Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Ether-bonded compounds are often poorly biodegradable and can become important environmental pollutants. In this chapter, we summarize the microorganisms and key enzymes associated with the aerobic biodegradation of some of the most environmentally significant alkyl, chlorinated, branched, and cyclic ethers. Particular emphasis is placed on representative compounds from each of these groups including dimethyl ether (DME), bis(2-chloroethyl) ether (BCEE), methyl tertiary butyl ether (MTBE), and 1,4-dioxane (14D). The chapter emphasizes differences between growth-related and cometabolic ether biodegradation and the important roles that diverse oxygenase enzymes play in aerobic ether biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 359.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2017) Toxicological profile for bis(2-chloroethyl)ether (BCEE). https://www.atsdr.cdc.gov/toxprofiles/tp127.pdf

  • Barajas-Rodriguez FJ, Freedman DL (2018) Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions. J Hazard Mater 350:180–188

    Article  CAS  PubMed  Google Scholar 

  • Bastida F, Rosell M, Franchini AG, Seifert J, Finsterbusch S, Jehmlich N, Jechalke S, von Bergen M, Richnow HH (2010) Elucidating MTBE degradation in a mixed consortium using a multidisciplinary approach. FEMS Microbiol Ecol 73:370–384

    CAS  PubMed  Google Scholar 

  • Bednar AJ, Kirgan RA, Karn RA, Donovan B, Mohn MF, Sirkis DM (2009) Mobility and sorption of bis-2-chloroethyl ether in an aquifer material. J Hazard Mater 168:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Belhaj A, Desnoues N, Elmerich C (2002) Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes. Res Microbiol 153:339–344

    Article  CAS  PubMed  Google Scholar 

  • Bennett P, Hyman M, Smith C, El Mugammar H, Chu M-Y, Nicklelsen M, Aravena R (2018) Enrichment with carbon-13 and deuterium during monooxygenase-mediated biodegradation of 1,4-dioxane. Environ Sci Technol Lett 5:148–153

    Article  CAS  Google Scholar 

  • Bock C, Kroppenstedt RM, Diekmann H (1996) Degradation and bioconversion of aliphatic and aromatic hydrocarbons by Rhodococcus ruber 219. Appl Microbiol Biotechnol 45:408–410

    Article  CAS  Google Scholar 

  • Bravo AL, Sigala JC, Borgne SL, Morales M (2015) Expression of an alkane hydroxylase (alkb) gene and methyl-tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis. Biotechnol Lett 37:807–814

    Article  CAS  PubMed  Google Scholar 

  • Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelletti M, Presentato A, Milazzo G, Turner RJ, Fedi S, Frascari D, Zannoni D (2015) Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00393

  • Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F, Béguin P (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183:6551–6557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D-Z, Jin X-J, Chen J, Ye J-X, Jiang N-X, Chen J-M (2016) Intermediates and substrate interaction of 1,4-dioxane degradation by effective metabolizer Xanthobacter flavus DT8. Int Biodeterior Biodegrad 106:133–140

    Article  CAS  Google Scholar 

  • Chu M-YJ, Bennett PJ, Dolan ME, Hyman MR, Peacock AD, Bodour A, Andersen RH, Mackay DM, Goltz MN (2018) Concurrent treatment of 1,4-dioxane and chlorinated aliphatics in a groundwater recirculation system via aerobic cometabolism. Groundwater Monit Remediat 38:53–64

    Article  CAS  Google Scholar 

  • Colby J, Stirling DI, Dalton H (1977) The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, Holmes AJ (2012) Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J 6:171–182

    Article  CAS  PubMed  Google Scholar 

  • Curry S, Ciuffetti L, Hyman M (1996) Inhibition of growth of a Graphium sp. on gaseous n-alkanes by gaseous n-alkynes and n-alkenes. Appl Environ Microbiol 62:2198–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Bont JAM, Mulder EG (1974) Nitrogen fixation and co-oxidation of ethylene by a methane-utilizing bacterium. J Gen Microbiol 83:113–121

    Article  Google Scholar 

  • Deng D, Li F, Li M (2018a) A novel propane monooxygenase initiating degradation of 1,4-dioxane by Mycobacterium dioxanotrophicus PH-06. Environ Sci Technol Lett 5:86–91

