Manag 92(8):2029–2037

    Article  Google Scholar 

  • Lang KF et al (1962) 2-Phenyl-phenanthren und binaphthyl-(2,2′) aus Steinkohlenteer. Chem Ber 95(4):1052–1053. 1962

    Article  Google Scholar 

  • Lang KF et al (1964) Fulminen (1,2-benzo-picen) im Steinkohlenteer. Chem Ber 97(2):494–497

    Article  Google Scholar 

  • Larsen RK III, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37(9):1873–1881

    Article  Google Scholar 

  • Larsen JC, Larsen PB (1998) Chemical carcinogen. In: Hester RE, Harrison RM (eds) Air pollution and health, issues in environmental sciences and technology, 10. The Royal Society of Chemistry, Cambridge, pp 33–56

    Google Scholar 

  • Lee ML et al (1976) Gas chromatography/mass spectrometric and nuclear magnetic resonance spectrometric studies of carcinogenic polynuclear aromatic hydrocarbons in tobacco and marijuana smoke condensates. Anal Chem 48(2):405–416

    Article  Google Scholar 

  • Lee ML, Novotny MV, Bartle KD (1981) Analytical chemistry of polycyclic aromatic hydrocarbons. Academic, New York

    Google Scholar 

  • Leister DL, Baker JE (1994) Atmospheric deposition of organic contaminants to the Chesapeake Bay. Atmos Environ 28(8):1499–1520

    Article  Google Scholar 

  • Leuenberger C et al (1985) Trace organic compounds in rain. 4. Identities, concentrations and scavenging mechanisms for phenols in urban air and rain. Environ Sci Technol 19(11): 1053–1058

    Article  Google Scholar 

  • Lewitas J et al (1997) Air pollution exposure-DNA adduct dosimetry in humans and rodents: evidence for non-linearity at high doses. Mutat Res 378:51–63

    Article  Google Scholar 

  • Liang J et al (2011) Polycyclic aromatic hydrocarbon concentration representing different land use categories in shanghai. Environ Earth Sci 62(1):33–42

    Article  Google Scholar 

  • Ligocki MP et al (1985a) Trace organic compounds in rain. II. Gas scavenging of neutral organic compounds. Atmos Environ 19(10):1609–1617

    Article  Google Scholar 

  • Ligocki MP et al (1985b) Trace organic compounds in rain. III. Particle scavenging of neutral organic compounds. Atmos Environ 19(10):1619–1626

    Article  Google Scholar 

  • Liu S et al (2011) Black carbon in urban and surrounding rural soils of Beijing, China: spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs). Chemosphere 82(2):223–228

    Article  Google Scholar 

  • Liu Z et al (2017) Removal efficiency and risk assessment of polycyclic aromatic hydrocarbons in a typical municipal wastewater treatment facility in Guangzhou, China. Int J Environ Res Public Health 14(8):861

    Article  Google Scholar 

  • Liu F et al (2013) Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) to a coastal site of Hong Kong, South China. Atmos Environ 69:265–272

    Article  Google Scholar 

  • Loganathan P et al (2013) Road-deposited sediment pollutants: a critical review of their characteristics, source apportionment, and management. Crit Rev Environ Sci Technol 43(13): 1315–1348

    Article  Google Scholar 

  • Loghin V, Murtoreanu G. The determination of the urban environment quality in Romania’s capital by satellite image analysis. valahia university, târgovite, romania, vloghin@valahia.ro, Commission WG III/7. Available at: http://www.isprs.org/proceedings/XXXV/congress/comm7/papers/161.pdf. Accessed 26 Sept 2017

  • Lundstedt S (2003) Analysis of PAHs and their transformation products in contaminated soil and remedial processes. PhD. Department of Chemistry, Environmental Chemistry, UmeÃ¥ University

    Google Scholar 

  • Mackay D, Shiu WY, Ma KC (1992) Illustrated handbook of physical–chemical properties and environmental fate of organic chemicals. Lewis Publishers, Boca Raton

