Skip to main content

Electromagnetic Coupling in Star-Planet Systems

  • Living reference work entry
  • First Online:
Handbook of Exoplanets
  • 436 Accesses

Abstract

Most exoplanets are expected to be embedded in the flows of plasmas and the magnetic fields of their host stars. This setup enables powerful electromagnetic coupling mechanisms if the exoplanets are sufficiently close to their host stars. The coupling can result in large electromagnetic energy fluxes between the exoplanets and the stars possibly generating luminous effects on the stars. The root cause of the electromagnetic interaction and the resulting coupling is the relative motion of the exoplanet with respect to the magnetized plasma of the host star. Due to the large diversity of the exoplanets, e.g., distance to star, size, and the diversity of the host stars, e.g., stellar classes, the nature and the energy fluxes in the star planet interaction are expected to exhibit huge quantitative and qualitative variability. In this chapter, we introduce the basic setup of this coupling and the underlying physical mechanisms. We discuss various models of the electromagnetic coupling, such as the Alfvén wing model or models which describe the release of magnetic stresses, e.g., in coronal magnetic fields. We also briefly review the existing observational evidence for the star planet coupling and put it in context with theoretical expectations. We also compare the star planet coupling with the well-studied electromagnetic coupling between planets and moons in the outer solar system, e.g., Jupiter and its moon Io.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Acuña MH, Ness NF (1980) The magnetic field of Saturn – Pioneer 11 observations. Science 207:444–446

    Article  ADS  Google Scholar 

  • Alvarado-Gómez JD, Hussain GAJ, Cohen O et al (2016) Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres. A&A 594:A95

    Google Scholar 

  • Baumjohann W, Treumann RA (1996) Basic space plasma physics. Imperial College Press, London

    Book  MATH  Google Scholar 

  • Bonfond B, Grodent D, Gérard J et al (2008) UV Io footprint leading spot: a key feature for understanding the UV Io footprint multiplicity? Geophys Res Lett 35:L05,107

    Article  Google Scholar 

  • Chané E, Saur J, Neubauer FM, Raeder J, Poedts S (2012) Observational evidence of Alfvén wings at the Earth. J Geophys Res (Space Phys) 117(A16):A09217

    ADS  Google Scholar 

  • Chané E, Saur J, Poedts S, Keppens R (2017) How is the Jovian Main auroral emission affected by the solar wind? J Geophys Res (Space Phys) 122:2016JA023,318

    Google Scholar 

  • Clarke JT, Ajello J, Ballester GE et al (2002) Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter. Nature 415:997–1000

    Article  ADS  Google Scholar 

  • Cohen O (2017) A comparison between physics-based and polytropic MHD models for stellar coronae and stellar winds of solar analogs. ApJ 835:220

    Article  ADS  Google Scholar 

  • Cohen O, Drake JJ, Kashyap VL et al (2009) Interactions of the magnetospheres of stars and close-in giant planets. ApJ 704:L85–L88

    Article  ADS  Google Scholar 

  • Cohen O, Kashyap VL, Drake JJ et al (2011) The dynamics of stellar coronae harboring hot Jupiters. I. A time-dependent magnetohydrodynamic simulation of the interplanetary environment in the HD 189733 planetary system. ApJ 733:67

    Google Scholar 

  • Connerney JEP, Baron R, Satoh T, Owen T (1993) Images of excited H3 + at the foot of the Io flux tube in Jupiter’s atmosphere. Science 262(5316):1035–1038

    Article  ADS  Google Scholar 

  • Cuntz M, Saar SH, Musielak ZE (2000) On stellar activity enhancement due to interactions with extrasolar giant planets. ApJ 533:L151–L154

    Article  ADS  Google Scholar 

  • Elsässer W (1950) The hydromagnetic equations. Phys Rev 79:183

    Article  ADS  MATH  Google Scholar 

  • Goertz CK (1980) Io’s interaction with the plasma torus. J Geophys Res 85(A6):2949–2956

    Article  ADS  Google Scholar 

  • Goldreich P, Lynden-Bell D (1969) Io, a Jovian unipolar inductor. Astrophys J 156:59–78

    Article  ADS  Google Scholar 

  • Gurdemir L, Redfield S, Cuntz M (2012) Planet-induced emission enhancements in HD 179949: results from McDonald observations. PASA 29:141–149

    Article  ADS  Google Scholar 

  • Ip WH, Kopp A, Hu J (2004) On the star-magnetosphere interaction of close-in exoplanets. Astrophys J 602:L53–L56

    Article  ADS  Google Scholar 

  • Jacobsen S, Neubauer FM, Saur J, Schilling N (2007) Io’s nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophys Res Lett 34:L10,202. doi:10.1029/2006GL029187

    Article  Google Scholar 

  • Kivelson MG, Bagenal F, Neubauer FM et al (2004) Magnetospheric interactions with satellites, Chap. 21 In: Bagenal F (ed) Jupiter. Cambridge University Press/University of Colorado, Cambridge, pp 513–536

    Google Scholar 

  • Kopp A, Schilp S, Preusse S (2011) Magnetohydrodynamic Simulations of the magnetic interaction of hot Jupiters with their host stars: a numerical experiment. Astrophys J 729:116