    Article  CAS  Google Scholar 

  • Deng D, Li F, Wu C, Li M (2018b) Synchronic biotransformation of 1,4-dioxane and 1,1-dicloroethylene by a Gram-negative propanotroph Azoarcus sp. DD4. Environ Sci Technol Lett 5:526–532

    Article  CAS  Google Scholar 

  • Fayolle F, Hernandez G, Roux FL, Vandecasteele J-P (1998) Isolation of two aerobic bacterial strains that degrade efficiently ethyl t-butyl ether (ETBE). Biotechnol Lett 20:283–286

    Article  CAS  Google Scholar 

  • Ferreira NL, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006) Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70:358–365

    Article  CAS  Google Scholar 

  • Ferreira NL, Mathis H, Labbé D, Monot F, Greer CW, Fayolle-Guichard F (2007) N-alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains. Appl Microbiol Biotechnol 75:909–919

    Article  CAS  Google Scholar 

  • Fisher CR, Childress JJ, Oremland RS, Bidigare RR (1987) The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar Biol 96:59–71

    Article  CAS  Google Scholar 

  • Fournier D, Hawari J, Halasz A, Streger SH, McClay KR, Masuda H, Hatzinger PB (2009) Aerobic biodegradation of N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425. Appl Environ Microbiol 75:5088–5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • François A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68:2754–2762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • François A, Garnier L, Mathis H, Fayolle F, Monot F (2003) Roles of tert-butyl formate, tert-butyl alcohol and acetone in the regulation of methyl tert-butyl ether degradation by Mycobacterium austroafricanum IFP 2012. Appl Microbiol Biotechnol 62:256–262

    Article  PubMed  CAS  Google Scholar 

  • Garbe LA, Moreno-Horn M, Rewicki D, Tressl R, Görisch H (2004) Microbial desaturation of bis(1-chloro-2-propyl) ether into a dichloro vinyl ether. Chembiochem 5:876–878

    Article  CAS  PubMed  Google Scholar 

  • Garbe LA, Moreno-Horn M, Tressl R, Görsich H (2006) Preferential attack of the (S)-configured ether-linked carbons in bis-(1-chloro-2-propyl) ether by Rhodococcus sp. strain DTB. FEMS Microbiol Ecol 55:113–121

    Article  CAS  PubMed  Google Scholar 

  • Garnier PM, Auria R, Augur C, Revah S (1999) Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeruginosa grown on pentane. Appl Microbiol Biotechnol 51:498–503

    Article  CAS  PubMed  Google Scholar 

  • Garnier PM, Auria R, Augur C, Revah S (2000) Cometabolic biodegradation of methyl tert-butyl ether by a soil consortium: effect of components present in gasoline. J Gen Appl Microbiol 46:79–84

    Article  CAS  PubMed  Google Scholar 

  • Gedalanga PB, Pornwongthing P, Mora R, Chiang S-YD, Baldwin B, Ogles D, Mahendra S (2014) Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Appl Environ Microbiol 80:3209–3218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gedalanga P, Madison A, Miao YR, Richards T, Hatton J, DiGuiseppi WH, Wilson J, Mahendra S (2016) A multiple lines of evidence framework to evaluate intrinsic biodegradation of 1,4-dioxane. Remediat J 27:93–114

    Article  Google Scholar 

  • Hanson JR, Ackerman CE, Scow KM (1999) Biodegradation of methyl tert-butyl ether by a bacterial pure culture. Appl Environ Microbiol 65:4788–4792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardison LK, Curry SS, Ciuffetti LM, Hyman MR (1997) Metabolism of diethyl ether and cometabolism of methyl tert-butyl ether by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 63:3059–3067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Biodegradation of methyl tert-butyl ether by a pure bacterial isolate. Appl Environ Microbiol 67:5601–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzinger PB, Banerjee R, Rezes R, Streger SH, McClay K, Schaefer CE (2017) Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Biodegradation 28:453–468