    Google Scholar 

  • Mai B et al (2003) Distribution of polycyclic aromatic hydrocarbons in the coastal region of Macao, China: assessment of input sources and transport pathways using compositional analysis. Environ Sci Technol 37(21):4855–4863

    Article  Google Scholar 

  • Maliszewaska-Kordybach B (1999) Sources, concentration, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol J Environ Stud 8(3):131–136

    Google Scholar 

  • Man YB et al (2013) Cancer risk assessment of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. J Hazard Mater 261:770–776

    Article  Google Scholar 

  • Manoli E, Samara C (1999) Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trends Anal Chem 18(6):717–428

    Article  Google Scholar 

  • Manoli E et al (2000) Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of northern Greece. Chemosphere 41(12):1845–1855

    Article  Google Scholar 

  • Manoli E et al (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36:949–961

    Article  Google Scholar 

  • Marsalek J et al (1999) An explanatory study of urban runoff toxicity. Water Sci Technol 39(12): 33–39

    Google Scholar 

  • Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65(3):449–456

    Article  Google Scholar 

  • Masih J et al (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the north central part of India. J Hazard Mater 177:190–198

    Article  Google Scholar 

  • Masih J et al (2012) Seasonal variation and sources of polycyclic aromatic hydrocarbons (Pahs) in indoor and outdoor air in a semi arid tract of northern India. Aerosol Air Qual Res 12:515–525

    Google Scholar 

  • McLachlan MS (1999) Framework for the interpretation of measurements of SoCs in plants. Environ Sci Technol 33(11):1799–1804

    Article  Google Scholar 

  • McVeety BD (1986) Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. PhD. Indiana University

    Google Scholar 

  • Means JC et al (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ Sci Technol 14(12):1524–1528

    Article  Google Scholar 

  • Menzie CA et al (1992) Exposure to carcinogenic PAHs in environment. Environ Sci Technol 26(7):1278–1284

    Article  Google Scholar 

  • Ministry of Housing and Urban-Rural Development (2009) Disposal of sludge from municipal wastewater treatment plant-control standards for agricultural use (cj/t 309–2009). Standards Press of China, Beijing

    Google Scholar 

  • Ministry of Housing Spatial Planning and Environment (1994) Environmental quality objectives in the Netherlands: a review of environmental quality objectives and their policy framework in the Netherlands. Ministry of Housing, Spatial Planning and Environment, Hague

    Google Scholar 

  • Mohanraj R et al (2012) Polycyclic aromatic hydrocarbons bound to PM2.5 in urban coimbatore, India with emphasis on source apportionment. Sci World J. https://doi.org/10.1100/2012/980843

  • Montelay-Massei A et al (2003) Polycyclic aromatic hydrocarbons in bulk deposition at a suburban site: assessment by principal component analysis of the influence of meteorological parameters. Atmos Environ 37(22):3135–3146

    Article  Google Scholar 

  • Montelay-Massei A et al (2007a) Fluxes of polycyclic aromatic hydrocarbons in the seine estuary, France: mass balance and role of atmospheric deposition. Hydrobiologia 588(1):145–157

    Article  Google Scholar 

  • Montelay-Massei A et al (2007b) PAHs in bulk atmospheric deposition of the Seine River basin: source identification and apportionment by ratios, multivariate statistical technique and scanning electron microscopy. Chemosphere 67(2):312–321

    Article  Google Scholar 

  • Morillo E et al (2008) Characteization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut 187(1–4):41–51

    Google Scholar 

  • Murakami M et al (2005) Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust. Chemosphere 61(6):783–791

    Article  Google Scholar 

  • Nikolaou A et al (2009) Determination of PAHs in marine sediments: analytical methods and environmental concerns. Global NEST J 11(4):391–405

    Google Scholar 

  • Nisbet ICT, LaGoy PKI (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16(3):290–300

    Article  Google Scholar 

  • Nollet LML (2007) Handbook of water analysis, 2nd edn. Taylore and Francis, Boca Raton

    Google Scholar 

  • Novotny V, Olem H (1993) Urban and highway diffuse pollution. In: Reinhold VN (ed) Water quality prevention, identification and management of diffuse pollution. Wiley, New York, pp 439–505

