Skip to main content

Material Selection Impact on Intraoperative Spine Manipulation and Post-op Correction Maintenance

  • Reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

As spine surgeons, there are a variety of products and technologies available for application within our discipline. The breadth of variety comes from the diverse materials that are available, each with a unique physical, mechanical, and biological property that gives it advantages and disadvantages. It is fundamentally important for a spine surgeon to understand every facet of these materials, because they will ultimately not only have a unique effect on the body’s physiology but will also alter the ability to maintain stabilization while the wound heals and arthrodesis is achieved. This chapter will go over the common commercial materials available for spine stabilization and manipulation. It will discuss in depth the advantages and disadvantages of their specific biomechanical properties and biocompatible. Finally, this chapter will discuss how each material can affect spine stabilization and maintenance of correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abul-Kasim K, Karlsson MK, Ohlin A (2011) Increased rod stiffness improves the degree of deformity correction by segmental pedicle screw fixation in adolescent idiopathic scoliosis. Scoliosis 6:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Antunes RA, de Oliveira MC (2012) Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater 8(3):937–962

    Article  CAS  PubMed  Google Scholar 

  • Baboian R ed., (2005) Corrosion Tests and Standards: Application and Interpretation-Second ed. (West Conshohocken, PA: ASTM International) https://doi.org/10.1520/MNL20-2ND-EB

  • Banerjee R, Nag S, Stechschulte J, Fraser HL (2004) Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials 25(17):3413–3419

    Article  CAS  PubMed  Google Scholar 

  • Blanco JF, Sanchez-Guijo FM, Carrancio S, Muntion S, Garcia-Brinon J, del Canizo MC (2011) Titanium and tantalum as mesenchymal stem cell scaffolds for spinal fusion: an in vitro comparative study. Eur Spine J 20(Suppl 3):353–360

    Article  PubMed Central  PubMed  Google Scholar 

  • Bono CM, Lee CK (2004) Critical analysis of trends in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome. Spine (Phila Pa 1976) 29(4): 455–463; discussion Z455

    Article  Google Scholar 

  • Boos N, Webb JK (1997) Pedicle screw fixation in spinal disorders: a European view. Eur Spine J 6(1):2–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brailovski V, Prokoshkin S, Gauthier M et al (2011) Bulk and porous metastable beta Ti–Nb–Zr (Ta) alloys for biomedical applications. Mater Sci Eng C 31(3): 643–657

    Article  CAS  Google Scholar 

  • Bridwell KH, Sedgewick TA, O’Brien MF, Lenke LG, Baldus C (1993) The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. J Spinal Disord 6(6):461–472

    Article  CAS  PubMed  Google Scholar 

  • Burtscher IM, Owman T, Romner B, Stahlberg F, Holtas S (1998) Aneurysm clip MR artifacts. Titanium versus stainless steel and influence of imaging parameters. Acta Radiol 39(1):70–76

    CAS  PubMed  Google Scholar 

  • Chan K (2010) Changes in fatigue life mechanism due to soft grains and hard particles. Int J Fatigue 32(3): 526–534

    Article  CAS  Google Scholar 

  • Cho DY, Liau WR, Lee WY, Liu JT, Chiu CL, Sheu PC (2002) Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery 51(6):1343–1349; discussion 1349–1350

    Article  PubMed  Google Scholar 

  • Christensen FB, Dalstra M, Sejling F, Overgaard S, Bunger C (2000) Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel. Eur Spine J 9(2):97–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cidambi KR, Glaser DA, Bastrom TP, Nunn TN, Ono T, Newton PO (2012) Postoperative changes in spinal rod contour in adolescent idiopathic scoliosis: an in vivo deformation study. Spine (Phila Pa 1976) 37(18): 1566–1572

    Article  Google Scholar 

  • Clements DH, Betz RR, Newton PO, Rohmiller M, Marks MC, Bastrom T (2009) Correlation of scoliosis curve correction with the number and type of fixation anchors. Spine (Phila Pa 1976) 34(20):2147–2150

    Article  Google Scholar 

  • Cook RD, Young W (1985) Advanced mechanics of materials. Macmillan, New York

    Google Scholar 

  • Cook S, Asher M, Lai SM, Shobe J (2000) Reoperation after primary posterior instrumentation and fusion for idiopathic scoliosis. Toward defining late operative site pain of unknown cause. Spine (Phila Pa 1976) 25(4): 463–468

    Article  CAS  Google Scholar 

  • Cui G, Watanabe K, Nishiwaki Y et al (2012) Loss of apical vertebral derotation in adolescent idiopathic scoliosis: 2-year follow-up using multi-planar reconstruction computed tomography. Eur Spine J 21(6):1111–1120

    Article  PubMed Central  PubMed  Google Scholar 

  • Cunningham BW, Orbegoso CM, Dmitriev AE, Hallab NJ, Sefter JC, McAfee PC (2002) The effect of titanium particulate on development and maintenance of a posterolateral spinal arthrodesis: an in vivo rabbit model. Spine (Phila Pa 1976) 27(18):1971–1981

    Article  Google Scholar 

  • Cunningham BW, Hallab NJ, Hu N, McAfee PC (2013) Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model. J Neurosurg Spine 19(3):336–350

    Article  PubMed  Google Scholar 

  • Dall’Ara E, Karl C, Mazza G et al (2013) Tissue properties of the human vertebral body sub-structures evaluated by means of microindentation. J Mech Behav Biomed Mater 25:23–32

    Article  CAS  PubMed  Google Scholar 

  • Dick JC, Bourgeault CA (2001) Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine (Phila Pa 1976) 26(15): 1668–1672

    Article  CAS  Google Scholar 

  • Doulgeris JJ, Aghayev K, Gonzalez-Blohm SA et al (2013) Comparative analysis of posterior fusion constructs as treatments for middle and posterior column injuries: an in vitro biomechanical investigation. Clin Biomech (Bristol, Avon) 28(5):483–489

    Article  Google Scholar 

  • Ebramzadeh E, Normand PL, Sangiorgio SN et al (2003) Long-term radiographic changes in cemented total hip arthroplasty with six designs of femoral components. Biomaterials 24(19):3351–3363

    Article  CAS  PubMed  Google Scholar 

  • El Masri F, Sapin de Brosses E, Rhissassi K, Skalli W, Mitton D (2012) Apparent Young’s modulus of vertebral cortico-cancellous bone specimens. Comput Methods Biomech Biomed Engin 15(1):23–28

    Article  PubMed  Google Scholar 

  • Farnsworth CL, Newton PO, Breisch E, Rohmiller MT, Kim JR, Akbarnia BA (2014) The biological effects of combining metals in a posterior spinal implant: in vivo model development report of the first two cases. Adv Orthop Surg 2014:1

    Article  Google Scholar 

  • Fricka KB, Mahar AT, Newton PO (2002) Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without interbody structural support. Spine (Phila Pa 1976) 27(7):702–706

    Article  Google Scholar 

  • Fujibayashi S, Takemoto M, Neo M et al (2011) A novel synthetic material for spinal fusion: a prospective clinical trial of porous bioactive titanium metal for lumbar interbody fusion. Eur Spine J 20(9):1486–1495

    Article  PubMed Central  PubMed  Google Scholar 

  • Gaine WJ, Andrew SM, Chadwick P, Cooke E, Williamson JB (2001) Late operative site pain with isola posterior instrumentation requiring implant removal: infection or metal reaction? Spine (Phila Pa 1976) 26(5):583–587

    Article  CAS  Google Scholar 

  • Ghonem H (2010) Microstructure and fatigue crack growth mechanisms in high temperature titanium alloys. Int J Fatigue 32(9):1448–1460

    Article  CAS  Google Scholar 

  • Gotman I (1997) Characteristics of metals used in implants. J Endourol 11(6):383–389

    Article  CAS  PubMed  Google Scholar 

  • Hallab NJ, Jacobs JJ, Skipor A, Black J, Mikecz K, Galante JO (2000) Systemic metal-protein binding associated with total joint replacement arthroplasty. J Biomed Mater Res 49(3):353–361

    Article  CAS  PubMed  Google Scholar 

  • Hallab NJ, Chan FW, Harper ML (2012) Quantifying subtle but persistent peri-spine inflammation in vivo to submicron cobalt-chromium alloy particles. Eur Spine J 21(12):2649–2658

    Article  PubMed Central  PubMed  Google Scholar 

  • Hee HT, Kundnani V (2010) Rationale for use of polyetheretherketone polymer interbody cage device in cervical spine surgery. Spine J 10(1):66–69

    Article  PubMed  Google Scholar 

  • Hitchon PW, Brenton MD, Black AG et al (2003) In vitro biomechanical comparison of pedicle screws, sublaminar hooks, and sublaminar cables. J Neurosurg 99(1 Suppl):104–109

    PubMed  Google Scholar 

  • Jockisch KA, Brown SA, Bauer TW, Merritt K (1992) Biological response to chopped-carbon-fiber-reinforced peek. J Biomed Mater Res 26(2):133–146

    Article  CAS  PubMed  Google Scholar 

  • Kasliwal MK, O’Toole JE (2014) Clinical experience using polyetheretherketone (PEEK) intervertebral structural cage for anterior cervical corpectomy and fusion. J Clin Neurosci 21(2):217–220

    Article  CAS  PubMed  Google Scholar 

  • Kersten RF, van Gaalen SM, de Gast A, Oner FC (2015) Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J 15(6):1446–1460

    Article  PubMed  Google Scholar 

  • Lamerain M, Bachy M, Delpont M, Kabbaj R, Mary P, Vialle R (2014) CoCr rods provide better frontal correction of adolescent idiopathic scoliosis treated by all-pedicle screw fixation. Eur Spine J 23(6): 1190–1196

    Article  PubMed  Google Scholar 

  • Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(3):343–349

    Article  Google Scholar 

  • Lin HY, Bumgardner JD (2004) In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells. J Orthop Res 22(6):1231–1236

    Article  CAS  PubMed  Google Scholar 

  • Lindsey C, Deviren V, Xu Z, Yeh RF, Puttlitz CM (2006) The effects of rod contouring on spinal construct fatigue strength. Spine (Phila Pa 1976) 31(15): 1680–1687

    Article  Google Scholar 

  • Marti A (2000) Cobalt-base alloys used in bone surgery. Injury 31(Suppl 4):18–21

    Article  PubMed  Google Scholar 

  • Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T (2001) Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22(11):1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Merritt K, Brown SA (1981) Metal sensitivity reactions to orthopedic implants. Int J Dermatol 20(2):89–94

    Article  CAS  PubMed  Google Scholar 

  • Merritt K, Brown SA (1985) Biological effects of corrosion products from metals. Paper presented at: corrosion and degradation of implant materials: second symposium

    Google Scholar 

  • Nguyen T, Buckley J, Ames C, Deviren V (2011) The fatigue life of contoured cobalt chrome posterior spinal fusion rods. Proc Inst Mech Eng H J Eng Med 225(2):194–198

    Article  Google Scholar 

  • Pan J, Thierry D, Leygraf C (1996) Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: blue coloration and clinical relevance. J Biomed Mater Res 30(3):393–402

    Article  CAS  PubMed  Google Scholar 

  • Panayotov IV, Orti V, Cuisinier F, Yachouh J (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med 27(7):118

    Article  CAS  PubMed  Google Scholar 

  • Pienkowski D, Stephens GC, Doers TM, Hamilton DM (1998) Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants. Spine (Phila Pa 1976) 23(7):782–788

    Article  CAS  Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Academic, Boston

    Google Scholar 

  • Scheer JK, Tang JA, Deviren V et al (2011) Biomechanical analysis of cervicothoracic junction osteotomy in cadaveric model of ankylosing spondylitis: effect of rod material and diameter. J Neurosurg Spine 14(3): 330–335

    Article  PubMed  Google Scholar 

  • Serhan H, Slivka M, Albert T, Kwak SD (2004) Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Spine J 4(4): 379–387

    Article  PubMed  Google Scholar 

  • Shigley JE (2011) Shigley’s mechanical engineering design. Tata McGraw-Hill Education, New York

    Google Scholar 

  • Shinohara K, Takigawa T, Tanaka M et al (2016) Implant failure of titanium versus cobalt-chromium growing rods in early-onset scoliosis. Spine (Phila Pa 1976) 41(6):502–507

    Article  Google Scholar 

  • Singh R, Dahotre NB (2007) Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med 18(5):725–751

    Article  CAS  PubMed  Google Scholar 

  • Soultanis KC, Pyrovolou N, Zahos KA et al (2008) Late postoperative infection following spinal instrumentation: stainless steel versus titanium implants. J Surg Orthop Adv 17(3):193–199

    PubMed  Google Scholar 

  • Stambough JL, Genaidy AM, Huston RL, Serhan H, El-khatib F, Sabri EH (1997) Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determination of failure modes. J Spinal Disord 10(6):473–481

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Huang G, Christensen FB, Dalstra M, Overgaard S, Bunger C (1999) Mechanical and histological analysis of bone-pedicle screw interface in vivo: titanium versus stainless steel. Chin Med J (Engl) 112(5):456–460

    CAS  Google Scholar 

  • Swiontkowski MF, Agel J, Schwappach J, McNair P, Welch M (2001) Cutaneous metal sensitivity in patients with orthopaedic injuries. J Orthop Trauma 15(2): 86–89

    Article  CAS  PubMed  Google Scholar 

  • Tahal D, Madhavan K, Chieng LO, Ghobrial GM, Wang MY (2017) Metals in spine. World Neurosurg 100:619–627

    Article  PubMed  Google Scholar 

  • Walsh WR, Bertollo N, Christou C, Schaffner D, Mobbs RJ (2015) Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface. Spine J 15(5):1041–1049

    Article  PubMed  Google Scholar 

  • Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT (1997) Prosthetic metals interfere with the functions of human osteoblast cells in vitro. Clin Orthop Relat Res 339:216–226

    Article  Google Scholar 

  • Wang JC, Yu WD, Sandhu HS, Betts F, Bhuta S, Delamarter RB (1999) Metal debris from titanium spinal implants. Spine (Phila Pa 1976) 24(9):899–903

    Article  CAS  Google Scholar 

  • Wedemeyer M, Parent S, Mahar A, Odell T, Swimmer T, Newton P (2007) Titanium versus stainless steel for anterior spinal fusions: an analysis of rod stress as a predictor of rod breakage during physiologic loading in a bovine model. Spine (Phila Pa 1976) 32(1):42–48

    Article  Google Scholar 

  • Williams D, Clark G (1982) The corrosion of pure cobalt in physiological media. J Mater Sci 17(6):1675–1682

    Article  CAS  Google Scholar 

  • Wu SH, Li Y, Zhang YQ et al (2013) Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs 37(12):E191–E201

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ugrinow VL, Upasani VV, Pawelek JB, Newton PO (2008) Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery. Spine (Phila Pa 1976) 33(20): 2173–2178

    Article  Google Scholar 

  • Yoshihara H (2013) Rods in spinal surgery: a review of the literature. Spine J 13(10):1350–1358

    Article  PubMed  Google Scholar 

  • Zartman KC, Berlet GC, Hyer CF, Woodard JR (2011) Combining dissimilar metals in orthopaedic implants: revisited. Foot Ankle Spec 4(5):318–323

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank La Marca .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mostafa Zakaria, H., La Marca, F. (2021). Material Selection Impact on Intraoperative Spine Manipulation and Post-op Correction Maintenance. In: Cheng, B.C. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-44424-6_33

Download citation

Publish with us

Policies and ethics