    Article  CAS  PubMed  Google Scholar 

  • Hauck R, Adrian L, Wendelr P, Amidjojo M, Hegemann W, Görisch H (2001) Transformation of 2,2′-dichlorodiisopropyl ether in mixed and pure culture. Appl Microbiol Biotechnol 56:491–495

    Article  CAS  PubMed  Google Scholar 

  • Hazeu W (1975) Some cultural and physiological aspects of methane-utilizing bacteria. Antonie Van Leeuwenhoek 41:121–134

    Article  CAS  PubMed  Google Scholar 

  • He Z, YaoY LZ, Ye Y (2014) Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran. Appl Environ Microbiol 80:2656–2664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Y, Wei K, Si K, Mathieu J, Li M, Alvarez PJJ (2017a) Whole genome sequence of the 1,4-dioxane-degrading bacterium Mycobacterium dioxanotrophicus PH-06. Genome Announc 5:e00625-17

    Article  PubMed  PubMed Central  Google Scholar 

  • He Y, Mathieu J, Yang Y, Yu P, Da Silva MLB, Alvarez PJJ (2017b) 1,4-Dioxane biodegradation by Mycobacterium dioxanotrophicus PH-06 is associated with a group 6 soluble di-iron monooxygenase. Environ Sci Technol Lett 4:494–499

    Article  CAS  Google Scholar 

  • He Y, Mathieu J, da Silva MLB, Li M, Alvarez PJJ (2018) 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes. Microb Biotechnol 11:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl ether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol 55:117–121

    Article  CAS  PubMed  Google Scholar 

  • Higgins IJ, Hammond RC, Sariaslani FS, Best D, Davies MM, Tryhorn SE, Taylor F (1979) Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grown Methylosinus trichosporium OB3b. Biochem Biophys Res Commun 89:671–677

    Article  CAS  PubMed  Google Scholar 

  • Hine J, Mookerjee PK (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J Org Chem 40:292–298

    Article  CAS  Google Scholar 

  • Hofrichter M, Ullrich R (2014) Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol 19:116–125

    Article  CAS  PubMed  Google Scholar 

  • House AJ, Hyman MR (2010) Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5. Biodegradation 21:525–541

    Article  CAS  PubMed  Google Scholar 

  • Hristova KR, Schmidt R, Chakicherla AY, Legler TC, Wu J, Chain PS, Scow KM, Kane SR (2007) Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol. Appl Environ Microbiol 73:7347–7357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Shen D, Li N, Shan D, Shentu J, Zhou Y (2014) Biodegradation of 1,4-dioxane by a novel strain and its biodegradation pathway. Water Air Soil Pollut 225:2135–2146

    Article  CAS  Google Scholar 

  • Hur H-G, Newman LM, Wackett LP, Sadowsky MJ (1997) Toluene-2-monooxygenase-dependent growth of Burkholderia cepacia G4/PR1 on diethyl ether. Appl Environ Microbiol 63:1606–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman MR (2009) Aerobic cometabolism of ether-bonded compounds. Final report. United State Environmental Protection Agency grant # R823426. https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/673/report/F

  • Hyman MR, Page CL, Arp DJ (1994) Oxidation of methyl fluoride and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. Appl Environ Microbiol 60:3033–3035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M (2016) 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation 27:277–286

    Article  CAS  PubMed  Google Scholar 

  • Inoue D, Tsunoda T, Yamamoto N, Ike M, Sei K (2018) 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343. Biodegradation 29:301–310

    Article  CAS  PubMed  Google Scholar 

  • Interstate Technology & Regulatory Council (ITRC) (2005) Overview of groundwater remediation technologies for MTBE and TBA. MTBE-1. Interstate Technology & Regulatory Council, MTBE and Other Fuel Oxygenates Team, Washington, DC

    Google Scholar 

  • Janssen DB, Gerritse J, Brackman J, Kalk C, Jager D, Witholt B (1988) Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols, and ethers. Eur J Biochem 171:67–72

    Article  CAS  PubMed  Google Scholar 

  • Jin X-J, Chen D-Z, Zhu RY, Chen J, Chen J-M (2012) Characteristics of 1,4-dioxane degradation by Xanthobacter flavus DT8. Environ Sci 33:1657–1662