    Google Scholar 

  • NRC (National Research Council) (1983) Polycyclic aromatic hydrocarbons: evaluation of sources and effects, committee on pyrene and selected analogues. National Academy Press, Board on Toxicology and Environmental Health Hazard, Commission on Life Sciences, Washington, DC

    Google Scholar 

  • O’Reilly K et al (2010) PAHs review, polycyclic aromatic hydrocarbons in stormwater and urban sediments, Stormwater. Available at: http://www.stormh20.com

  • Okay OS et al (2000) The role of algae (Isochrysis) enrichment on the bioaccumulation of benzo[a]pyrene and its effects on the blue mussel Mytilus Edulis. Environ Pollut 110(1):103–113

    Article  Google Scholar 

  • Ollivon D et al (2002) Atmospheric deposition of PAHs to an urban site, Paris (France). Atmos Environ 36(17):2891–2900

    Article  Google Scholar 

  • O’Neill P (1997) Environmental chemistry, Warsaw-WrocÅ‚aw, PWN, cz. III, ch. 9

    Google Scholar 

  • Pampanin DM, Sydnes MO (2013) In: Kutcherov, Kolesnikov A (eds) Polycyclic aromatic hydrocarbons a constituent of petroleum: presence and influence in the aquatic environment, hydrocarbon, Vladimir. ISBN 978-953-51-0927-3, InTech. https://doi.org/10.5772/48176

  • Pandey PK et al (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India. Environ Monit Assess 59(3):287–319

    Article  Google Scholar 

  • Pankow JF et al (1984) Trace organic compounds in rain. 1. Sampler design and analysis by adsorption/thermal desorption (ATD). Environ Sci Technol 18(5):310–318

    Article  Google Scholar 

  • Pankow JF et al (1993) Effects of relative humidity on gas/particle partitioning of Semivolatile organic compounds to urban particulate matter. Environ Sci Technol 27(10):2220–2226

    Article  Google Scholar 

  • Park SS et al (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924

    Article  Google Scholar 

  • Petry T et al (1994) Uptake of PAH from air, food, and at the workplace-a comparative risk evaluation. Mitteilungen aus dem Gebiete der Lebensmittel-untersunchung un Hygiene 85:100–110

    Google Scholar 

  • Petry T et al (1996) The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32(4):639–648

    Article  Google Scholar 

  • Phillips DH (1996) DNA adducts in human tissues: biomarkers of exposure to carcinogens in tobacco smoke. Environ Health Perspect 104:453–458

    Article  Google Scholar 

  • Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res 443(1–2):139–147

    Article  Google Scholar 

  • Pikes S (1992) Polycyclic aromatic hydrocarbons. In: Sullivan JB, Krieger GR (eds) Hazardous materials toxicology: clinical priciples of environmental medicine. Williams and Wilkins, Baltimore. 1992, pp 1151–1154

    Google Scholar 

  • Polkowska Z et al (2000) Organic pollutants in precipitation: determination of pesticides and polycyclic aromatic hydrocarbons in GdaÅ„sk, Poland. Atmos Environ 34(8):1233–1245

    Article  Google Scholar 

  • Pott F, Heinrich U (1990) Relative significance of different hydrocarbons for the carcinogenic potency of emissions from various incomplete combustion processes. In: Vainio H et al (eds) Complex mixtures and cancer risk. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Ramdahl T, Bjorseth J (1985) Handbook of polycyclic aromatic hydrocarbons, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Reilley KA et al (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25(2):212–219

    Article  Google Scholar 

  • Riccardi C (2013) Identification of hydrocarbon sources in contaminated soils of three industrial areas. Sci Total Environ 450:13–21

    Article  Google Scholar 

  • Riding MJ et al (2013) Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application. J Hazard Mater 261:687–700

    Article  Google Scholar 

  • Rockens E, Dumolin J, Matheeussen C (2000) PM10 dust and chemical characterisation of aerosols in Flanders, Belgium. In: Longhurst JWS, Brebbia CA, Power H (eds) Air pollution VIII. WIT Press, UK, pp 699–707

