Skip to main content

Star-Planet Interactions in the Radio Domain: Prospect for Their Detection

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

All possible types of interaction of a magnetized plasma flow with an obstacle (magnetized or not) are considered, and those susceptible to produce a radio signature are identified. The role of the sub-Alfvénic or super-Alfvénic character of the flow is discussed. Known examples in the solar system are given, as well as extrapolations to star-planet plasma interactions. The dissipated power and the fraction that goes into radio waves are evaluated in the frame of the radio-magnetic scaling law, the theoretical bases and validity of which are discussed in the light of recent works. Then it is shown how radio signatures can be interpreted, in the frame of the cyclotron-maser theory (developed for explaining the generation of solar system planetary auroral and satellite-induced radio emissions), for deducing many physical parameters of the system studied, including the planetary or stellar magnetic field. Prospects for the detection of such radio signatures with new generation low-frequency radiotelescopes are then outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bagenal F (2001) Planetary magnetospheres. In: Murdin P (ed) Encyclopedia of astronomy and astrophysics. IOP Publishing, Bristol. article 2329

    Google Scholar 

  • Bigg EK (1964) Influence of the satellite Io on Jupiter’s decametric emission. Nature 203:1008–1010

    Article  ADS  Google Scholar 

  • Budding E, Slee OB, Jones K (1998) Further discussion of binary star radio survey data. PASA 15:183–188

    Article  ADS  Google Scholar 

  • Chané E, Saur J, Neubauer FM et al (2012) Observational evidence of Alfvén wings at the Earth. J Geophys Res 117:A09217

    Article  Google Scholar 

  • Chané E, Raeder J, Saur J et al (2015) Simulations of the Earth’s magnetosphere embedded in sub-Alfvénic solar wind on 24 and 25 May 2002. J Geophys Res 120:8517–8528

    Article  Google Scholar 

  • Cuntz M, Saar SH, Muzeliak ZE (2000) On stellar activity enhancement due to interactions with extrasolar giant planets. Astrophys J 533:L151–L154

    Article  ADS  Google Scholar 

  • Donati JF, Howarth ID, Bouret JC (2006) Discovery of a strong magnetic field on the O star HD 191612: new clues to the future of θ1 Orionis C*. MNRAS Lett 365(1):L6–L10

    Article  ADS  Google Scholar 

  • Drell SD, Foley HM, Ruderman MA (1965) Drag and propulsion of large satellites in the ionosphere: an Alfvén propulsion engine in space. J Geophys Res 70(13):3131–3145

    Article  ADS  MathSciNet  Google Scholar 

  • Encrenaz T, Bibring JP, Blanc M et al (2004) The solar system, 3rd edn. A&A Library, Springer, Berlin. http://www.springer.com/in/book/9783540002413

    Book  Google Scholar 

  • Fares R, Donati JF, Moutou C et al (2012) Magnetic field, differential rotation and activity of the hot-jupiter-hosting star HD 179949. MNRAS 423:1006–1017

    Article  ADS  Google Scholar 

  • Grieβmeier JM, Stadelmann A, Penz T et al (2004) The effect of tidal locking on the magnetospheric and atmospheric evolution of “hot jupiters”. Astron Astrophys 425:753–762

    Article  ADS  Google Scholar 

  • Grieβmeier JM, Motschmann U, Mann G, Rucker HO (2005) The influence of stellar wind conditions on the detectability of planetary radio emissions. Astron Astrophys 437:717–726

    Article  ADS  Google Scholar 

  • Hallinan G, Littlefair SP, Cotter G et al (2015) Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence. Nature 523(7562):568–571

    Article  ADS  Google Scholar 

  • Hess SLG, Zarka P (2011) Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets. Astron Astrophys 531:A29

    Article  ADS  Google Scholar 

  • Hess S, Cecconi B, Zarka P (2008) Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys Res Lett 35:L13107

    Article  ADS  Google Scholar 

  • Ip WH, Kopp A, Hu JH (2004) On the star–magnetosphere interaction of close-in exoplanets. Astrophys J 602:L53–L56

    Article  ADS  Google Scholar 

  • Jardine M, Cameron AC (2008) Radio emission from exoplanets: the role of the stellar coronal density and magnetic field strength. Astron Astrophys 490:843–851

    Article  ADS  Google Scholar 

  • Kivelson MG, Bagenal F, Kurth WS et al (2004) Magnetospheric interactions with satellites. In: Bagenal F, McKinnon W, Dowling T (eds) Jupiter: the planet, satellites, and magnetosphere. Cambridge University Press, Cambridge, pp 513–536

    Google Scholar 

  • Lepping RP (1986) Magnetic configuration of planetary obstacles. In: Comparative study of magnetospheric systems. Cepadues/CNES ed, Toulouse, pp 45–75

    Google Scholar 

  • Louis CK, Lamy L, Zarka P, Cecconi B, Hess SLG (2017) Detection of Jupiter decametric emissions controlled by Europa and Ganymede with Voyager/PRA and Cassini/RPWS. J Geophys Res (in press)

    Google Scholar 

  • Morosan DE, Gallagher PT, Zucca P et al (2016) LOFAR tied-array imaging and spectroscopy of solar S bursts. Astron Astrophys 580:A65

