Skip to main content

Gravitational Interactions and Habitability

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Habitable planet properties can be significantly influenced by gravitational interactions with the host star(s), companion planets, and natural satellites. Gravitational perturbations from neighboring planets can modify a planet’s orbital and rotational properties, which are primary drivers of climate and habitability. Planets on tight orbits can experience a tidal deformation due to a large gravitational gradient across their diameters, which cause orbits to shrink and circularize, rotational frequencies to evolve toward the orbital frequency, obliquities to decay to 0 or π, and internal friction that heats the interior. Large natural satellites can overwhelm the rotational perturbations of stars and planets, but they are unstable for habitable planets orbiting stars less than half as massive as our Sun. These gravitational interactions can produce arbitrarily complex evolutionary trajectories, but theoretical models can be applied to almost any system to provide a reasonable representation of a habitable planet’s orbital and rotational history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe Y (1993) Physical state of the very early Earth. Lithos 30(3–4):223–235

    Article  ADS  Google Scholar 

  • Agol E, Jansen T, Lacy B, Robinson TD, Meadows V (2015) The center of light: spectroastrometric detection of exomoons. ApJ 812:5

    Article  ADS  Google Scholar 

  • Ahlers JP (2016) Gravity-darkened seasons: insolation around rapid rotators. ApJ 832:93

    Article  ADS  Google Scholar 

  • Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440

    Article  ADS  Google Scholar 

  • Armstrong JC, Barnes R, Domagal-Goldman S et al (2014) Effects of extreme obliquity variations on the habitability of exoplanets. Astrobiology 14:277–291

    Article  ADS  Google Scholar 

  • Barnes R (2017) Tidal locking of habitable exoplanets. Celest Mech Dyn Astron 129:509–536

    Article  ADS  MathSciNet  Google Scholar 

  • Barnes JW, O’Brien DP (2002) Stability of satellites around close-in extrasolar giant planets. ApJ 575:1087–1093

    Article  ADS  Google Scholar 

  • Barnes R, Greenberg R (2006) Behavior of apsidal orientations in planetary systems. ApJ 652: L53–L56

    Article  ADS  Google Scholar 

  • Barnes R, Heller R (2013) Habitable planets around white and brown dwarfs: the perils of a cooling primary. Astrobiology 13:279–291

    Article  ADS  Google Scholar 

  • Barnes R, Jackson B, Raymond SN, West AA, Greenberg R (2009) The HD 40307 planetary system: super-earths or mini-Neptunes? ApJ 695:1006–1011

    Article  ADS  Google Scholar 

  • Barnes R, Greenberg R, Quinn TR, McArthur BE, Benedict GF (2011) Origin and dynamics of the mutually inclined orbits of υ Andromedae c and d. ApJ 726:71

    Article  ADS  Google Scholar 

  • Barnes R, Mullins K, Goldblatt C et al (2013) Tidal Venuses: triggering a climate catastrophe via tidal heating. Astrobiology 13:225–250

    Article  ADS  Google Scholar 

  • Barnes R, Deitrick R, Greenberg R, Quinn TR, Raymond SN (2015) Long-lived chaotic orbital evolution of exoplanets in mean motion resonances with mutual inclinations. ApJ 801:101

    Article  ADS  Google Scholar 

  • Berger A, Loutre MF, Tricot C (1993) Insolation and earth’s orbital periods. J Geophys Res Atmos 98(D6):10341–10362. https://doi.org/10.1029/93JD00222

    Article  ADS  Google Scholar 

  • Bolmont E, Raymond SN, Leconte J, Hersant F, Correia ACM (2015) Mercury-T: a new code to study tidally evolving multi-planet systems. Applications to Kepler-62. A&A 583:A116

    Article  ADS  Google Scholar 

  • Borucki WJ, Koch DG, Batalha N et al (2012) Kepler-22b: a 2.4 Earth-radius planet in the habitable zone of a sun-like star. ApJ 745:120

    Google Scholar 

  • Brasser R, Ida S, Kokubo E (2014) A dynamical study on the habitability of terrestrial exoplanets – II the super-Earth HD 40307 g. MNRAS 440:3685–3700

    Article  ADS  Google Scholar 

  • Butler RP, Wright JT, Marcy GW et al (2006) Catalog of nearby exoplanets. Astrophys J 646: 505–522

    Article  ADS  Google Scholar 

  • Běhounková M, Tobie G, Choblet G, Čadek O (2011) Tidally induced thermal runaways on extrasolar earths: impact on habitability. ApJ 728:89