    Google Scholar 

  • Rogge WF et al (1993) Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27(9):1892–1904

    Article  Google Scholar 

  • Samburova V et al (2017) Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics 5(17):1–16

    Google Scholar 

  • Samimi SV et al (2009) Polycyclic aromatic hydrocarbon contamination levels in collected samples from vicinity of a highway. J Environ Health Sci Eng 6(1):47–52

    Google Scholar 

  • Sánchez NE et al (2013) Quantification of polycyclic aromatic hydrocarbons (Pahs) found in gas and particle phases from pyrolytic processes using gas chromatography–mass spectrometry (GC–MS). Fuel 107:246–253

    Article  Google Scholar 

  • Schlesinger RB (1979) Natural removal mechanisms for chemical pollutants in the environment. Biol Sci 29(2):95–101

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New York

    Google Scholar 

  • Sehmel GA (1973) Particle resuspension from an asphalt road caused by car and truck traffic. Atmos Environ 7(3):291–309

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New York

    Google Scholar 

  • Semple KT et al (2013) Impact of black carbon on the bioaccessibility of organic contaminants in soil. J Hazard Mater 261:808–816

    Article  Google Scholar 

  • Seo JS et al (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAHs-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389

    Article  Google Scholar 

  • Shang D et al (2014) Rapid and sensitive method for the determination of polycyclic aromatic hydrocarbons in soils using pseudo multiple reaction monitoring gas chromatography/tandem mass spectrometry. J Chromatogr A 1334:118–125

    Article  Google Scholar 

  • Sharma VK, Patil RS (1994) Chemical mass-balance model for source apportionment of aerosols in Bombay. Environ Monit Assess 29(1):75–88

    Article  Google Scholar 

  • Shen HZ et al (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424

    Article  Google Scholar 

  • Shuang L et al (2011) Analysis of pollutant exposure of pedestrian in urban street. J Trans Syst Eng Inf Technol 11(4):180–185

    Google Scholar 

  • Singare PU (2015) Studies on polycyclic aromatic hydrocarbons in surface sediments of Mithi River near Mumbai, India: assessment of sources, toxicity risk and biological impact. Mar Pollut Bull 10(1):232–242

    Article  Google Scholar 

  • Skupinska K et al (2004) Polycyclic aromatic hydrocarbons: physicochemical properties, environmental appearance and impact on living organisms. Acta Pol Pharm 61(3):233–240

    Google Scholar 

  • Slooff W, Janus JA, Matthijsen AJCM, Montizaan GK, Ros JPM (eds) (1989) Integrated Criteria Document PAHs. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven. Report No. 758474011, p 199

    Google Scholar 

  • Smith DJT et al (1995) Polynuclear aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan. Environ Technol 16(1):45–53

    Article  Google Scholar 

  • Sofuoglu A et al (2001) Temperature dependence of gas-phase polycyclic aromatic hydrocarbon and organochlorine pesticide concentrations in Chicago air. Atmos Environ 35(36):6503–6510

    Article  Google Scholar 

  • Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195

    Article  Google Scholar 

  • Subramanyam V et al (1994) Gas-to-particle partitioning of polycyclic aromatic hydrocarbons in an urban atmosphere. Atmos Environ 28(19):3083–3091

    Article  Google Scholar 

  • Sweetman AJ et al (2005) The role of soil organic carbon in the global cycling of persistent organic pollutants: interpreting and modelling field data. Chemosphere 60(7):959–972

    Article  Google Scholar 

  • Takada H et al (1990) Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography. Environ Sci Technol 24(8):1179–1186

    Article  Google Scholar 

  • Tao S et al (2003) Fate modeling of Phenanthrene with regional variation in Tianjin, China. Environ Sci Technol 37(11):2453–2459

    Article  Google Scholar 

  • Tehrani GM et al (2012) Distribution of Total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in Musa bay sediments (Northwest of the Persian Gulf). Environ Prot Eng 15:115–128