    CAS  Google Scholar 

  • Kane SR, Chakicherla AY, Chain PSG, Schmidt R, Shin MW, Legler TC, Scow KM, Larimer FW, Lucas SM, Richardson PM, Hristova KR (2007) Whole-genome analysis of the methyl-tert- butyl ether-degrading beta-proteobacterium Methylibium petroleiphilum PM1. J Bacteriol 189:1931–1945

    Article  CAS  PubMed  Google Scholar 

  • Katapodis AG, Wimalesena K, Lee J, May SW (1984) Mechanistic studies on non-heme iron monooxygenase catalysis: epoxidation, aldehyde formation, and demethylation by the ω-hydroxylation system of Pseudomonas oleovorans. J Am Chem Soc 110:7928–7935

    Article  Google Scholar 

  • Kim Y-H, Engesser K-H (2004) Degradation of alkyl ethers, aralkyl ethers, and dibenzyl ether by Rhodococcus sp. Strain DEE5151, isolated from diethyl ether-containing enrichment cultures. Appl Environ Microbiol 70:4398–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y-H, Engesser K-H (2005) Inhibition of diethyl ether degradation by Rhodococcus sp. strain DEE5151 by glutaraldehyde and ethyl vinyl ether. FEMS Microbiol Lett 243:317–322

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-H, Engesser K-H, Kim S-J (2007) Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 9:1497–1510

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-H, Cha C-J, Engesser K-H, Kim S-J (2008) Degradation of various alkyl ethers by alkyl ether-degrading Actinobacteria isolated from activated sludge of a mixed wastewater treatment. Chemosphere 73:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-M, Jeon J-R, Murugesan K, Kim E-J, Chang Y-S (2009) Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation 20:511–519

    Article  CAS  PubMed  Google Scholar 

  • Kinne M, Poraj-Kobielska M, Ralph SA, Ullrich R, Hofrichter M, Hammel KE (2009) Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase. J Biol Chem 284:29343–29349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlweyer U, Thiemer B, Schräder T, Andreesen JR (2000) Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1. FEMS Microbiol Lett 186:301–306

    Article  CAS  PubMed  Google Scholar 

  • Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan RS, Smith CA, Hyman MR (2013) Oxidation of cyclic ethers by alkane-grown Mycobacterium vaccae JOB5. Remediat J 23:23–42

    Article  Google Scholar 

  • Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C, Auling G, Fayolle-Guichard F, Piveteau P, Müller RH, Rohwerder T (2007) Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 57:1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Li M, Mathieu J, Liu Y, van Orden ET, Yang Y, Fiorenza S, Alvarez PJJ (2013) The abundance of tetrahydrofuran/dioxane monooxygenase genes (thmA/dxmA) and 1,4-dioxane degradation activity are significantly correlated at various impacted sites. Environ Sci Technol Lett 1:122–127

    Article  CAS  Google Scholar 

  • Li S, Wang S, Yan W (2016) Biodegradation of methyl tert-butyl ether by co-metabolism with a Pseudomonas sp. strain. Int J Environ Res Public Health 13:883

    Article  CAS  PubMed Central  Google Scholar 

  • Lippincott D, Streger SH, Schafer CE, Hinkle J, Stormo J, Steffan RJ (2015) Bioaugmentation and propane biosparging for in situ biodegradation of 1,4-dioxane. Groundwater Monit Remediat 35:81–92

    Article  CAS  Google Scholar 

  • Liu CY, Speitel GE Jr, Georgiou G (2001) Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl Environ Microbiol 67:2197–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. Int J Syst Evol Microbiol 55:593–598

    Article  CAS  PubMed  Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ Sci Technol 40:5435–5442

    Article  CAS  PubMed  Google Scholar 

  • Mahendra S, Petzold CJ, Baidoo EE, Keasling JD, Alvarez-Cohen L (2007) Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria. Environ Sci Technol 41:7330–7336

    Article  CAS  PubMed  Google Scholar 

  • Malandain C, Fayolle-Guichard F, Vogel TM (2010) Cytochrome P450-mediated degradation of fuel oxygenates by environmental isolates. FEMS Microbiol Ecol 72:289–296

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012) Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478. J Mol Microbiol Biotechnol 22:312–316