    Article  ADS  Google Scholar 

  • Lanza AF (2008) Hot Jupiters and stellar magnetic activity. Astron Astrophys 487:1163–1170

    Article  ADS  Google Scholar 

  • Lanza AF (2009) Stellar coronal magnetic fields and star-planet interaction. A&A 505:339–350

    Article  ADS  MATH  Google Scholar 

  • Lanza AF (2012) Star-planet magnetic interaction and activity in late-type stars with close-in planets. A&A 544:A23

    Article  ADS  Google Scholar 

  • Lanza AF (2013) Star-planet magnetic interaction and evaporation of planetary atmospheres. A&A 557:A31

    Article  ADS  Google Scholar 

  • Lanza AF (2015) Star-planet interactions. In: van Belle GT, Harris HC (eds) 18th Cambridge workshop on cool stars, stellar systems, and the sun, Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, vol 18, pp 811–830

    Google Scholar 

  • Neubauer FM (1980) Nonlinear standing Alfvén wave current system at Io: theory. J Geophys Res 85(A3):1171–1178

    Article  ADS  Google Scholar 

  • Neubauer FM (1998) The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J Geophys Res 103(E9):19,843–19,866

    Article  ADS  Google Scholar 

  • Olson P, Christensen UR (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250:561–571

    Article  ADS  Google Scholar 

  • Parker EN (1958) Dynamics of the interplanetary gas and magnetic fields. ApJ 128:664

    Article  ADS  Google Scholar 

  • Pillitteri I, Maggio A, Micela G et al (2015) FUV variability of HD 189733. Is the star accreting material from its hot Jupiter? ApJ 805:52

    Google Scholar 

  • Poppenhaeger K, Schmitt JHMM (2011) A correlation between host star activity and planet mass for close-in extrasolar planets? ApJ 735:59

    Article  ADS  Google Scholar 

  • Poppenhaeger K, Robrade J, Schmitt J (2010) Coronal properties of planet-bearing stars. Astron Astrophys 515:A98

    Article  ADS  Google Scholar 

  • Poppenhaeger K, Lenz LF, Reiners A, Schmitt JHMM, Shkolnik E (2011) A search for star-planet interactions in the υ Andromedae system at X-ray and optical wavelengths. Astron Astrophys 528:A58+

    Google Scholar 

  • Preusse S, Kopp A, Büchner J, Motschmann U (2005) Stellar wind regimes of close-in extrasolar planets. Astron Astrophys 434:1191–1200

    Article  ADS  Google Scholar 

  • Preusse S, Kopp A, Büchner J, Motschmann U (2006) A magnetic communication scenario for hot jupiters. Astron Astrophys 460:317–322

    Article  ADS  Google Scholar 

  • Preusse S, Kopp A, Büchner J, Motschmann U (2007) MHD simulation scenarios of the stellar wind interaction with Hot Jupiter magnetospheres. Plant Space Sci 55:589–597

    Article  ADS  Google Scholar 

  • Saur J, Neubauer FM, Strobel DF, Summers ME (1999) Three-dimensional plasma simulation of Io’s interaction with the Io plasma torus: asymmetric plasma flow. J Geophys Res 104(A11):25,105–25,126

    Article  ADS  Google Scholar 

  • Saur J, Grambusch T, Duling S, Neubauer FM, Simon S (2013) Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astron Astrophys 552:A119. doi:10.1051/0004-6361/201118179

    Article  ADS  Google Scholar 

  • Scharf CA (2010) Possible constraints on exoplanet magnetic field strengths from planet-star interaction. Astrophys J 722:1547–1555

    Article  ADS  Google Scholar 

  • Shkolnik E, Walker GAH, Bohlender DA (2003) Evidence for planet-induced chromospheric activity on HD 179949. ApJ 597:1092–1096

    Article  ADS  Google Scholar 

  • Shkolnik E, Walker GAH, Bohlender DA, Gu P, Kürster M (2005) Hot Jupiters and hot spots: the short- and long-term chromospheric activity on stars with giant planets. ApJ 622:1075–1090

    Article  ADS  Google Scholar 

  • Shkolnik E, Bohlender DA, Walker GAH, Collier Cameron A (2008) The on/off nature of star-planet interactions. ApJ 676:628–638

    Article  ADS  Google Scholar 

  • Strugarek A (2016) Assessing magnetic torques and energy fluxes in close-in star-planet systems. ApJ 833:140

    Article  ADS  Google Scholar 

  • Strugarek A, Brun AS, Matt SP, Réville V (2015) Magnetic games between a planet and its host star: the key role of topology. ApJ 815:111

    Article  ADS  Google Scholar 

  • Vidotto AA, Fares R, Jardine M, Moutou C, Donati JF (2015) On the environment surrounding close-in exoplanets. MNRAS 449:4117–4130

    Article  ADS  Google Scholar 

  • Zarka P (2007) Plasma interactions of exoplanets with their parent star and associated radio emissions. Plant Space Sci 55:598–617

    Article  ADS  Google Scholar 

  • Zarka P, Treumann RA, Ryabov BP, Ryabov VB (2001) Magnetically-driven planetary radio emissions and applications to extrasolar planets. Astrophys Space Sci 277:293–300

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Saur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Saur, J. (2017). Electromagnetic Coupling in Star-Planet Systems. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics