Skip to main content

Cell Sorting, Culture, Preconditioning, and Modulation/Cell Aggregates: Sheets

  • Reference work entry
  • First Online:
Vascularization for Tissue Engineering and Regenerative Medicine

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 767 Accesses

Abstract

A novel cell culture surface grafted with the temperature-responsive polymer poly(N-isopropylacrylamide) has been developed for controlled attachment and detachment of living cells through temperature changes. This temperature-responsive surface allows us to harvest confluent cells in the form of an intact monolayer cell sheet with deposited extra cellular matrices. Different from scaffold-based tissue engineering, cell sheet-based tissue engineering without the use of scaffolds provides another way for the development of tissue engineering. Taking advantage of the unique ability of cell sheets to generate three-dimensional (3D) tissues, we have also developed several methods to stack cell sheets and create functional tissues for therapy of a vast variety of diseases ranging from periodontitis and corneal disease to esophageal ulceration and heart failure. Moreover, we have created functional anisotropic tissues, thick vascularized tissues, and even organ-like systems by using cell sheet-based tissue engineering. In this chapter, we summarize development of temperature-responsive cell culture surfaces, cell sheet manipulation technologies, fabrication of thick tissues, and organ-like structures with cell sheets as well as applications of cell sheet-based tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 439.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama Y, Kikuchi A, Yamato M, Okano T (2004) Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 20:5506–5511

    Article  Google Scholar 

  • Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A, Yamato M, Okano T, Ishikawa I (2005) Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 40:245–251

    Article  Google Scholar 

  • Aoyagi T, Ebara M, Sakai K, Sakurai Y, Okano T (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Ed 11:101–110

    Article  Google Scholar 

  • Arauchi A, Shimizu T, Yamato M, Obara T, Okano T (2009) Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomy comparing with nontransplantation models. Tissue Eng Part A 15:3943–3949

    Article  Google Scholar 

  • Arisaka Y, Kobayashi J, Yamato M, Akiyama Y, Okano T (2013) Switching of cell growth/detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Biomaterials 34:4214–4222

    Article  Google Scholar 

  • Arisaka Y, Kobayashi J, Ohashi K, Tatsumi K, Kim K, Akiyama Y, Yamato M, Okano T (2016) A heparin-modified thermoresponsive surface with heparin-binding epidermal growth factor-like growth factor for maintaining hepatic functions in vitro and harvesting hepatocyte sheets. Regen Ther 3:97–106

    Article  Google Scholar 

  • Asakawa N, Shimizu T, Tsuda Y, Sekiya S, Sasagawa T, Yamato M, Fukai F, Okano T (2010) Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31:3903–3909

    Article  Google Scholar 

  • Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, Damour O (2012) Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci 53:1325–1331

    Article  Google Scholar 

  • Cheng X, Canavan HE, Stein MJ, Hull JR, Kweskin SJ, Wagner MS, Somorjai GA, Castner DG, Ratner BD (2005) Surface chemical and mechanical properties of plasma-polymerized N-isopropylacrylamide. Langmuir 21:7833–7841

    Article  Google Scholar 

  • Ebara M, Yamato M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2004) Temperature-responsive cell culture surfaces enable “on–off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5:505–510

    Article  Google Scholar 

  • Flores MG, Hasegawa M, Yamato M, Takagi R, Okano T, Ishikawa I (2008a) Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res 43:364–371

    Article  Google Scholar 

  • Flores MG, Yashiro R, Washio K, Yamato M, Okano T, Ishikawa I (2008b) Periodontal ligament cell sheet promotes periodontal regeneration in athymic rats. J Clin Periodontol 35:1066–1072

    Article  Google Scholar 

  • Fu SW, Chien HW, Tsai WB (2013) Fabrication of poly(N-isopropylacrylamide) films containing submicrometer grooves for constructing aligned cell sheets. Langmuir 29:14351–14355

    Article  Google Scholar 

  • Fukumori K, Akiyama Y, Yamato M, Kobayashi J, Sakai K, Okano T (2009) Temperature-responsive glass coverslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomater 5:470–476

    Article  Google Scholar 

  • Haraguchi Y, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials 27:4765–4774