    Article  ADS  Google Scholar 

  • Chambers JE (2001) Making more terrestrial planets. Icarus 152:205–224

    Article  ADS  Google Scholar 

  • Colombo G (1966) Cassini’s second and third laws. AJ 71:891

    Article  ADS  Google Scholar 

  • Counselman CC III (1973) Outcomes of tidal evolution. ApJ 180:307–316

    Article  ADS  Google Scholar 

  • Darwin GH (1880) On the secular changes in the elements of the orbit of a satellite revolving about a tidally distorted planet. R Soc Lond Philos Trans Ser I 171:713–891

    Article  ADS  Google Scholar 

  • Deitrick R, Barnes R, Quinn TR et al (2018) Exo-Milankovitch cycles. I. orbits and rotation states. AJ 155:60

    Article  ADS  Google Scholar 

  • Dickey JO, Bender PL, Faller JE et al (1994) Lunar laser ranging: a continuing legacy of the apollo program. Science 265:482–490

    Article  ADS  Google Scholar 

  • Dole SH (1964) Habitable planets for man. Rand corporation. New York

    Google Scholar 

  • Domingos RC, Winter OC, Yokoyama T (2006) Stable satellites around extrasolar giant planets. MNRAS 373:1227–1234

    Article  ADS  Google Scholar 

  • Driscoll PE, Barnes R (2015) Tidal heating of earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions. Astrobiology 15:739–760

    Article  ADS  Google Scholar 

  • Efroimsky M, Makarov VV (2013) Tidal friction and tidal lagging. applicability limitations of a popular formula for the tidal torque. ApJ 764:26

    Article  ADS  Google Scholar 

  • Ferraz-Mello S (2013) Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach. Celest Mech Dyn Astron 116:109–140

    Article  ADS  MathSciNet  Google Scholar 

  • Ferraz-Mello S, Rodríguez A, Hussmann H (2008) Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest Mech Dyn Astron 101:171–201

    Article  ADS  MathSciNet  Google Scholar 

  • Gold T, Soter S (1969) Atmospheric tides and the resonant rotation of Venus. Icarus 11:356–366

    Article  ADS  Google Scholar 

  • Greenberg R (1973) The inclination-type resonance of Mimas and Tethys. MNRAS 165:305

    Article  ADS  Google Scholar 

  • Greenberg R (2009) Frequency dependence of tidal q. Astrophys J 698:L42–L45

    Article  ADS  Google Scholar 

  • Hamilton DP, Ward WR (2004) Tilting Saturn. II. Numerical model. AJ 128:2510–2517

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194(4270):1121–1132. http://science.sciencemag.org/content/194/4270/1121

    Article  ADS  Google Scholar 

  • Heller R, Leconte J, Barnes R (2011) Tidal obliquity evolution of potentially habitable planets. Astro Astrophys 528:A27+

    Article  ADS  Google Scholar 

  • Heller R, Hippke M, Jackson B (2016) Modeling the orbital sampling effect of extrasolar moons. ApJ 820:88

    Article  ADS  Google Scholar 

  • Henning WG, Hurford T (2014) Tidal heating in multilayered terrestrial exoplanets. ApJ 789:30

    Article  ADS  Google Scholar 

  • Henning WG, O’Connell RJ, Sasselov DD (2009) Tidally heated terrestrial exoplanets: viscoelastic response models. Astrophys J 707:1000–1015

    Article  ADS  Google Scholar 

  • Jackson B, Greenberg R, Barnes R (2008a) Tidal evolution of close-in extrasolar planets. Astrophys J 678:1396–1406

    Article  ADS  Google Scholar 

  • Jackson B, Greenberg R, Barnes R (2008b) Tidal heating of extrasolar planets. Astrophys J 681:1631–1638

    Article  ADS  Google Scholar 

  • Joshi MM, Haberle RM, Reynolds RT (1997) Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129:450–465

    Article  ADS  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128

    Article  ADS  Google Scholar 

  • Kinoshita H (1977) Theory of the rotation of the rigid Earth. Celest Mech 15:277–326

    Article  ADS  Google Scholar 

  • Kipping DM, Schmitt AR, Huang X et al (2015) The hunt for exomoons with Kepler (HEK): V. A survey of 41 planetary candidates for exomoons. ApJ 813:14

    Article  ADS  Google Scholar 

  • Kopparapu RK, Ramirez R, Kasting JF et al (2013) Habitable zones around main-sequence stars: new estimates. ApJ 765:131

    Article  ADS  Google Scholar 

  • Laskar J, Joutel F, Boudin F (1993a) Orbital, precessional, and insolation quantities for the Earth from -20 MYR to +10 MYR. A&A 270:522–533

    ADS  Google Scholar 

  • Laskar J, Joutel F, Robutel P (1993b) Stabilization of the earth’s obliquity by the moon. Nature 361:615–617

    Article  ADS  Google Scholar 

  • Leconte J, Chabrier G, Baraffe I, Levrard B (2010) Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity. Astron Astrophys 516:A64+