    Google Scholar 

  • Teixeira EC et al (2013) Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environ Monit Assess 185(11):9587–9602

    Article  Google Scholar 

  • Thibodeaux LJ et al (1991) The effect of moisture on volatile organic chemical gas-to-particle partitioning with atmospheric aerosols – competitive adsorption theory predictions. Atmos Environ 25(8):1649–1656

    Article  Google Scholar 

  • Thornton L et al (2001) Pollutants in urban waste water and sewage sludge. Chapter 3: organic pollutants: sources, pathways, and fate through urban wastewater treatment systems. ICON, London, pp 64–93. Available at: http://europa.eu.int/comm/environment/waste/sludge/sludge_pollutants.htm

    Google Scholar 

  • Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter form road traffic: a review. Sci Total Environ 400(1–3):270–282

    Article  Google Scholar 

  • Thyssen J et al (1981) Inhalation studies with benzo[a]pyrene in Syrian golden hamsters. J Natl Cancer Inst 66(3):575–577

    Google Scholar 

  • Tolosa JM, Bayona J (1996) Albaiges, aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in northwestern Mediterranean sediments: spatial and temporal variability. Fluxes Budg: Environ Sci Technol 30(8):2495–2503

    Google Scholar 

  • Tolosa I et al (2004) Aliphatic and aromatic hydrocarbons in coastal caspian sea sediments. Mar Pollut Bull 48(1–2):44–60

    Article  Google Scholar 

  • Tsai W et al (1991) Dynamic partitioning of Semivolatile organics in gas/particle/rain phases during rain scavenging. Environ Sci Technol 25(12):2012–2023

    Article  Google Scholar 

  • Tudoran MA, Putz MV (2012) Polycyclic aromatic hydrocarbons: from in cerebro to in silico eco-toxicity fate. Chem Bull Politehnica Univ (Timisoara) 57(71):50–53

    Google Scholar 

  • Tuhackova J et al (2001) Hydrocarbon deposition and soil microflora as affected by highway traffic. Environ Pollut 113(3):255–262

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. Office of Research and Development, Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency. Integrated risk information system. Available at: http://www.epa.gov/NCEA/iris/

  • U.S. EPA (Environmental Protection Agency) (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons, environmental criteria and assessment office. Office of Health and Environmental Assessment, Cincinnati

    Google Scholar 

  • UK Department for Environment, Food & Rural Affairs (1999)

    Google Scholar 

  • US Environmental Protection Agency Regional Screening Levels. (Formerly Hhmssl-Human Health Medium-Specific Screening Levels). Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016. Accessed on 20 Mar 2017

  • US EPA (1977) Sampling and analysis procedures for screening of industrial effluents for priority pollutants. U.S. Environmental Protection Agency, Environment Monitoring and Support Laboratory, Cincinnati

    Google Scholar 

  • US EPA (2018) Polycyclic organic matter. US Environmental Protection Agency. Available from: https://www.epa.gov/sites/production/files/2016-09/documents/polycyclic-organic-matter.pdf

  • Vagi MC et al (2005) Toxicity of Organophoshorous pesticides to the marine alga Tetraselmis suecica. Global NEST J 7(2):222–227

    Google Scholar 

  • Valerio F et al (1984) Chemical and photochemical degradation of polycyclic aromatic hydrocarbons in the atmosphere. Sci Total Environ 40(1):169–188

    Article  Google Scholar 

  • Van Jaarsveld JA et al (1997) Modelling transport and deposition of persistent organic pollutants in the European region. Atmos Environ 31(7):1011–1024

    Article  Google Scholar 

  • Van Metre PC et al (2000) Urban sprawl leaves its PAH signature. Environ Sci Technol 34(19): 4064–4070

    Article  Google Scholar 

  • Velasco E et al (2004) Exploratory study of particle-bound polycyclic aromatic hydrocarbons in different environments of Mexico City. Atmos Environ 38(29):4957–4968

    Article  Google Scholar 

  • Veltman K et al (2012) Erratum: including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production. Integr Environ Assess Manag 7(4):678–686