    Article  Google Scholar 

  • Haraguchi Y, Sekine W, Shimizu T, Yamato M, Miyoshi S, Umezawa A, Okano T (2010) Development of a new assay system for evaluating the permeability of various substances through three-dimensional tissue. Tissue Eng Part C 16:685–692

    Article  Google Scholar 

  • Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, Sekine W, Sekiya S, Yamato M, Umezu M, Okano T (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7:850–858

    Article  Google Scholar 

  • Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (2015) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen Med 9:1363–1375

    Article  Google Scholar 

  • Harimoto M, Yamato M, Hirose M, Takahashi C, Isoi Y, Kikuchi A, Okano T (2002) Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res 62:464–470

    Article  Google Scholar 

  • Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I (2005) Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng 11:469–478

    Article  Google Scholar 

  • Hata H, Matsumiya G, Miyagawa S, Kondoh H, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H, Sawa Y (2006) Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacinginduced canine heart failure model. J Thorac Cardiovasc Surg 132:918–924

    Article  Google Scholar 

  • Hayashida Y, Nishida K, Yamato M, Watanabe K, Maeda N, Watanabe H, Kikuchi A, Okano T, Tano Y (2005) Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest Ophthalmol Vis Sci 46:1632–1639

    Article  Google Scholar 

  • Hoashi T, Matsumiya G, Miyagawa S, Ichikawa H, Ueno T, Ono M, Saito A, Shimizu T, Okano T, Kawaguchi N, Matsuura N, Sawa Y (2009) Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. J Thorac Cardiovasc Surg 138:460–467

    Article  Google Scholar 

  • Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  Google Scholar 

  • Isenberg BC, Tsuda Y, Williams C, Shimizu T, Yamato M, Okano T, Wong JY (2008) A thermoresponsive, microtextured substrate for cell sheet engineering with defined structural organization. Biomaterials 29:2565–2572

    Article  Google Scholar 

  • Ito S, Sato M, Yamato M, Mitani G, Kutsuna T, Nagai T, Ukai T, Kobayashi M, Kokubo M, Okano T, Mochida J (2012) Repair of articular cartilage defect with layered chondrocyte sheets and cultured synovial cells. Biomaterials 33:5278–5286

    Article  Google Scholar 

  • Itoga K, Okano T (2010) The high functionalization of temperature-responsive culture dishes for establishing advanced cell sheet engineering. J Mater Chem 20:8768–8775

    Article  Google Scholar 

  • Iwata T, Yamato M, Tsuchioka H, Takagi R, Mukobata S, Washio K, Okano T, Ishikawa I (2009) Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 30:2716–2723

    Article  Google Scholar 

  • Iwata T, Washio K, Yoshida T, Ishikawa I, Ando T, Yamato M, Okano T (2015) Cell sheet engineering and its application for periodontal regeneration. J Tissue Eng Regen Med 9:343–356

    Article  Google Scholar 

  • Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, Messmer BJ, Turina M (2001) Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 19:424–430

    Article  Google Scholar 

  • Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Mochida J (2006) Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochem Biophys Res Commun 349:723–731

    Article  Google Scholar 

  • Kang HW, Tabata Y, Ikada Y (1999) Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials 20:1339–1344

    Article  Google Scholar 

  • Kanzaki M, Yamato M, Yang J, Sekine H, Kohno C, Takagi R, Hatakeyama H, Isaka T, Okano T, Onuki T (2007) Dynamic sealing of lung air leaks by the transplantation of tissue engineered cell sheets. Biomaterials 28:4294–4302

    Article  Google Scholar 

  • Kanzaki M, Yamato M, Yang J, Sekine H, Takagi R, Isaka T, Okano T, Onuki T (2008) Functional closure of visceral pleural defects by autologous tissue engineered cell sheets. Eur J Cardiothorac Surg 34:864–869

    Article  Google Scholar 

  • Kikuchi T, Shimizu T, Wada M, Yamato M, Okano T (2014) Automatic fabrication of 3-dimensional tissues using cell sheet manipulator technique. Biomaterials 35:2428–2435

    Article  Google Scholar 

  • Kim K, Ohashi K, Utoh R, Kano K, Okano T (2012) Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 33:1406–1413

    Article  Google Scholar 

  • Kim K, Utoh R, Ohashi K, Kikuchi T, Okano T (2015) Fabrication of functional 3D hepatic tissues with polarized hepatocytes by stacking endothelial cell sheets in vitro. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2102