    Article  ADS  Google Scholar 

  • Leconte J, Wu H, Menou K, Murray N (2015) Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347:632–635

    Article  ADS  Google Scholar 

  • Lee MH, Peale SJ (2002) Dynamics and origin of the 2:1 orbital resonances of the GJ 876 planets. ApJ 567:596–609

    Article  ADS  Google Scholar 

  • Lin DNC, Ida S (1997) On the origin of massive eccentric planets. ApJ 477:781–791

    Article  ADS  Google Scholar 

  • Lissauer JJ, Barnes JW, Chambers JE (2012) Obliquity variations of a moonless Earth. Icarus 217:77–87

    Article  ADS  Google Scholar 

  • MacDonald GJF (1964) Tidal friction. Rev Geophys Space Phys 2:467–541

    Article  ADS  Google Scholar 

  • Mardling RA, Lin DNC (2002) Calculating the tidal, spin, and dynamical evolution of extrasolar planetary systems. Astrophys J 573:829–844

    Article  ADS  Google Scholar 

  • Meadows VS, Arney GN, Schwieterman EW et al (2018) The habitability of Proxima Centauri b: II: environmental states and observational discriminants. Astrobiology 18:133–189

    Article  ADS  Google Scholar 

  • Mignard F (1979) The evolution of the lunar orbit revisited. I. Moon Planets 20:301–315

    Article  ADS  Google Scholar 

  • Miguel Y, Brunini A (2010) Planet formation: statistics of spin rates and obliquities of extrasolar planets. MNRAS 406:1935–1943

    ADS  Google Scholar 

  • Misra A, Meadows V, Claire M, Crisp D (2014) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14:67–86

    Article  ADS  Google Scholar 

  • Moore WB (2003) Tidal heating and convection in Io. J Geophys Res (Planets) 108:5096

    Article  ADS  Google Scholar 

  • Peale SJ, Cassen P, Reynolds RT (1979) Melting of Io by tidal dissipation. Science 203:892–894

    Article  ADS  Google Scholar 

  • Pierrehumbert RT (2011) A palette of climates for Gliese 581g. ApJ 726:L8

    Article  ADS  Google Scholar 

  • Rasio FA, Ford EB (1996) Dynamical instabilities and the formation of extrasolar planetary systems. Science 274:954–956

    Article  ADS  Google Scholar 

  • Rose BEJ, Cronin TW, Bitz CM (2017) Ice caps and ice belts: the effects of obliquity on ice-albedo feedback. ApJ 846:28

    Article  ADS  Google Scholar 

  • Sasaki T, Barnes JW (2014) Longevity of moons around habitable planets. Int J Astrobiol 13: 324–336

    Article  Google Scholar 

  • Sasaki T, Barnes JW, O’Brien DP (2012) Outcomes and duration of tidal evolution in a star-planet-moon system. ApJ 754:51

    Article  ADS  Google Scholar 

  • Spiegel DS, Raymond SN, Dressing CD, Scharf CA, Mitchell JL (2010) Generalized Milankovitch cycles and long-term climatic habitability. ApJ 721:1308–1318

    Article  ADS  Google Scholar 

  • Takeda G, Rasio FA (2005) High orbital eccentricities of extrasolar planets induced by the Kozai mechanism. ApJ 627:1001–1010

    Article  ADS  Google Scholar 

  • Touma J, Wisdom J (1994) Evolution of the Earth-Moon system. AJ 108:1943–1961

    Article  ADS  Google Scholar 

  • Veeder GJ, Matson DL, Johnson TV, Blaney DL, Goguen JD (1994) Io’s heat flow from infrared radiometry: 1983–1993. J Geophys Res 99:17095–17162

    Article  ADS  Google Scholar 

  • Weidenschilling SJ, Marzari F (1996) Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 384:619–621

    Article  ADS  Google Scholar 

  • Williams DM, Kasting JF (1997) Habitable planets with high obliquities. Icarus 129:254–267

    Article  ADS  Google Scholar 

  • Williams DM, Pollard D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int Jf Astrobiol 1:61–69

    Google Scholar 

  • Williams JG, Sinclair WS, Yoder CF (1978) Tidal acceleration of the moon. Geophys Res Lett 5:943–946

    Article  ADS  Google Scholar 

  • Yang J, Cowan NB, Abbot DS (2013) Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. ApJ 771:L45

    Article  ADS  Google Scholar 

  • Zahnle KJ, Lupu R, Dobrovolskis A, Sleep NH (2015) The tethered moon. Earth Planet Sci Lett 427 pp 74–82

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory K. Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barnes, R.K., Deitrick, R. (2018). Gravitational Interactions and Habitability. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_90

Download citation

Publish with us

Policies and ethics