    Article  CAS  PubMed  Google Scholar 

  • Matsui R, Takagi K, Sakakibara F, Abe T, Shiiba K (2016) Identification and characterization of 1,4-dioxane-degrading microbe separated from surface water by the seawater-charcoal perfusion apparatus. Biodegradation 27:155–163

    Article  CAS  PubMed  Google Scholar 

  • McClay K, Schaefer CE, Vainberg S, Steffan RJ (2007) Biodegradation of bis(2-chloroethyl) ether by Xanthobacter sp. strain ENV481. Appl Environ Microbiol 73:6870–6875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKelvie JR, Hyman MR, Elsner M, Smith C, Aslett DM, Lacrampe-Couloume G, Sherwood-Lollar B (2009) Isotopic fractionation of methyl tert-butyl ether suggests different initial reaction mechanisms during aerobic biodegradation. Environ Sci Technol 43:2793–2799

    Article  CAS  PubMed  Google Scholar 

  • Meyers AJ (1982) Obligate methylotrophy: evaluation of dimethyl ether as C1 compound. J Bacteriol 150:966–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LE, Coutlakis MD, Oremland RS, Ward BB (1993) Selective inhibition of ammonium oxidation and nitrification-linked N2O formation by methyl fluoride and dimethyl ether. Appl Environ Microbiol 59:2457–2464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr T, Stickney J, Diguiseppi B (2010) Environmental investigation and remediation: 1,4-dioxane and other solvent stabilizers. CRC Press, Boca Raton

    Google Scholar 

  • Morales M, Nava V, Velásquez E, Razo-Flores E, Revah S (2009) Mineralization of methyl tert- butyl ether and other gasoline oxygenates by Pseudomonads using short chain n-alkanes as growth source. Biodegradation 20:271–280

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Horn M, Garbe L-A, Tressl R, Adrian L, Görisch H (2003) Biodegradation of bis(1-chloro-2-propyl) ether via initial ether scission and subsequent dehalogenation by Rhodococcus sp. strain DTB. Arch Microbiol 179:234–241

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Horn M, Garbe L-A, Tressl R, Görisch H (2005) Transient accumulation of γ-butyrolactone during degradation of bis(4-chloro-n-butyl) ether by diethyl ether-grown Rhodococcus sp. strain DTB. Appl Microbiol Biotechnol 69:335–340

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Rohwerder T, Harms H (2007) Carbon conversion efficiency and limits or productive degradation of methyl tert-butyl ether and related compounds. Appl Environ Microbiol 73:1783–1791

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Müller RH, Rohwerder T, Harms H (2008) Degradation of fuel oxygenates and their main intermediates by Aquincola tertiaricarbonis L108. Microbiology 154:1414–1421

    Article  PubMed  CAS  Google Scholar 

  • Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Morita M (2005) Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus. Appl Environ Microbiol 71:1254–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsu CH, Hristova K, Hanada S, Meng X-Y, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983–989

    Article  CAS  PubMed  Google Scholar 

  • Newman LM, Wackett LP (1995) Purification and characterization of toluene-2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34:14066–14076

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Culbertson CW (1992) Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation. Appl Environ Microbiol 58:2983–2992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parales RE, Adamus JE, White N, May HD (1994) Degradation of 1,4-dioxane by an actinomycete in pure culture. Appl Environ Microbiol 60:4527–4530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel RN, Hou CT, Felix A (1976) Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium. J Bacteriol 126:1017–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payne WD, Collette TW (1989) Identification of bis(2-chloroethyl) ether hydrolysis products by direct aqueous injection GC/FT-IR. J High Resolut Chromatogr 12:693–696

    Article  CAS  Google Scholar 

  • Pugazhendi A, Banu JR, Dhavamani J, Yeom IT (2015) Biodegradation of 1,4-dioxane by Rhodanobacter AYS5 and the role of additional substrates. Ann Microbiol 65:2210–2208