  • Kirkpatrick CJ, Fuchs S, Unger RE (2011) Co-culture systems for vascularization – learning from nature. Adv Drug Deliv Rev 63:291–299

    Article  Google Scholar 

  • Kobayashi J, Hayashi M, Ohno T, Nishi M, Arisaka Y, Matsubara Y, Kakidachi H, Akiyama Y, Yamato M, Horii A, Okano T (2014) Surface design of antibodyimmobilized thermoresponsive cell culture dishes for recovering intact cells by low-temperature treatment. J Biomed Mater Res A 102:3883–3893

    Article  Google Scholar 

  • Kokubo M, Sato M, Yamato M, Mitani G, Kutsuna T, Ebihara G, Okano T, Mochida J (2016) Characterization of chondrocyte sheets prepared using a co-culture method with temperature-responsive culture inserts. J Tissue Eng Regen Med 10:486–495

    Article  Google Scholar 

  • Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598

    Article  Google Scholar 

  • Kondoh H, Sawa Y, Miyagawa S, Sakakida-Kitagawa S, Memon IA, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H (2006) Longer preservation of cardiac performance by sheet-shaped myoblast implantation in dilated cardiomyopathic hamsters. Cardiovasc Res 69:466–475

    Article  Google Scholar 

  • Kubo H, Shimizu T, Yamato M, Fujimoto T, Okano T (2007) Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device. Biomaterials 28:3508–3516

    Article  Google Scholar 

  • Kubo H, Shioyama T, Oura M, Suzuki A, Ogawa T, Makino H, Takeda S, Kino-oka M, Shimizu T, Okano T, Yamamori S (2013) Development of automated 3–dimensional tissue fabrication system tissue factory – automated cell isolation from tissue for regenerative medicine. Conf Proc IEEE Eng Med Biol Soc 2013:358–361

    Google Scholar 

  • Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature responsive culture surfaces. J Biomed Mater Res 45:355–362

    Article  Google Scholar 

  • Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T (2000) Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin-Darby canine kidney (MDCK) cell sheets. J Biomed Mater Res 51:216–223

    Article  Google Scholar 

  • Loh XJ, Cheong WCD, Li J, Ito Y (2009) Novel poly(N-isopropylacrylamide)-poly[(R)-3-hydroxybutyrate]-poly(N-isopropylacrylamide) triblock copolymer surface as a culture substrate for human mesenchymal stem cells. Soft Matter 5:2937–2946

    Article  Google Scholar 

  • Maeda M, Yamato M, Kanzaki M, Iseki H, Okano T (2009) Thoracoscopic cell sheet transplantation with a novel device. J Tissue Eng Regen Med 3:255–259

    Article  Google Scholar 

  • Matsuura K, Wada M, Shimizu T, Haraguchi Y, Sato F, Sugiyama K, Konishi K, Shiba Y, Ichikawa H, Tachibana A, Ikeda U, Yamato M, Hagiwara N, Okano T (2012) Creation of human cardiac cell sheets using pluripotent stem cells. Biochem Biophys Res Commun 425:321–327

    Article  Google Scholar 

  • Matsuura K, Kodama F, Sugiyama K, Shimizu T, Hagiwara N, Okano T (2015) Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition. Tissue Eng Part C Methods 21:330–338

    Article  Google Scholar 

  • Matsuura K, Seta H, Haraguchi Y, Alsayegh K, Sekine H, Shimizu T, Hagiwara N, Yamazaki K, Okano T (2016) TRPV-1-mediated elimination of residual iPS cells in bioengineered cardiac cell sheet tissues. Sci Rep 6:21747

    Article  Google Scholar 

  • Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465

    Article  Google Scholar 

  • Mizutani A, Kikuchi A, Yamato M, Kanazawa H, Okano T (2008) Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials 29:2073–2081

    Article  Google Scholar 

  • Nagase K, Watanabe M, Kikuchi A, Yamato M, Okano T (2011) Thermo-responsive polymer brushes as intelligent biointerfaces: preparation via ATRP and characterization. Macromol Biosci 11:400–409

    Article  Google Scholar 

  • Nakayama M, Yamada N, Kumashiro Y, Kanazawa H, Yamato M, Okano T (2012) Thermoresponsive poly(N-isopropylacrylamide)-based block copolymer coating for optimizing cell sheet fabrication. Macromol Biosci 12:751–760