    Article  Google Scholar 

  • Venkataraman C et al (1999) Size distributions of polycyclic aromatic hydrocarbons-gas/particle partitioning to urban aerosols. J Aerosol Sci 30(6):759–770

    Article  Google Scholar 

  • Vogt NB et al (1987) Polycyclic aromatic hydrocarbons in soils and air: statistical analysis and classification by the SIMCA method. Environ Sci Technol 21(1):35–44

    Article  Google Scholar 

  • Wang XL et al (2002) Modeling the fate of benzo[a]pyrene in the wastewater-irrigated areas of Tianjin with a fugacity model. J Environ Qual 31(3):896–903

    Google Scholar 

  • Wang Z et al (2011a) Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill. J Environ Monit 13(11):3004–3017

    Article  Google Scholar 

  • Wang W et al (2011b) Spatial distribution and seasonal variation of atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Beijing-Tianjin region. N China Environ Pollut 159(1): 287–293

    Article  Google Scholar 

  • Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30(9):390–396

    Article  Google Scholar 

  • Wei FS, Chapman RS (2001) The impact of air pollution on respiratory health. Environmental Science Press, Beijing, pp 448–454

    Google Scholar 

  • WHO (1998a) Guidelines for drinking water quality. World Health Organization, Geneva, p 123

    Google Scholar 

  • WHO (1998b) Guidelines for drinking water quality. World Health Organization, Geneva, p 495

    Google Scholar 

  • WHO (2000) Polynuclear aromatic hydrocarbons (PAH). In: Who air quality guidelines for Europe, 2nd edn. World Health Organisation Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (World Health Organization) (2003) Polynuclear aromatic hydrocarbons in drinking-water. Background document for development of who guidelines for drinking-water quality, WHO/SDE/WSH/03.04/59

    Google Scholar 

  • Wilcke W et al (2000) Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian rain Forest. J Plant Nutr Soil Sci 163(1):27–30

    Article  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  Google Scholar 

  • World Health Organization (2002) Health risks of persistent organic pollutants from long-range transboundary air pollution. European Centre for Environment and Health, Bonn, p 200

    Google Scholar 

  • Wu Y et al (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia Sp.: degradation and microbial community analysis. Biodegradation 19:247–257

    Article  Google Scholar 

  • Wu B et al (2011) Risk assessment of polycyclic aromatic hydrocarbons in aquatic ecosystems. Ecotoxicology 20(5):1124–1130

    Article  Google Scholar 

  • Yang HH, Chiang CF (1999) Size distribution and dry deposition of road dust PAHs. Environ Int 25(5):585–597

    Article  Google Scholar 

  • Yang SYN et al (1991) Polycyclic aromatic hydrocarbons in air, soil, and vegetation in the vicinity of an urban roadway. Sci Total Environ 102:229–240

    Article  Google Scholar 

  • Yang ZF et al (2010) Limiting factor analysis and regulation for urban ecosystems-a case study of Ningbo, China. Commun Nonlinear Sci Numer Simul 15(9):2701–2709

    Article  Google Scholar 

  • Zakrzewski SF (1995) Principles of environmental toxicology. PWN, Warsaw

    Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (Pahs) for 2004. Atmos Environ 43(4):812–819

    Article  Google Scholar 

  • Zhang SC et al (2009) Concentration, distribution and source apportionment of atmospheric polycyclic aromatic hydrocarbons in the southeast suburb of Beijing, China. Environ Monit Assess 151(1–4):197–207

    Article  Google Scholar 

  • Zielinska B et al (2004) Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environ Sci Technol 38(9):2557–2567

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karishma Hussain .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hussain, K. et al. (2018). Monitoring and Risk Analysis of PAHs in the Environment. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_29-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_29-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Monitoring and Risk Analysis of PAHs in the Environment
    Published:
    21 February 2018

    DOI: https://doi.org/10.1007/978-3-319-58538-3_29-2

  2. Original

    Monitoring and Risk Analysis of PAHs in the Environment
    Published:
    04 January 2018

    DOI: https://doi.org/10.1007/978-3-319-58538-3_29-1