    Article  CAS  Google Scholar 

  • Redmond MC, Valentine DL, Sessions LA (2010) Identification of novel methane-ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 76:6412–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribbons DW (1975) Oxidation of C1-compounds by particulate fractions from Methylococcus capsulatus: distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase). J Bacteriol 122:1351–1363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar M, Morales M, Revah S (2012) Biodegradation of methyl tert-butyl ether by cometabolism with hexane in biofilters inoculated with Pseudomonas aeruginosa. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Sales CM, Mahendra S, Grostern A, Parales R, Goodwin LA, Woyke T, Nolan M, Lapidus A, Chertkov O, Ovchinnikova G, Sczyrba A, Alvarez-Cohen L (2011) Genome sequence of the 1,4-dioxane-degrading Pseudonocardia dioxanivorans strain CB1190. J Bacteriol 193:4549–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sales CM, Grostern A, Parales JV, Parales RE, Alvarez-Cohen L (2013) Oxidation of cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species. Appl Environ Microbiol 72:7702–7708

    Article  CAS  Google Scholar 

  • Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ (2011) The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardiodes sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep 3:390–396

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Battaglia V, Scow K, Kane S, Hristova KR (2008) Involvement of a novel enzyme, MdpA, in methyl-tert-butyl ether degradation in Methylibium petroleiphilum PM1. Appl Environ Microbiol 74:6631–6638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster J, Schäfer F, Hübler N, Brandt A, Rosell M, Härtig C, Harms H, Müller RH, Rohwerder T (2012) Bacterial degradation of tert-amyl alcohol proceeds via hemiterpene 2-methyl-3-buten-2-ol by employing the tertiary alcohol desaturase function of the Rieske nonheme mononuclear iron oxygenase MdpJ. J Bacteriol 194:972–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster J, Purswani J, Breuer U, Pozo C, Harms H, Müller RH, Rohwerder T (2013) Constitutive expression of the cytochrome P450 ethABCD monooxygenase system enables degradation of synthetic dialkyl ethers in Aquincola tertiaricarbonis L108. Appl Environ Microbiol 79:2321–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sei K, Miyagaki K, Kakinoki T, Fukugasako K, Inoue D, Ike M (2013a) Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source. Biodegradation 24:665–674

    Article  CAS  PubMed  Google Scholar 

  • Sei K, Oyama M, Kakinoki T, Inoue D, Ike M (2013b) Isolation and characterization of tetrahydrofuran-degrading bacteria for 1,4-dioxane-containing wastewater treatment by cometabolic degradation. J Water Environ Technol 11:11–19

    Article  Google Scholar 

  • Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156:497–511

    Article  CAS  Google Scholar 

  • Sharp JO, Sales CM, LeBlanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible propane monooxygenase is responsible for n-nitrosodimethylamione degradation by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 73:6930–6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp JO, Sales CM, Alvarez-Cohen L (2010) Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales. Biotechnol Bioeng 107:924–932

    Article  CAS  PubMed  Google Scholar 

  • Shields MS, Reagin MJ (1992) Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl Environ Microbiol 58:3977–3983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner KM, Martinez-Prado A, Hyman MR, Williamson KJ, Ciuffetti LM (2008) Pathway, inhibition and regulation of methyl tertiary butyl ether oxidation in a filamentous fungus, Graphium sp. Appl Microbiol Biotechnol 77:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Skinner K, Cuifetti L, Hyman M (2009) Metabolism and cometabolism of cyclic ethers by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 75:5514–5522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Hyman MR (2010) Oxidation of gasoline oxygenates by closely related non-haem-iron alkane hydroxylases in Pseudomonas mendocina KR1 and other n-octane-utilizing Pseudomonas strains. Environ Microbiol Rep 2:426–432

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003a) Characterization of the initial reactions during the cometabolic oxidation of methyl tert-butyl ether by propane-grown Mycobacterium vaccae JOB5. Appl Environ Microbiol 69:796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CA, O’Reilly KT, Hyman MR (2003b) Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5-C8 n-alkanes. Appl Environ Microbiol 69:7385–7394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria. Appl Environ Microbiol 63:4216–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stirling DI, Dalton H (1980) Oxidation of dimethyl ether, methylformate and bromomethane by Methylococcus capsulatus (Bath). J Gen Microbiol 116:277–283