    Article  Google Scholar 

  • Nishi M, Kobayashi J, Pechmann S, Yamato M, Akiyama Y, Kikuchi A, Uchida K, Textor M, Yajima H, Okano T (2007) The use of biotin-avidin binding to facilitate biomodification of thermoresponsive culture surfaces. Biomaterials 28:5471–5476

    Article  Google Scholar 

  • Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004a) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    Article  Google Scholar 

  • Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, Yamamoto K, Nagai S, Kikuchi A, Tano Y, Okano T (2004b) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385

    Article  Google Scholar 

  • Ohashi K, Yokoyama T, Yamato M, Kuge H, Kanehiro H, Tsutsumi M, Amanuma T, Iwata H, Yang J, Okano T, Nakajima Y (2007) Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 13:880–885

    Article  Google Scholar 

  • Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, Okano T, Takasaki K (2006) Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut 55:1704–1710

    Article  Google Scholar 

  • Ohki T, Yamato M, Ota M, Murakami D, Takagi R, Kondo M, Nakamura T, Okano T, Yamamoto M (2009) Endoscopic transplantation of human oral mucosal epithelial cell sheets – world’s first case of regenerative medicine applied to endoscopic treatment. Gastrointest Endosc 69:AB253–AB254

    Article  Google Scholar 

  • Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, Sasaki R, Namiki H, Okano T, Yamamoto M (2012) Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology 143(582–588):e1–e2

    Google Scholar 

  • Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly (N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251

    Article  Google Scholar 

  • Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16:297–303

    Article  Google Scholar 

  • Owaki T, Shimizu T, Yamato M, Okano T (2014) Cell sheet engineering for regenerative medicine: current challenges and strategies. Biotechnol J 9:904–914

    Article  Google Scholar 

  • Sakaguchi K, Shimizu T, Horaguchi S, Sekine H, Yamato M, Umezu M, Okano T (2013) In vitro engineering of vascularized tissue surrogates. Sci Rep 3:1316

    Article  Google Scholar 

  • Sakuma M, Kumashiro Y, Nakayama M, Tanaka N, Umemura K, Yamato M, Okano T (2014) Control of cell adhesion and detachment on Langmuir-Schaefer surface composed of dodecyl-terminated thermo-responsive polymers. J Biomater Sci Polym Ed 25:431–443

    Article  Google Scholar 

  • Sasagawa T, Shimizu T, Sekiya S, Haraguchi Y, Yamato M, Sawa Y, Okano T (2010) Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials 31:1646–1654

    Article  Google Scholar 

  • Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T (2012) Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 42:181–184

    Article  Google Scholar 

  • Schakenraad JM, Hardonk MJ, Feijen J, Molenaar I, Nieuwenhuis P (1990) Enzymatic activity toward poly(L-lactic acid) implants. J Biomed Mater Res 24:529–545

    Article  Google Scholar 

  • Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Möhwald H (2010) Adhesion and mechanical properties of PNIPAM microgel films and their potential use as switchable cell culture substrates. Adv Funct Mater 20:3235–3243

    Article  Google Scholar 

  • Schwab IR (1999) Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 97:891–986

    Google Scholar 

  • Sekine H, Shimizu T, Yang J, Kobayashi E, Okano T (2006) Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation 114:I87–I93

    Article  Google Scholar 

  • Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M, Kobayashi E, Umezu M, Okano T (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4:1399

    Article  Google Scholar 

  • Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun 341:573–582

    Article  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002a) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:40–48

    Article  Google Scholar 

  • Shimizu T, Yamato M, Akutsu T, Shibata T, Isoi Y, Kikuchi A, Umezu M, Okano T (2002b) Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J Biomed Mater Res 60:110–117

    Article  Google Scholar 

  • Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T (2006a) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20:708–710

    Article  Google Scholar 

  • Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T (2006b) Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 12:499–507

    Article  Google Scholar 

  • Shimizu H, Ohashi K, Utoh R, Ise K, Gotoh M, Yamato M, Okano T (2009) Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials 30:5943–5949

    Article  Google Scholar 

  • Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T (2003) Transplantable urothelial cell sheets harvested noninvasively from temperature-responsive culture surfaces by reducing temperature. Tissue Eng 9:1005–1012