    Article  Google Scholar 

  • Mottez F, Heyvaerts J (2011) Magnetic coupling of planets and small bodies with a pulsar wind. Astron Astrophys 532:A21

    Article  ADS  Google Scholar 

  • Mottez F, Zarka P (2014) Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts. Astron Astrophys 569:A86

    Article  ADS  Google Scholar 

  • Neubauer FM (1980) Nonlinear standing Alfvén wave current system at Io: theory. J Geophys Res 85(A3):1171–1178

    Article  ADS  Google Scholar 

  • Nichols JD (2011) Magnetosphere–ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: implications for detectability of auroral radio emissions. MNRAS 414:2125–2138

    Article  ADS  Google Scholar 

  • Nichols JD, Milan SE (2016) Stellar wind–magnetosphere interaction at exoplanets: computations of auroral radio powers. MNRAS 461:2353–2366

    Article  ADS  Google Scholar 

  • Preusse S, Kopp A, Büchner J, Motschmann U (2006) A magnetic communication scenario for hot jupiters. Astron Astrophys 460:317–322

    Article  ADS  Google Scholar 

  • Reiners A, Christensen UR (2010) A magnetic field evolution scenario for brown dwarfs and giant planets. Astron Astrophys 522:A13

    Article  ADS  Google Scholar 

  • Richards MT, Waltman EB, Ghigo FD, Richards DSP (2003) Statistical analysis of 5 year continuous radio flare data from β Persei, V711 Tauri, δ Librae, and Ux Arietis. Astrophys J Suppl Ser 147:337–361

    Article  ADS  Google Scholar 

  • Sanchez-Lavega A (2004) The magnetic field in giant extrasolar planets. Astrophys J 609:L87–L90

    Article  ADS  Google Scholar 

  • Saur J, Grambusch T, Duling S, Neubauer FM, Simon S (2013) Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astron Astrophys 552:A119

    Article  ADS  Google Scholar 

  • Shkolnik E, Walker GAH, Bohlender DA (2003) Evidence for planet-induced chromospheric activity on HD 179949. Astrophys J 597:1092–1096

    Article  ADS  Google Scholar 

  • Shkolnik E, Walker GAH, Bohlender DA (2004) Erratum: evidence for planet-induced chromospheric activity on HD 179949. Astrophys J 609:1197

    Article  ADS  Google Scholar 

  • Strugarek A, Brun AS, Matt SP, Reville V (2014) On the diversity of magnetic interactions in close-in star-planet systems. Astrophys J 795(1):86

    Article  ADS  Google Scholar 

  • Strugarek A, Brun AS, Matt SP, Reville V (2015) Magnetic games between a planet and its host star: the key role of topology. Astrophys J 815(2):111

    Article  ADS  Google Scholar 

  • Varela J, Reville V, Brun AS, Pantellini F, Zarka P (2016) Radio emission in Mercury magnetosphere. Astron Astrophys 595:A69

    Article  ADS  Google Scholar 

  • Willes AJ, Wu K (2004) Electron-cyclotron maser emission from white dwarf pairs and white dwarf planetary systems. MNRAS 348:285–296

    Article  ADS  Google Scholar 

  • Willes AJ, Wu K (2005) Radio emissions from terrestrial planets around white dwarfs. Astron Astrophys 432:1091–1100

    Article  ADS  Google Scholar 

  • Wu CS, Lee LC (1979) A theory of the terrestrial kilometric radiation. Astrophys J 230:621–626

    Article  ADS  Google Scholar 

  • Zarka P (1998) Auroral radio emissions at the outer planets: observations and theories. J Geophys Res 103:20159–20194

    Article  ADS  Google Scholar 

  • Zarka P (2006) Hot jupiters and magnetized stars: giant analogs of the satellite-jupiter system? In: Rucker HO, Kurth WS, Mann G (eds) Planetary radio emissions VI. Austrian Academy of Science Press, Vienna, pp 543–569

    Google Scholar 

  • Zarka P (2007) Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet Space Sci 55:598–617

    Article  ADS  Google Scholar 

  • Zarka P (2010) Radioastronomy and the study of exoplanets. In: Coudé du Foresto V, Gelino DM, Ribas I (eds) Pathways towards habitable planets, ASP conference series, vol 430. Astronomical Society of the Pacific, San Francisco, pp 175–180

    Google Scholar 

  • Zarka P, Treumann RA, Ryabov BP, Ryabov VB (2001) Magnetically-driven planetary radio emissions and applications to extrasolar planets. Astrophys Space Sci 277:293–300

    Article  ADS  Google Scholar 

  • Zarka P, Lazio TJW, Hallinan G (2015) Magnetospheric radio emissions from exoplanets with the SKA. In: Advancing astrophysics with the square kilometre array, Giardini Naxos. SKA Organisation (Dolman Scott Ltd), Jodrell Bank Observatory, Macclesfield

    Google Scholar 

  • Zarka P, Marques M, Louis C et al (2017) Radio emission from the Ganymede-Jupiter interaction and consequence for radio emission from exoplanets. Submitted

    Google Scholar 

Download references

Acknowledgments

PZ acknowledges funding from the programs PNP, PNST, PNPS, and AS SKA-LOFAR of CNRS/INSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Zarka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zarka, P. (2018). Star-Planet Interactions in the Radio Domain: Prospect for Their Detection. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_22

Download citation

Publish with us

Policies and ethics