    CAS  Google Scholar 

  • Tajima T, Hayashida N, Matsumura R, Omura A, Nakashimada Y, Kato J (2012) Isolation and characterization of tetrahydrofuran-degrading Rhodococcus aetherivorans strain M8. Process Biochem 47:1665–1669

    Article  CAS  Google Scholar 

  • Thiemer B, Andressen JR, Schräder T (2003) Cloning and characterization of a gene cluster involved in tetrahydrofuran degradation in Pseudonocardia sp. strain K1. Arch Microbiol 179:266–277

    Article  CAS  PubMed  Google Scholar 

  • Trippe KM, Wolpert TJ, Hyman MR, Ciuffetti LM (2014) RNAi silencing of a cytochrome P450 monooxygenase disrupts the ability of the filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation 25:137–151

    Article  CAS  PubMed  Google Scholar 

  • Tupa PR, Masuda H (2018a) Genomic analysis of propane metabolism in methyl tert-butyl ether-degrading Mycobacterium sp. strain ENV421. J Genomics 6:24–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Tupa PR, Masuda H (2018b) Draft genome sequence of a propanotroph, Rhodococcus sp. strain ENV425, capable of degrading methyl tert-butyl ether and N-nitrosodimethylamine. Genome Announc 6:1–2

    Article  Google Scholar 

  • Tupa PR, Masuda H (2018c) Comparative proteomic analysis of propane metabolism in Mycobacterium sp. strain ENV421 and Rhodococcus sp. strain ENV425. J Mol Microbiol Biotechnol 28:107–115

    Article  CAS  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency (2002) Bis(chloroethyl)ether (BCEE); CASRN 111-44-4. Integrated Risk Information System

    Google Scholar 

  • U.S. Environmental Protection Agency (2016) 1,4-Dioxane (CASRN 123–91-1) – Report on carcinogens, 14th edn

    Google Scholar 

  • U.S. Environmental Protection Agency (2017) Technical fact sheet − 1,4- dioxane (EPA 505-F-17-011)

    Google Scholar 

  • U.S. Environmental Protection Agency (2014) Priority Pollutant list. https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf

  • Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ (2006) Biodegradation of ether pollutants by Pseudonocardia sp. ENV478. Appl Environ Microbiol 72:5218–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Beilen JB, Kingma J, Witholt B (1994) Substrate specificity of the alkane hydroxylase system in Pseudomonas oleovorans GPo1. Enzym Microb Technol 16:904–911

    Article  Google Scholar 

  • van den Wijngaard AJ, Prins J, Smal AJAC, Janssen D (1993) Degradation of 2-chloroethyl vinyl ether by Ancyclobacter aquaticus AD25 and AD27. Appl Environ Microbiol 59:2777–2783

    PubMed  PubMed Central  Google Scholar 

  • Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348

    Article  CAS  PubMed  Google Scholar 

  • White G, Russell N, Tidswell E (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson JF (1971) Hydrocarbons as a source of single cell protein. Symp Soc Gen Microbiol 21:15–46

    CAS  Google Scholar 

  • Wilkinson JF (1975) Physiological studies of bacteria grown on methane. In: Microbial growth on C1 compounds. The Society of Fermentation Technology, Tokyo, pp 45–58

    Google Scholar 

  • Yao Y, Lu Z, Zhu F, Min H (2013) Evidence for horizontal gene transfer of a tetrahydrofuran monooxygenase: cloning and analysis of a gene cluster for tetrahydrofuran degradation in Rhodococcus sp. YYL. Afr J Microbiol Res 7:1809–1818

    Article  CAS  Google Scholar 

  • Yamamoto N, Saito Y, Inoue D Sei K, Ike M (2018) Characterization of a newly isolated Pseudonocardia sp. N23 with high 1,4-dioxane-degrading ability. J Biosci Bioeng 125:552–558

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Huang H, Shen D (2016) Multi-substrate biodegradation interaction of 1,4-dioxane and BTEX mixtures by Acinetobacter baumannii DD1. Biodegradation 27:37–46

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McElroy, A., Hyman, M. (2019). Biodegradation of Ether Pollutants. In: Steffan, R. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50433-9_27

Download citation

Publish with us

Policies and ethics