    Article  Google Scholar 

  • Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T (2004) Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int 93:1069–1075

    Article  Google Scholar 

  • Takahashi H, Okano T (2015) Cell sheet-based tissue engineering for organizing anisotropic tissue constructs produced using microfabricated thermoresponsive substrates. Adv Healthc Mater 4:2388–2407

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  Google Scholar 

  • Takahashi H, Nakayama M, Yamato M, Okano T (2010) Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules 11:1991–1999

    Article  Google Scholar 

  • Takahashi H, Nakayama M, Itoga K, Yamato M, Okano T (2011a) Micropatterned thermoresponsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures. Biomacromolecules 12:1414–1418

    Article  Google Scholar 

  • Takahashi H, Nakayama M, Shimizu T, Yamato M, Okano T (2011b) Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation. Biomaterials 32:8830–8838

    Article  Google Scholar 

  • Takahashi H, Shimizu T, Nakayama M, Yamato M, Okano T (2013) The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue. Biomaterials 34:7372–7380

    Article  Google Scholar 

  • Takahashi H, Shimizu T, Nakayama M, Yamato M, Okano T (2015) Anisotropic cellular network formation in engineered muscle tissue through the self-organization of neurons and endothelial cells. Adv Healthc Mater 4:356–360

    Article  Google Scholar 

  • Takaku Y, Murai K, Ukai T, Ito S, Kokubo M, Satoh M, Kobayashi E, Yamato M, Okano T, Takeuchi M, Mochida J, Sato M (2014) In vivo cell tracking by bioluminescence imaging after transplantation of bioengineered cell sheets to the knee joint. Biomaterials 35:2199–2206

    Article  Google Scholar 

  • Takeuchi R, Kuruma Y, Sekine H, Dobashi I, Yamato M, Umezu M, Shimizu T, Okano T (2014) In vivo vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension. J Tissue Eng Regen Med. https://doi.org/10.1002/term.1854

  • Tanaka N, Ota H, Fukumori K, Miyake J, Yamato M, Okano T (2014) Micro-patterned cell-sheets fabricated with stamping-force-controlled micro-contact printing. Biomaterials 35:9802–9810

    Article  Google Scholar 

  • Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  Google Scholar 

  • Tsuda Y, Shimizu T, Yamato M, Kikuchi A, Sasagawa T, Sekiya S, Kobayashi J, Chen G, Okano T (2007) Cellular control of tissue architectures using a three dimensional tissue fabrication technique. Biomaterials 28:4939–4946

    Article  Google Scholar 

  • Walters MC, Patience M, Leisenring W, Eckman JR, Scott JP, Mentzer WC, Davies SC, Ohene-Frempong K, Bernaudin F, Matthews DC, Storb R, Sullivan KM (1996) Bone marrow transplantation for sickle cell disease. N Engl J Med 335:369–376

    Article  Google Scholar 

  • Williams C, Tsuda Y, Isenberg BC, Yamato M, Shimizu T, Okano T, Wong JY (2009) Aligned cell sheets grown on thermo-responsive substrates with microcontact printed protein patterns. Adv Mater 21:2161–2164

    Article  Google Scholar 

  • Yamato M, Okano T (2004) Cell sheet engineering. Mater Today 7:42–47

    Article  Google Scholar 

  • Yamato M, Okuhara M, Karikusa F, Kikuchi A, Sakurai Y, Okano T (1999) Signal transduction and cytoskeletal reorganization are required for cell detachment from cell culture surfaces grafted with a temperature-responsive polymer. J Biomed Mater Res 44:44–52

    Article  Google Scholar 

  • Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T (2001) Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng 7:473–480

    Article  Google Scholar 

  • Zandonella C (2003) Tissue engineering: the beat goes on. Nature 421:884–886

    Article  Google Scholar 

  • Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:30–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Okano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gao, B., Shimizu, T., Okano, T. (2021). Cell Sorting, Culture, Preconditioning, and Modulation/Cell Aggregates: Sheets. In: Holnthoner, W., Banfi, A., Kirkpatrick, J., Redl, H. (eds) Vascularization for Tissue Engineering and Regenerative Medicine. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-54586-8_18

Download citation

Publish with us

Policies and ethics